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1. INTRODUCTION AND OVERVIEW OF THE RESULTS

All results that follow are new and original, they constitute a part of the paper [11] joint with the
supervisor Lajos Molnár, which is published in a special issue of J. Math. Anal. Appl. Below only
those proofs are presented which were given by the author of the thesis. Hence, despite Proposi-
tion 1 and Theorem 3 formulates results for all p ≥ 0, the proofs are presented only for the case
where p = 0 since the case p > 0 was resolved in [11] by the supervisor.

The quantum versions of the classical Hellinger distance (of probability distributions) play im-
portant roles in quantum information theory. The two of the most studied versions defined on
the positive semidefinite cone Mn(C)+ in the algebra Mn(C) of all n by n complex matrices are the
following (see, e.g., [2]):

(1) dH (A,B) =p
2
(
Tr

(
(A+B)/2− A1/4B 1/2 A1/4))1/2

, A,B ∈Mn(C)+

and

(2) dB (A,B) =p
2
(
Tr

(
(A+B)/2− (A1/2B A1/2)1/2))1/2

, A,B ∈Mn(C)+.

These two functions are true metrics on Mn(C)+. The latter one is called Bures or Bures-
Wasserstein metric and the former one, being the most trivial extension of the classical Hellinger
distance to the quantum case, is also called Hellinger distance, see, e.g., [18]. In the formulas (1),
(2) above, under the trace denoted by Tr we see that the difference of the arithmetic mean and two
variants of the geometric mean show up. It is easy to see that those latter two operations are in fact
members of a natural parametric family of geometric mean type operations which we can define
also in the general setting of C∗-algebras as follows.

Let A be a C∗-algebra. In what follows we always assume that A is unital. Let us denote
by A + the positive semidefinite cone of A (the collection of all self-adjoint elements of A with
non-negative spectrum) and by A ++ the positive definite cone of A (the collection of all self-
adjoint elements of A with strictly positive spectrum). We can introduce the parametric family of
operations in question as follows. For any positive real number p > 0, we define

Aκp B = (Ap/4B p/2 Ap/4)1/p , A,B ∈A +.

The so-called symmetrized Lie-Trotter formula asserts that for any X ,Y ∈A , the convergence

(
e(p/2)X epY e(p/2)X )1/p p→0−→ e X+Y

holds in norm. This implies that for any A,B ∈A ++, we have

Aκp B
p→0−→ exp((log A+ logB)/2)

which limit is usually called the log-Euclidean mean of A and B . Therefore, for any A,B ∈A ++ we
also set

Aκ0B = exp((log A+ logB)/2).

Apparently, all those κp -s are variants of the classical Kubo-Ando (or originally Pusz-
Woronowicz) geometric mean defined by

A#B = A1/2(A−1/2B A−1/2)1/2 A1/2, A,B ∈A ++.

Indeed, for commuting A,B all those operations coincide. It should be mentioned that the κp -s
also appear in relation with some variants of the quantum Rényi relative entropy. See, for example,
[14] and its references.
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In what follows we will also use the quite standard notation for the arithmetic mean

A∇B = A+B

2
, A,B ∈A +.

Clearly, for any A,B ∈Mn(C)+, we have

dH (A,B) =p
2(Tr(A∇B − Aκ1B))1/2

and

dB (A,B) =p
2(Tr(A∇B − Aκ2B))1/2.

Those quantities can easily be defined in the setting of C∗-algebras. Assume that τ is a positive
linear functional on A which is faithful and tracial. The former property means that for any A ∈
A +, τ(A) = 0 implies A = 0, the latter one means that τ(X Y ) = τ(Y X ) holds for all X ,Y ∈A .

In this work, for any non-negative real number p, we would like to set

dτ
p (A,B) = (

τ(A∇B − Aκp B)
)1/2 , A,B ∈A +

and study these quantities as possible sorts of distance measures.
If we want to study dτ

p , we have to observe whether it is well-defined, that is, if we have a non-
negative expression under the square root. First, we examine a stronger question: when do we
have that the elements A∇B − Aκp B are positive for any A,B ∈A ++? As an apparent consequence
of Proposition 1, we obtain that this happens only in commutative algebras. After this, we show
that dp = d Tr

p is well-defined onMn(C)+ for all p ≥ 0 and that dτ
p is also well-defined on the positive

cone of a general C∗-algebras if p ≤ 2.
After this, it is natural to ask whether dτ

p is a true metric. In the p = 1 and p = 2 cases, it is well
known that dτ

1 ,dτ
2 are indeed true metrics, for which [11] provides a new, more elementary and

transparent argument. As for the general case dτ
p , p ≥ 0, the natural problem that for which values

of p we have that dτ
p is a true metric seems to be very difficult, we have only partial results. Namely,

in Proposition 2 we show that dp = d Tr
p is a true metric on the set of rank-one projections (the set

of pure states) of a Hilbert space exactly when p ≤ 2.
Approaching the positivity of τ(A∇B −Aκp B) from another perspective, Theorem 3 shows that

if a positive linear functional takes non-negative values on the elements A∇B −Aκp B , A,B ∈A ++,
then it is necessarily tracial. This means that if there is any positive linear functional ϕ on A for
which dϕ

p is well-defined for all A,B ∈A ++, then ϕ must be tracial. This provides a new character-
ization of the trace.

