6th homework set, Due June 9

(Of course you can submit your homework earlier, in this case I will correct it earlier)

1. (3p.) Let \mathcal{L} be the linear family of distributions on $\Omega=\left\{0, \ldots, r_{1}\right\} \times\left\{0, \ldots, r_{2}\right\}$ with prescribed marginals $\left(P(0 \cdot), \ldots, P\left(r_{1} \cdot\right)\right)$ and $\left(P(\cdot 0), \ldots, P\left(\cdot r_{2}\right)\right)$. For any $Q \in \mathcal{P}(\Omega)$ with $S(Q)=\Omega$, the I-projection P^{*} of Q to \mathcal{L} can be computed via iterative proportional fitting. Show that P^{*} can be computed also by the iterative algorithm

$$
\begin{align*}
& b_{0}(i, j)=Q(i, j) \tag{1}\\
& b_{n+1}(i, j)=b_{n}(i, j) \sqrt{\frac{P(i \cdot)}{b_{n}(i \cdot)} \cdot \frac{P(\cdot j)}{b_{n}(\cdot j)}}, \text { where } b_{n}(i \cdot)=\sum_{j} b_{n}(i, j), b_{n}(\cdot j)=\sum_{i} b_{n}(i, j), \tag{2}
\end{align*}
$$

i.e., $b_{n}(i, j) \rightarrow P^{*}(i, j)$ for each $(i, j) \in \Omega$. Let Ξ be the exponential family corresponding to \mathcal{L} (taking for Q the uniform distribution). Characterize the members of Ξ !
Hint: Apply the theorem on generalized iterative scaling.
2. (2p.) Determine (exactly) the normalized maximum likelihood distribution for binary sequences of length $n=4$, coming from an i.i.d. process, i.e., the probabilities

$$
\begin{equation*}
\frac{P_{M L}\left(x_{1}^{4}\right)}{\sum_{y_{1}^{4} \in\{0,1\}^{4}} P_{M L}\left(y_{1}^{4}\right)}, x_{1}^{4} \in\{0,1\}^{4}, \tag{3}
\end{equation*}
$$

as well as the corresponding (ideal) codelengths.
3. (4p.) Let \mathcal{P} be the class of i.i.d. processes on A^{∞} where $A=\{1, \ldots, k\}$, and let Q be the coding process treated in class,

$$
\begin{equation*}
Q\left(x_{1}^{n}\right)=\frac{\prod_{i=1}^{k}\left[\left(n_{i}-\frac{1}{2}\right)\left(n_{i}-\frac{3}{2}\right) \cdots \frac{1}{2}\right]}{\left(n-1+\frac{k}{2}\right)\left(n-2+\frac{k}{2}\right) \cdots \frac{k}{2}} \tag{4}
\end{equation*}
$$

where n_{i} is the number of occurrences of symbol i in x_{1}^{n} (the product in the numerator is defined to be 1 if $n_{i}=0$). Prove that

$$
\begin{equation*}
\frac{\prod_{i=1}^{k}\left(\frac{n_{i}}{n}\right)^{n_{i}}}{Q\left(x_{1}^{n}\right)} \tag{5}
\end{equation*}
$$

is bounded both above and below by a constant (depending on the alphabet size k only) times $n^{\frac{k-1}{2}}$. Finally conclude that it implies that for the class of i.i.d. processes $R_{n}^{*}=\frac{k-1}{2} \log n+O(1)$.
Hint: Using that

$$
\begin{equation*}
\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right) \cdots \frac{1}{2}=\frac{(2 n)!}{2^{2 n} n!} \tag{6}
\end{equation*}
$$

rewrite (4) in terms of factorials (regarding the denominator, the cases $k=$ odd and $k=$ even have to be distinguished), and then apply Stirling's formula. Recall its strong version

$$
\begin{equation*}
\sqrt{2 \pi} \cdot n^{n+\frac{1}{2}} e^{-n+\frac{1}{12(n+1)}} \leqslant n!\leqslant \sqrt{2 \pi} \cdot n^{n+\frac{1}{2}} e^{-n+\frac{1}{12 n}} \tag{7}
\end{equation*}
$$

Remark: It is worthwhile to read through Remark 6.1. of the lectures notes.
4. (2p.) Consider the coding process Q defined by (4) in case of $k=2$. Determine the codeword assigned to $x_{1}^{7}=1211112$ by arithmetic coding determined by coding process Q, for both versions of arithmetic coding found on pages 427-428 of the lecture notes.
Hint: You can find the conditional probabilities needed for arithmetic coding on page 481 of the lecture notes.
Supplement: When you divide the interval $J\left(x_{1}^{n}\right)$ into two parts, let $J\left(x_{1}^{n} 1\right)$ be the left and $J\left(x_{1}^{n} 2\right)$ be the right subinterval.

