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Chapter 1

Intruduction

A partially ordered set is one of the simplest relational structures, so it is

quite natural to investigate the homomorphisms of such structures. As we

will see, one can define a partial order on the set of self-adjoint operators of a

Hilbert space, to make it such a structure, the monotone functions of which

we will examine mainly one the line of the proof of Loewner’s Theorem

by a recently published book of Barry Simon [2]. The original paper of

Loewner [1] is from 1934, and several remarkable results have been achived

since then. In quantum mechanics, the observable algebra is that of the self

adjoint operators of the associated Hilbert space of the quantum mechanical

system. Quasi-entropies are induced by real functions, and that of monotone

decreasing functions have some desired properties. Even John von Neumann

and Eugene Paul Wigner wrote about Loewner’s Theorem in [6]. By the II.

Gelfand-Naimark Theorem (Proposition 15.2 of [9]), every C*-algebra can

be isometrically embedded into the algebra of bounded operators on some

Hilbert space, thus an operator monotone function composed with the inverse
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CHAPTER 1. INTRUDUCTION 3

of such embedding is a monotone function on the said C*-algebra.

Loewner’s student, Fritz Kraus [5] initiated the study of matrix convex

functions. Otto Heinävaara [4] also proved great results in this topic. The

Hansen–Jensen–Pedersen Theorem (Theorem 11.1 of [2]) is a surprising gen-

eralisation of the well-known Jensen’s Theorem, but due to length affecting

reasons, we will not prove this theorem, but Lemma 4.0.1 is related to it.

In this paper we will first induce a partial order on the bounded operators

of a Hilbert space and introduce the notion of operator monotone functions.

After the basics, we state and prove Loewner’s Theorem through which we

will encounter some surprising regularity properties of operator monotone

functions. Then we will show that an operator monotone function is mono-

tone even on the operators of a infinite dimensional space. After that, we

prove a pleasent remark about operator concave and operator monotone func-

tions, which will help us in showing a surprising theorem. Then we explore

the properties of some means when used on operators, and generalise the

notion of means on the ground of those. Finally, we shall show the remark-

able connection of operator means with operator monotone functions by the

Kubo-Ando Theorem, framing the whole thesis.

The thesis may be lengthy, but two of the main aims of it is to be precise

and as self contained as possible.

1.1 Basics

Definition 1.1.1 In a normed space (V, ‖ · ‖), we denote the open ball with

radius r > 0 and center x ∈ V , {y ∈ V | ‖x − y‖ < r}, with Br(x). The
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clousure of a set H is denoted as H, and the boundary by ∂H.

If (H, 〈· |·〉) is a Hilbert space, we say that a linear operator A : H → H

is bounded, if sup
x∈B1(0)

‖Ax‖ ∈ R. In this case, this supremum is the operator

norm of A. We denote the bounded linear operators of H with L (H).

If A ∈ L (H), we say that A is positive (A ≥ 0), if 〈v |Av〉 ≥ 0 holds for

all v ∈ H.

We denote the set of positive operators with L (H)+, which is a positive

cone, that is αA+ βB ∈ L (H)+ for all α, β ≥ 0 and A,B ∈ L (H)+

A is referred to as strictly positive, if 〈v |Av〉 > 0 holds for all v ∈ H \ {0}.

One can see, that even the ∀v ∈ H 〈v |Av〉 ∈ R condition is equivalent

to A being self-adjoint by 〈v |A∗v〉 = 〈v |Av〉 , and the fact that

A = 0 ⇔ 〈v |Av〉 = 0 ∀v ∈ H.

Definition 1.1.2 We define a partial order relation ≤⊆ L (H) ×L (H) by

A ≤ B ⇔ B − A ∈ L (H)+

Since any A ∈ L (H) can be written in the form of A = ReA + i ImA =
A+ A∗

2
+ i

iA− iA∗

2
, where both ReA and ImA are self-adjoint, we see that

A ≤ B ⇔ ReA ≤ ReB ∧ ImA = ImB. If ImA 6= ImB, nor A ≤ B neither

B ≤ A hold, thus it is reasonable to continue just with a set of operators,

such that ImA = A0, but to facilitate our progress, we will examine the

A0 = 0 equivalency class that is, the self-adjoint operators. We will denote

this subspace L (H)sa.

Proposition 1.1.1 If A is self-adjoint, ‖A‖ = sup
x∈∂ B1(0)

〈x |Ax〉
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Proof: ∀x ∈ ∂ B1(0) 〈x |Ax〉 ≤ ‖x‖‖Ax‖ ≤ ‖A‖‖x‖2 = ‖A‖ on the other

hand, let K = sup
x∈∂ B1(0)

〈x |Ax〉 and y, x ∈ ∂ B1(0). By multiplying with a

norm one constant, we can assume that 〈y |Ax〉 ∈ R. Then

| 〈y |Ax〉 | = | 〈x+ y |A(x+ y)〉 − 〈x− y |A(x− y)〉 |/4

≤ (| 〈x+ y |A(x+ y)〉 |+ | 〈x− y |A(x− y)〉 |)/4

≤ K(‖x+ y‖2 + ‖x− y‖2)/4 = K(2‖x2‖+ 2‖y‖2)/4 = K

where the second to last equation used the paralellogram law. One can choose

y =
Tx

‖Tx‖
to see that this implies ‖A‖ ≤ K.

This is a helpful result, because this implies 0 ≤ A ≤ B ⇒ ‖A‖ ≤ ‖B‖.