In the last part of the thesis we consider a result by Sra [19] which says that on the positive def-
inite cone of a matrix algebra the square root of the symmetric Stein divergence is a true metric.
We observe that this quantity equals the square root of the trace of the difference of the loga-
rithm of the arithmetic mean and the logarithm of any member κp of our parametric family of
operations. Indeed, on matrix algebras the trace of the logarithm of any κp actually does not de-
pend on the parameter p which is a simple consequence of the properties of the determinant. We
show that this independence in fact distinguishes the trace among all bounded linear function-
als. Namely, in Theorem 4 we show that for von Neumann algebras, if a bounded linear functional
ϕ has the property that for one given pair p, q of different non-negative real numbers we have
ϕ(log Aκp B) =ϕ(log Aκq B), A,B ∈A ++, then ϕ is necessarily tracial. The result can also be inter-
preted as a certain characterization of the determinant (on positive definite matrices, the trace of
the logarithm equals the logarithm of the determinant).

Now we turn to the precise presentation of our results.
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2. A CENTRALITY CHARACTERIZATION UTILIZING d p
τ

If we want to study dτ
p on positive cones, we have to start by discussing the question of the

possible validity of the inequalities

τ(A∇B − Aκp B) ≥ 0,

which would prove that dτ
p is well-defined.

In the next result we consider the stronger question: when do we have the positivity of the
elements A∇B − Aκp B? The result gives a characterization of the centrality of positive definite
elements.

Proposition 1. Let A be a C∗-algebra and p be a non-negative real number. If B ∈A ++ is fixed and

Aκp B ≤ A∇B

holds for every A ∈ A ++, then B is necessarily a central element of A (it commutes with every ele-
ment of A ). The same conclusion holds if A is fixed and B runs through the set A ++.

Proof: As in Proposition 4 in [16], due to Kadison’s celebrated transitivity theorem, we have the
somewhat surprising fact that the above general statement follows if we can verify statement for
the particular algebra M2(C). In what follows we check the statement for that algebra.

For the case p > 0, see [11]. Assume that p = 0. To treat that case we need two tools. First, in
the proof of Proposition 8 in [16] it was proved that for any self-adjoint T ∈M2(C) and rank-one
projection P ∈M2(C), we have

(3) e(T−n(I−P )) → eTrT P P

as n →∞. The second observation that we will use is the following. Assume that P is a rank-one
projection, t is a positive number, A is a positive definite matrix and we have

tP ≤ A.

Multiplying by A−1/2 from both sides, we have t A−1/2PA−1/2 ≤ I . The only positive eigenvalue of
t A−1/2PA−1/2 can easily be shown to equal t Tr A−1P which implies that

(4) t ≤ 1

Tr A−1P
.

Now we turn to the proof of the case where p = 0. Assume that

exp

(
log A+ logB

2

)
≤ A+B

2

holds for some fixed B ∈M2(C)+ and for all A ∈M2(C)+. Apparently, A and B can be written in
the form eC and eD for some self-adjoint elements C and D of M2(C) (D is fixed, C is varying). Let
P ∈M2(C) be a rank-one projection, and set Cn = D −n(I −P ). We have

exp

(
2D −n(I −P )

2

)
≤ eD−n(I−P ) +eD

2

Taking limits, by (3) we can see that

(5) eTrDP P ≤ eTrDP P +eD

2
.
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If we multiply both sides by 2 and rearrange, we get

(6) eTrDP P ≤ eD .

Referring back to the discussion leading to (4), this inequality implies

(7) eTrDP ≤ 1

Tre−D P
.

Let eD have spectral decomposition

(8) eD = d1R +d2(I −R)

for some d1,d2 > 0 and rank-one projection R. The inequality (7) tells us that

e log(d1)TrRP+log(d2)(1−TrRP ) ≤ 1

d−1
1 TrRP +d−1

2 (1−TrRP )
.

If we denote t = TrRP , we get

d t
1d 1−t

2 ≤ 1

td−1
1 + (1− t )d−1

2

.

But t can be any number between 0 and 1 (recall that P is an arbitrary rank-one projection). So If
we choose t = 1/2, we get √

d1d2 ≤ 2

d−1
1 +d−1

2

.

This means that the harmonic mean of d1 and d2 is not less than their geometric mean, which
implies d1 = d2, thus B = eD = d1I . It completes the proof of our statement.

It might be interesting to note that both of the statements in Proposition 1 and in Theorem 3
are proved if they are verified only for the matrix algebra M2(C). However, the reasons for this, as
we will see, are different.

We turn back to the original question whether the dp -s or dτ
p -s are well-defined. The famous

Araki-Lieb-Thirring inequality says that for any r ≥ 1, p > 0 we have

(9) Tr(A1/2B A1/2)r p ) ≤ Tr(Ar /2B r Ar /2)p

for any A,B ∈Mn(C)+ (see (6.36) in [10] or the original source [1]). Considering arbitrary two pos-
itive real numbers 0 < p ≤ q and then writing 1/q in the place of p, setting r = q/p, and then
replacing A by Ap and B by B p , the inequality (9) becomes

(10) Tr(Ap/2B p Ap/2)1/p ≤ Tr(Aq/2B q Aq/2)1/q

for any A,B ∈Mn(C)+. It follows that

0 ≤ Tr(A∇B − Aκ2B) ≤ Tr(A∇B − Aκp B), A,B ∈Mn(C)+

holds for all 0 ≤ p ≤ 2. (We admit that in the cases where 1 ≤ p ≤ 2, it was proved in [8] that dp

is actually a so-called quantum divergence, see Definition 2.1 and Theorem 3 in that paper.) But
what about the non-negativity of Tr(A∇B −Aκp B) in the cases where p > 2? It turns out that this is
true, for the details see [11]. As a consequence, dp is well-defined on Mn(C)+ for all p ≥ 0.

What can survive from the above observations in the far more general setting of C∗-algebras?
The p ≤ 2 case is treated in [11], we have the non-negativity, the p > 2 case however still unresolved,
hence we form the following problem.

Problem 1. Is it true for an arbitrary C∗-algebra A endowed with a faithful positive tracial linear
functional τ, that τ(A∇B − Aκp B) ≥ 0 holds for all A,B ∈A and p > 2?
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3. dp ON THE SET OF RANK ONE PROJECTIONS

We know that d1 = dH ,d2 = dB are true metrics onMn(C)+. We investigate the natural question
of what happens to the remaining p-s? In our first proposition we prove that for any p > 2, the
triangle inequality does not hold for dp even in the case of 2 by 2 matrices.

Before the formulation of the result we remark the following. Let H be a Hilbert space (of any
dimension) and denote by P1(H) the set of all rank-one projections on H . If p is a positive real
number, then for any P,Q ∈ P1(H), the quantity dp (P,Q) = (1−Tr(PQP )1/p )1/2 is well-defined and

equals
√

1−cos2/p α, where α ∈ [0,π/2] is the angle between the ranges of P and Q.
Now, our statement reads as follows.

Proposition 2. Let H be a Hilbert space with dim H > 1. Then dp is a metric on P1(H) if and only if
p ≤ 2.

Proof: Suppose that p > 2. We prove that dp does not satisfy the triangle inequality even when
H = C2. Let P,Q two mutually orthogonal rank-one projections and assume that R is a rank-one
projection such that the angle between ranges of P and R is α ∈ [0,π/2]. We claim that for some α
we have

1 = dp (P,Q) > dp (P,R)+dp (R,Q) =
√

1−cos2/p α+
√

1− sin2/p α.

Taking squares and reordering, this inequality is equivalent to

cos2/p α+ sin2/p α−1 > 2
√

1−cos2/p α
√

1− sin2/p α.

Taking square again,

cos4/p α+ sin4/p α+1−2cos2/p α−2sin2/p α+2cos2/p αsin2/p α

> 4−4cos2/p α−4sin2/p α+4cos2/p αsin2/p α.

Reordering we have

0 > 3−2(cos2/p α+ sin2/p α)− (cos2/p α− sin2/p α)2.

Denoting t = cos2α, we need to verify that for some t ∈ [0,1] we have

0 > 3−2(t 1/p + (1− t )1/p )− (t 1/p − (1− t )1/p )2.

Let
f (t ) = 3−2(t 1/p + (1− t )1/p )− (t 1/p − (1− t )1/p )2, t ∈ [0,1].

We have f (0) = 0. The derivative of f at any point 0 < t < 1 is

f ′(t ) =−(2/p)
(
(t 1/p−1 − (1− t )1/p−1)+ (t 1/p − (1− t )1/p )(t 1/p−1 + (1− t )1/p−1) .

We clearly have

−(p/2) f ′(t ) = (t 1/p−1 − (1− t )1/p−1)+ (t 1/p − (1− t )1/p )(t 1/p−1 + (1− t )1/p−1)

= t 2/p−1 + t 1/p−1(1− (1− t )1/p )− (1− t )1/p−1(1− t 1/p + (1− t )1/p )

≥ t 2/p−1 − (1− t )1/p−1(1− t 1/p + (1− t )1/p ).

As t → 0, this latter expression tends to ∞. Hence, for small enough positive t , the derivative f ′(t )
is negative. Since f (0) = 0, we have that f (t ) < 0 for small enough positive t . This completes the
proof in the case where p > 2.
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Assume next that 0 < p < 2. For any P,Q ∈ P1(H), let α be the angle between their ranges. We

have mentioned above that dp (P,Q) =
√

1−cos2/p α. Now denote by f this function of α what we
consider on [0,π/2].

Select arbitrary P,Q,R ∈ P1(H). Let the angle between the ranges of P,R be α and the angle
between the ranges R,Q be β.

Let us assume for a moment that we know that the inequality

(11) f (α+β) ≤ f (α)+ f (β)

holds for any α,β ∈ [0,π/2] with α+β ∈ [0,π/2].
Let the angle between the ranges of P,Q be γ. Clearly, γ≤α+β, so if α+β≤ π/2, then by (11)

and the monotonicity of f we have the triangle inequality

dp (P,Q) = f (γ) ≤ f (α+β) ≤ f (α)+ f (β) = dp (P,R)+dp (R,Q).

The case where α+β>π/2 is easy. Again by (11) and the monotonicity of f we then have

dp (P,Q) = f (γ) ≤ f (π/2) ≤ f (π/2−β)+ f (β)

≤ f (α)+ f (β) = dp (P,R)+dp (R,Q).

So, it remains to prove that

f (s)+ f (t − s)− f (t ) ≥ 0, 0 ≤ s ≤ t ≤π/2.

Fix a t0, and consider the right hand side of the above inequality as a function of s. For s = 0,
s = t0 we have the required inequality. We prove that this function is concave on [0, t0] which will
verify our claim. The second derivative of the function in question is just the double of the second
derivative of f . So, let us compute the second derivative of f . The first derivative is as follows

f ′(t ) = (1/2)(1−cos2/p t )−1/2(−2/p)cos2/p−1 t (−sin t ))

= (1/p)(1−cos2/p t )−1/2 cos2/p−1 t sin t )

= (1/p)
cos2/p−1 t sin t

f (t )
.

We compute the second derivative

f ′′(t ) = (1/p)

(
(2/p −1)cos2/p−2 t (−sin t )sin t +cos2/p−1 t cos t

)
f (t )−cos2/p−1 t sin t (1/p) cos2/p−1 t sin t

f (t )

f (t )2

= cos2/p t

p f (t )2

(
−((2/p −1)cos−2 t sin2 t f (t )+ f (t )− (1/p)

cos2/p t cos−2 t sin2 t

f (t )

)
= cos2/p t

p f (t )3

(−(2/p) tan2 t f (t )2 + tan2 t f (t )2 + f (t )2 − (1/p)cos2/p t tan2 t
)

= cos2/p t

p f (t )3

(−(2/p) tan2 t f (t )2 + tan2 t f (t )2 + f (t )2 − (1/p)(1− f (t )2) tan2 t
)

= cos2/p t

p f (t )3

(
(1+ tan2 t ) f (t )2 − (1/p)(1+ f (t )2) tan2 t

)
.

We prove that
(1+ tan2 t ) f (t )2 − (1/p)(1+ f (t )2) tan2 t ≤ 0,

or equivalently that
f (t )2

1+ f (t )2
≤ 1

p

tan2 t

1+ tan2 t
= 1

p
sin2 t .
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We can rewrite this as
1−cos2/p t

2−cos2/p t
≤ 1

p
(1−cos2 t ).

Changing the variables, the desired equality becomes

1− t

2− t
≤ 1

p
(1− t p ).

We assert that for any t ∈ [0,1] we have

(12)
1− t

2− t
≤ 1

2
(1− t 2) ≤ 1

p
(1− t p )

The first inequality is easy to prove. We need to verify the second one. Examine the derivative of
the function

t p

p
− t 2

2
.

We see that this derivative is 0 at 0, positive on ]0,1[ and again 0 at 1. It follows that the function
displayed above takes its maximal value at 1, i.e., we have

t p

p
− t 2

2
≤ 1

p
− 1

2
, t ∈ [0,1].

After reordering we obtain the second inequality in (12) and this finishes the proof for 0 < p < 2.
The case p = 0 is obtained by taking the limit p → 0.

As for the metric behaviour of dp or dτ
p on full cones, we formulate the following most probably

quite difficult questions.

Problem 2. Given a positive integer n ≥ 2, is it true that dp on Mn(C)+ is a metric for all 1 < p < 2
and it is not a metric for all 0 < p < 1? What about the case of general C∗-algebras? Is it true that
dτ

p is a metric if 1 < p < 2?

Concerning matrix algebras we remark that using a mathematical software, computer tests
convince us to believe that the answers to the first two questions are affirmative.

We also remark that if for 0 < p < 1, dp is really not a metric on Mn(C)+ (n ≥ 2), then using a
method presented in [11], one could prove that if dτ

p is a true metric on the positive cone A + of a
C∗-algebra A for some 0 < p < 1, then A is necessarily commutative.

4. A TRACE CHARACTERIZATION UTILIZING dτ
p

According to Proposition 1 the well-definedness of dτ
p does not hold in the most trivial way,

namely, the positivity of an element A∇B − Aκp B is guaranteed only in special cases. We showed
that for certain values of p all elements of the preceding form has a non-negative image under a
tracial positive linear functional. Our following result shows that there can not exist another type
of positive linear functional with this property.

Theorem 3. Let A be a C∗-algebra and p be any non-negative real number. If ϕ is a positive linear
functional on A such that

(13) ϕ(Aκp B) ≤ϕ(A∇B), A,B ∈A ++,

then ϕ is necessarily tracial.
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Before presenting the proof we make some short remarks.
First, referring back to Proposition 1, the result above can also be interpreted saying that the

inequality Aκp B ≤ A∇B is so much untrue that only a very few positive linear functionals ϕ can
satisfy the inequality ϕ(Aκp B) ≤ ϕ(A∇B), A,B ∈ A ++. Indeed, in the particular case of a finite
factor von Neumann algebra, ϕ is necessarily a scalar multiple of the unique trace.

We must point out that a number of results on the traciality of positive linear functionals similar
to the one in Theorem 3 were obtained by Bikchentaev in a series of papers. His investigations were
motivated by the work [9] in which Gardner proved that if the positive linear functional ϕ on the
C∗-algebra A satisfies |ϕ(A)| ≤ϕ(|A|) for all A ∈A , then ϕ is tracial.

The one among Bikchentaev’s results which is the closest to ours is Theorem 2 in [3]. It is
shown there that the Araki-Lieb-Thirring inequality (9) for any given pair r > 1, p > 0 distinguishes
the tracial ones among all positive linear functionals on a C∗-algebra. Although we present a sim-
ilar result here but observe that our assumption is much weaker in some sense: we require ϕ to
respect only a sort of geometric-arithmetic mean inequality while in [3] an inequality involving
two variants of the same geometric mean is assumed.

Proof: As Bikchentaev did, we also follow the scheme of Gardner’s proof and reduce the problem
to the particular case when the domain is the algebra of 2 by 2 matrices.

First, we can obviously assume that ϕ has norm 1, i.e., it is a state. Consider the image of A

under its universal representation ω. The second commutant ω(A )′′ = M is a von Neumann al-
gebra. The sate ϕ is a vector state for ω(A) hence extends to a normal state ϕ̃ on M , see III.5.2.6
Proposition in [5]. Since the normal states are weakly/strongly continuous on the unit ball of M

(see, e.g., III.2.1.4 Theorem in [5]), by the Kaplansky density theorem (and using the strong conti-
nuity of bounded continuous functions, see, e.g., 4.3.2. Theorem in [17]) we can conclude that ϕ̃
satisfies (13) on the positive definite cone of M .

Therefore, it is sufficient to prove our result in the case where A is a von Neumann algebra and
our positive linear functional ϕ is normal.

To do that we refer to Lemma 2 in [20] which says that a normal positive linear functional
on a von Neumann algebra is tracial if (and only if) its values on mutually orthogonal equivalent
projections are equal. This observation was actually made (but not explicitly stated) already in [9].

Select two mutually orthogonal equivalent projections P,Q ∈ A . As in the proof of Theorem 7
in [15], choose a partial isometry V ∈A such that V V ∗ = P,V ∗V =Q and consider the map

Φ :

u v 0
z w 0
0 0 w ′

 7→ uP + vV + zV ∗+wQ +w ′(I − (P +Q))

from M2(C)⊕C ⊂ M3(C) into A . It is easy to see that Φ is an injective unital *-algebra homomor-
phism and we can deduce that the functional

X 7→ϕ(Φ(X ⊕0))

is a positive linear functional onM2(C) which satisfies (13) on M2(C)++. We need to prove that this
takes equal values on [

1 0
0 0

]
and

[
0 0
0 1

]
and it will be done as soon as we verify the statement of our proposition in the particular case of
the matrix algebra M2(C).

The proof for the case p > 0 can be found in [11]. We consider here the case p = 0 (which is
definitely more complicated than the one where p > 0). Assume that the positive liner functional
ϕ on M2(C) satisfies

ϕ(exp((log A+ logB)/2)) ≤ϕ((A+B)/2)
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for all positive definite A and B . Obviously, A and B are of the form A = eC and B = eD for some
self-adjoint C ,D ∈M2(C). If we take r ∈ R, and instead of eC , we write e(C+2r I ), and rearrange, we
get

0 ≤ e2r ϕ
(
eC

)
2

−erϕ
(
e

C+D
2

)
+ ϕ

(
eD

)
2

.

Just as a few times earlier, this is a second order polynomial of er , thus the discriminant is non-
positive, which means that

(14)
(
ϕ

(
e

C+D
2

))2 ≤ϕ(
eC )

ϕ
(
eD)

.

Let t ∈ [0,1], and choose the unit vectors

x =
[p

1− tp
t

]
and

y =
[ p

tp
1− t

]
.

Set the projections P = x ⊗ x and Q = y ⊗ y , and let C = c1Q + c2(I −Q) for some c1,c2 ∈ R, and
Dn =−n(I −P ). We will use the following. Using the limit formula (3), we deduce

lim
n→∞e

C+Dn
2 = e

TrPC
2 P.

Thus we can take limits on both sides of the inequality (14) to get

eTrPCϕ(P )2 ≤ϕ(
eC )

ϕ(P ).

Asϕ is a positive linear functional onM2(C), we have T ∈M2(C)+ such thatϕ(X ) = Tr(X T ), X ∈
M2(C). Clearly, we can assume that T is diagonal, its largest eigenvalue is 1, the other eigenvalue
is α that we assume to be strictly smaller than 1

(15) T =
[

1 0
0 α

]
.

Our aim is to prove that α= 1. Since

TrPC = c1 TrPQ + c2(1−TrPQ) = (c1 − c2)4t (1− t )+ c2,

we have
e(c1−c2)4t (1−t )+c2ϕ(P ) ≤ (ec1 −ec2 )ϕ(Q)+ec2ϕ(I ).

If we divide by ec2 , and set c = c1 − c2 ∈R, we get

ec4t (1−t )ϕ(P ) ≤ (ec −1)ϕ(Q)+ϕ(I )

which implies
ec4t (1−t )(1− t +αt ) ≤ (ec −1)(t +α(1− t ))+ (1+α).

If we rearrange this latter inequality, it becomes

ec4t (1−t )(1− t )+ (1−ec )t −1 ≤α(1−ec4t (1−t )t − (1−ec )(1− t )).

Introduce the following auxiliary functions

f (t ,c) = (1−ec −ec4t (1−t ))t +ec4t (1−t ) −1

g (t ,c) = (1−ec −ec4t (1−t ))t +ec
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defined for all t ∈ [0,1] and c ∈ R. What we have to prove is that the inequality f ≤ αg for some
α ∈ [0,1] implies α= 1.

To verify this, first observe that since f has positive values (e.g., f (1/4,2) > 0), hence α > 0.
Thus it is enough to show that the function f /g can approach 1 arbitrarily while its denominator
is positive.

We will look at the function q : [0,1] →R defined by

q(t ) =
f
(
t ,− log(1−4t (1−t ))

4t (1−t )

)
g

(
t ,− log(1−4t (1−t ))

4t (1−t )

)
=

(
1− (1−4t (1− t ))

−1
4t (1−t ) − (1−4t (1− t ))−1

)
t + (1−4t (1− t ))−1 −1(

1− (1−4t (1− t ))
−1

4t (1−t ) − (1−4t (1− t ))−1
)

t + (1−4t (1− t ))
−1

4t (1−t )

.

We will show that q(t ) → 1 as t ↗ 1/2. Let us apply a change of variable. For any 0 ≤ t < 1/2 we
write s = 1−4t (1− t ) which runs through the interval ]0,1] and we also have t = (1−p

s/2). With
this, we introduce a new function q̃ : [0,1] →R:

q̃(s) = q

(
1−p

s

2

)
= −1− s

−1
1−s + s−1 +p

s(s
−1

1−s + s−1 −1)

1+ s
−1

1−s − s−1 +p
s(s

−1
1−s + s−1 −1)

and here we can see that as s ↘ 0, the denominator, which is the double of the new parametriza-
tion of g , is positive. We are going to prove that q̃(s)−1 → 0 as s ↘ 0. We have

q̃(s)−1 = −2(1+ s
−1

1−s − s−1)

1+ s
−1

1−s − s−1 +p
s(s

−1
1−s + s−1 −1)

, s ∈ [0,1].

Since the first term in the denominator is the same as the numerator up to a constant multiplier,
thus we only have to show that

1+ s
−1

1−s − s−1

p
s(s

−1
1−s + s−1 −1)

→ 0 as s ↘ 0.

For s ∈]0,1] we have

0 ≤ 1+ s
−1

1−s − s−1

p
s(s

−1
1−s + s−1 −1)

≤ 1+ s
−1

1−s − s−1

p
s(2s−1 −1)

= 1+ s
−1

1−s − s−1

2s−
1
2 − s

1
2

.

Since the denominator goes to infinity, we can neglect the 1 in the numerator when taking limits.
We will also expand by s, to get

s
−1

1−s − s−1

2s−
1
2 − s

1
2

= s
−s

1−s −1

2s
1
2 − s

3
2

.

The denominator clearly goes to zero, and using s log(s) → 0, one can see that the numerator also
goes to zero. Hence we can apply L’Hospital’s rule:

lim
s↘0

s
−s

1−s −1

2s
1
2 − s

3
2

= lim
s↘0

−s
−s

1−s

(
1

1−s + 1
(1−s)2 log(s)

)
1
2 (2s−

1
2 −3s

1
2 )

= lim
s↘0

−2
s

−s
1−s

(
1

1−s + 1
(1−s)2 log(s)

)
2s−

1
2 −3s

1
2

= lim
s↘0

−2
s

−s
1−s

(
1

1−s + 1
(1−s)2 log(s)

)
s−

1
2 (2−3s)

= lim
s↘0

−2s
−s

1−s + 1
2

1− s + log(s)

2(1− s)2 −3s(1− s)2
= lim

s↘0
−2

s
1−3s

2(1−s) − s
3−5s

2(1−s) + s
1−3s

2(1−s) log(s)

2(1− s)2 −3s(1− s)2
.
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The first two terms in the numerator go to 0, and the denominator goes to 2, so we only have to
look at the last term of the numerator. For small enough s > 0 we have

0 ≥ s
1−3s

2(1−s) log(s) ≥ s
1
3 log(s) → 0

With this, we have proved the desired equality

lim
s↘0

q̃(s)−1 = 0.

This implies that α= 1 completing the proof of our statement in the remaining case p = 0.

Observe that in the case p = 0, the statement above gives us that if a positive linear functional
ϕ "makes" the exponential function convex meaning that ϕ ◦ exp is convex on A ++, then ϕ is
necessarily tracial. In other words, the exponential function is so much non operator convex that
there is only one type of positive linear functional which "makes" it convex.

5. A TRACE CHARACTERIZATION WITH κp AND THE STEIN DIVERGENCE

Above we have studied certain distance measures, each of which is defined in the case of matrix
algebras as the square root of the trace of the difference of the arithmetic mean and a certain
variant of the geometric mean. In a few particular cases we know that those are actually metrics
even in the general setting of C∗-algebras, in some cases we know that they are not, and in certain
cases we do not know only conjecture that they are true metrics or that they are not.

Let us recall now the following. For any pair A,B ∈Mn(C)++ of positive definite matrices, the
symmetric Stein divergence is defined by

S(A,B) = logdet

(
A+B

2

)
− 1

2
logdet(AB).

Actually, it is just the Jensen-Shannon symmetrization of the divergence called Stein’s loss (see the
first two sections in [19]). In fact, the measure S was originally introduced in [7]. The authors of
that work claimed that

δS(A,B) =
√

S(A,B), A,B ∈Mn(C)++

is not a metric while the authors of [6] conjectured that it is. The problem was solved by Sra in
[19]. Namely, in Theorem 5 in [19] it was proved that δS is a true metric on Mn(C)++, furthermore,
several interesting results were presented there concerning the properties of δS .

Observe that since Tr◦ log equals log◦det on Mn(C)++, we can rewrite S(A,B) as

S(A,B) = Tr
(
log(A∇B)− log(Aκp B)

)
, A,B ∈Mn(C)++

for any real number p ≥ 0. Therefore, in contrast with the case of the trace of the difference of the
arithmetic mean and the operation κp which really depends on the value of the parameter p, the
square root of the trace of the difference of the logarithm of the arithmetic mean and the logarithm
of the operation κp does not depend on p and is a true metric.

The natural problem arises whether a similar assertion is true in the general case of C∗-
algebras. Let A be a C∗-algebra with a faithful tracial positive linear functional τ. Then we indeed
have that for any non-negative real numbers p, q

(16) τ(log(Aκp B)) = τ(log(Aκq B)), A,B ∈A ++.

To see this, we remark the following. Employing an idea given in the proof of Theorem 2 in [12], in
Lemma 17 in [13] we proved that for any bounded linear functional ϕ on a von Neumann algebra,
ϕ is tracial if and only if it satisfies

(17) ϕ(log(AB A)) = 2ϕ(log A)+ϕ(logB)
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for all positive invertible A,B . (To tell the truth, in [13] that result was proved for self-adjoint linear
functionals, but knowing the characterization for such functionals, one can deduce the same for
general linear functionals.)

It was proved in [11] that A carrying a faithful tracial positive linear functional τ can be as-
sumed to be a weakly/strongly dense subalgebra of a von Neumann algebra onto which τ extends
as a normal faithful tracial positive linear functional, and one can deduce that τ satisfies (17). It
then easily implies that

τ(log(Aκp B)) = (1/2)τ(log A+ logB) = τ(log(Aκq B)), A,B ∈A ++.

Therefore, we have the independence of the quantity

(18) δτS(A,B) = (
τ
(
log(A∇B)− log(Aκp B)

))1/2 , A,B ∈A ++

of p. But we do not know the answer to the following probably difficult question.

Problem 3. Is the function δτS in (18) a true metric in the general case of a C∗-algebra equipped
with a faithful tracial positive linear functional τ?

To this we note that since

τ(log(Aκp B)) = τ(log(A#B)), A,B ∈A ++.

is also a consequence of the validity of (17) for τ, using the operator monotonicity of the logarithm
function, one case see that δτS(A,B) is always non-negative, takes the value 0 only if A = B and
it is symmetric in its variables. Hence the real question is whether the triangle inequality holds
true for δτS . Again we believe that this is a hard question which opinion might be justified by the
complexity of the proof for matrix algebras, see [19].

We close our work with the following result concerning the equality (16). It shows that for any
given pair p, q of different non-negative numbers, the validity of that equality actually charac-
terizes the traciality of bounded linear functionals on von Neumann algebras. So, in contrast to
Theorem 3, here we do not need to assume that the linear functional in question is positive. Of
course there is a price of this generality of functionals that we have to pay: the result concerns von
Neumann algebras and not general C∗-algebras.

Theorem 4. Let A be a von Neumann algebra. Assume the ϕ is a bounded linear functional on A .
Let p, q be different non-negative real numbers. Then

(19) ϕ(log Aκp B) =ϕ(log Aκq B), A,B ∈A ++

if and only if ϕ is tracial.

Proof: Because of the discussion above we only need to verify the necessity part of the statement.
Assume first that p = 0 and q > 0. If we replace A by A4/q and B by B 2/q in the equality

ϕ(log Aκ0B) =ϕ(log Aκq B),

we easily obtain the equality

(20) ϕ(2log A+ logB) =ϕ(log AB A), A,B ∈A ++.

Referring to Lemma 17 in [13], we have the traciality of ϕ. Let us recall the idea of the proof of that
lemma. For a given pair P,Q of projections, we wrote I +tP in the place of A and I +tQ in the place
of B , t >−1, and used the power series representation

(21) log(I +X ) =
∞∑

n=0
(−1)n+1 X n

n
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for any X ∈ A with ∥X ∥ < 1. This way, from the equality in (20), we obtained the equality of two
power series of the variable t in a neighborhood of zero. Comparing the coefficients of t 3, we got
the equality

ϕ(PQP ) =ϕ(QPQ).

Finally, applying an idea from the proof of Lemma 1 in [4], we deduced that this latter equality for
any pair P,Q of projections implies that ϕ is tracial.

Assume now that 0 < p < q . We employ a similar argument but from the technical point of view
the case is definitely more difficult. Let us substitute A and B with Ap/4 and B q/2, and bring the
roots out of the logarithms. This way, (19) becomes

1

q
ϕ

(
log(AB A)

)= 1

p
ϕ

(
log

(
A

q
p B

q
p A

q
q

))
.

From this, we deduce that, writing q in the place of q/p, the equality (19) is equivalent to

(22) ϕ
(
log(AB A)

)= 1

q
ϕ

(
log

(
Aq B q Aq))

, A,B ∈A ++.

Let P and Q now be two projections and set A = I + tP and B = I + tQ for any real number t >−1.
We will use power series representations to obtain the following equalities:

1

q
ϕ

(
log

(
Aq B q Aq))= 1

q
ϕ

(
log

( ∞∑
n=0

υn t n
))

= 1

q
ϕ

( ∞∑
n=0
Υn t n

)
and

ϕ
(
log(AB A)

)=ϕ(
log

( ∞∑
n=0

ωn t n
))

=ϕ
( ∞∑

n=0
Ωn t n

)
.

The coefficients υn ,Υn ,ωn ,Ωn are, of course, elements of A . Since the two power series define the
same function in a neighbourhood of t = 0, thus the coefficients must coincide. In particular, we
have

(23) ϕ

(
Ω3 − Υ3

q

)
= 0.

We will show that this implies ϕ(PQP ) = ϕ(QPQ). As we have already mentioned, the validity of
this latter equality for any pair P,Q of projections in A gives the traciality of ϕ.

First, we use the power series representation of (1+ t )q to get

Aq B q Aq = (I + ((1+ t )q −1)P )(I + ((1+ t )q −1)Q)(I + ((1+ t )q −1)P )

=
(

I +
∞∑

i=1

(
q

i

)
t i P

)(
I +

∞∑
k=1

(
q

k

)
t kQ

)(
I +

∞∑
j=1

(
q

j

)
t j P

)

= log(I +
∞∑

n=1
υn t n)

and then we use (21) to obtain

log(I +
∞∑

n=1
υn t n) =

∞∑
m=0

(−1)m+1

(∑∞
n=1υn t n

)m

m
.

It is not difficult to see that

(24) Υ3 = υ3 − υ1υ2 +υ2υ1

2
+ υ3

1

3
,
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thus we only have to examine υ1,υ2,υ3. We compute

υ1 =q(2P +Q),

and

υ2 =q(q −1)

2
2P +q2P +q2(PQ +QP )+ q(q −1)

2
Q

=(q2 −q)P +q2P +q2(PQ +QP )+ q2 −q

2
Q

=q2
(
PQ +QP +2P + 1

2
Q

)
−q

(
P + 1

2
Q

)
=1

2
q2(2P +Q)2 − 1

2
q (2P +Q) .

As for υ3, we have

υ3 =q(q −1)(q −2)

6
2P + q2(q −1)

2
2P + q2(q −1)

2
(PQ +QP )

+q3PQP + q2(q −1)

2
(PQ +QP )+ q(q −1)(q −2)

6
Q

=q3 −3q2 +2q

3
P + (q3 −q2)P + q3 −q2

2
(PQ +QP )+q3PQP

+ q3 −q2

2
(PQ +QP )+ q3 −3q2 +2q

6
Q

=q3
(
PQP +PQ +QP + 4

3
P + 1

6
Q

)
−q2

(
PQ +QP +2P + 1

2
Q

)
+q

(
2

3
P + 1

3
Q

)
.

Hence

υ1υ2 +υ2υ1 =1

2
q3 (

(2P +Q)(2P +Q)2 + (2P +Q)2(2P +Q)
)

− 1

2
q2 ((2P +Q) (2P +Q)+ (2P +Q) (2P +Q))

=q3 (4PQP +2QPQ +6(PQ +QP )+8P +Q)

−q2 (2(PQ +QP )+4P +Q)

and

υ3
1 = q3(2P +Q)3 = q3(4PQP +2QPQ +6(PQ +QP )+8P +Q).

Therefore, by (24) we can compute

Υ3 =υ3 − υ1υ2 +υ2υ1

2
+ υ3

1

3
= q3

(
PQP +PQ +QP + 4

3
P + 1

6
Q −2PQP −QPQ

−3(PQ +QP )−4P − 1

2
Q + 4

3
PQP + 2

3
QPQ +2(PQ +QP )+ 8

3
P + 1

3
Q

)
+q2

(
PQ +QP +2P + 1

2
Q − (PQ +QP )−2P − 1

2
Q

)
+q

(
2

3
P + 1

3
Q

)
=q3

(
1

3
PQP − 1

3
QPQ

)
+q

(
2

3
P + 1

3
Q

)
.
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We have an easier job withΩ3, since it is the q = 1 case ofΥ3. Thus we get

Ω3 = 1

3
PQP − 1

3
QPQ + 2

3
P + 1

3
Q.

With all this done, we can see that

Ω3 − Υ3

q
=

(
1

3
PQP − 1

3
QPQ + 2

3
P + 1

3
Q

)
−

(
2

3
+P

1

3
Q

)
−q2

(
1

3
PQP − 1

3
QPQ + 2

3
P + 1

3
Q

)
=(1−q2)

(
1

3
PQP − 1

3
QPQ

)
.

Hence, by (23) we obtain

ϕ

(
1

3
PQP − 1

3
QPQ

)
= 0,

which implies ϕ(PQP ) = ϕ(QPQ) for any pair P,Q of projections in A . As mentioned above, this
implies that ϕ is tracial. This completes the proof of our result.

We finish our present work with summarizing the results. First, we studied whether there is
an inequality between the arithmetic mean and our κp operation on C∗-algebras (whether the
difference of the arithmetic mean and κp is non-negative) which would trivially imply that dτ

p is
well-defined. In Proposition 1 we showed however, that this happens only in special cases, pre-
cisely on commutative algebras. Following this, we referred to [11] where the author proves that
dp is well-defined on Mn(C)+ for all p ≥ 0, and that dτ

p is also well-defined on the positive cone of
a general C∗-algebra in the case of p ≤ 2. (The p > 2 case seems to hold quite a challenge.) After
this, we studied the metric properties of dp . In Proposition 2 we showed that dp is a true metric
on the set P1(H) of the rank one projections of a Hilbert space H if and only if p ≤ 2. This implies
that for any p > 2, dp fails to be a metric even on the positive cone of the algebra of 2 by 2 matrices.
The question, whether dτ

p is a true metric in these cases, is certainly a hard problem, the further
research of which is required. In Theorem 2 we proved that if there exists a ϕ positive linear func-
tional on a C∗-algebra such that dϕ

p is well defined, then it is necessarily tracial. We note, that the
p = 0 case of both this result and Proposition 1 tell us about how much the exponential function
fails to be operator convex. Motivated by the symmetric Stein divergence, we studied the differ-
ences of the logarithm of the arithmetic mean and the logarithm of the κp -s under a faithful tracial
positive linear functional on the positive definite cone of an arbitrary C∗-algebra. It is natural to
ask whether these functions coincide mimicking the behavior on Mn(C)++. Our last result shows
that this happens to a bounded linear functional of a von Neumann algebra precisely when it is
tracial. We note that one can prove a similar result in the case of a C∗-algebra and a positive linear
functional. Whether the square root of δτS is a true metric in the latter context, is a deep problem
as well, which we would like to examine in the future.
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