Now that we have established a partially ordered structure, we can start

specifying our question, but to get to functions on operators, we need one

more definition

Definition 1.1.3 If A ∈ L (H), let specA = {λ ∈ C | @(A− λ1)−1} denote

the spectrum of A, where the non-existence means that A − λ1 can not be

inverted as a continuous linear operator.

It is clear, that we can take a polynomial of any L (H)sa, since the addi-

tion and the multiplication with a bounded operator or scalar is continuous.

Since we can we can uniformly approximate any continuous function with

polynomials, we can take the continuous function of any self-adjoint opera-

tor, even in the infinite dimensional case, by using some functional calculus.

One can read more about the continuous functional calculus in Chapter VII

of [3]. If Ranf ⊆ R, the image of a self-adjoint operator is self-adjoint, so

we search for such functions, since we want to compare the images via the

order relation.
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We want a function f , that is an order endomorphism on L (H)sa, that is

A ≤ B ⇒ f(A) ≤ f(B). This problem however can be raised in a handier

fashion. Let us limit the problem to H ≡ Cn first.

Definition 1.1.4 If f : (a, b)→ R function, such that ∀A,B ∈Mn[C]sa

A ≤ B ⇒ f(A) ≤ f(B), we refer to f as n-monotone. We will denote the

set such functions with Mn(a, b).

Notice, that if f ∈Mn(a, b), then for any A ∈Mn−1[C]sa we can define

A1 =

A 0

0
a+ b

2

 ∈Mn[C]sa f(A1) =

f(A) 0

0 f

(
a+ b

2

)
so A ≤ B ⇒ A1 ≤ B1 ⇒ f(A1) ≤ f(B1) ⇒ f(A) ≤ f(B) which yields

Mn+1(a, b) ⊆Mn(a, b), thus it is natural to define

Definition 1.1.5 If f ∈
⋂
n∈N+

Mn(a, b), we say that f is operator monotone.

Let M∞(a, b) denote the set of operator monotone functions on (a, b).

We will see in the applications, that the name is justified, that is any

f ∈M∞(a, b) is monotone even on operators of infinite dimensional separable

Hilbert spaces. It is easy to see that Mn(a, b) is a positive cone that is also

closed under composition, thus so is M∞(a, b).

One will encounter several function spaces throughout the thesis, thus we

introduce the notation of the ones, which may deviate from common nota-

tions. Cb(a, b) is the set of bounded continuous functions on (a, b). C0(a, b)

Is the space of continuous functions on (a, b) with compact support. C0(R)

is the set of continuous functions vanishing at inftinity. All of these spaces

use the ‖f‖ = sup
supp f

|f | norm. We will only consider real valued functions.
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The paper uses limits several times in multiple spaces, but I would rather

not indicate the convergence as it is consistent in each space, except for

the space of bounded linear operators, in which some notation will be used.

To avoid confusion, I would like to introduce the topologies which are not

indicated.

Definition 1.1.6 (I, <) is a directed set, if I is a nonempty set, and

<⊆ I× I is a reflexive and transitive relation, wich obeys

∀i, j ∈ I ∃c ∈ I : c > a and c > b.

If a : I → (X, τ) is a function from a directed set to a topological space,

then a is called a net. a converges to a point b ∈ X, if

∀U ∈ τ b ∈ U ⇒ ∃i0 ∈ I : ai ∈ U ∀i > i0. In this case, we write lim
i,I

ai = b.

As the convergence of nets determines a topology, we will use them to define

the topologies as opposed to defining the open sets.

Normed spaces will be endowed with the norm topology, where

lim
n,N

an = a⇔ lim
n,N
‖an − a‖

The space of measures on a compact topological space X will be interpretted

as the subspace of the dual space (C(X), ‖ · ‖∞) which inherits the weak∗

topology, that is

lim
i,I

µi = µ⇔ ∀f ∈ C(X) lim
i,I

∫
fdµi =

∫
fdµ.

Measures on a locally compact space X will use the vague convergence, where

lim
i,I

µi = µ⇔ ∀f ∈ C0(X) lim
i,I

∫
fdµi =

∫
fdµ.

Distributions use a similar convergence, but use smooth functions:

lim
i,I

Ti = T ⇔ ∀f ∈ C∞0 (X) lim
i,I

Ti(f) = T (f)



Chapter 2

Loewner’s Theorem

Notation 2.0.1 C+ = {z ∈ C | Im z > 0}

Theorem 2.0.1 (Loewner’s Theorem) If a < b (a = −∞ and/or b =∞

is allowed), and f : (a, b)→ R is a function, then the following are equivalent:

(a) f ∈M∞(a, b)

(b) ∃µ finite measure with suppµ = R \ (a, b) ≡ J and ∃A,C ∈ R with

A ≥ 0, such that

f(x) = C + Ax+

∫
J

1 + xy

y − x
dµ(y) (2.1)

(c) f is the restriction of a g : (C\R)∪ (a, b)→ C analytic function which

obeys

g(C+) ⊆ C+

Loewner called functions with g(C+) ⊆ C+ "positive" functions, but they

are also called Herglotz functions, Pick functions and Nevanlinna functions

as well.

8
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We see right away that any f ∈ M∞(a, b) is necessarily smooth. What is

more, one can notice that every function in f ∈M∞(R) is affine, moreover,

even f ∈M2(R)⇒ f is affine holds, as we shall see in Theorem 4.0.2.

Corollary 2.0.1 If s > 0 and fs(x) = xs, then fs ∈ M∞(0,∞) ⇔ s ≤ 1.

In particular, the square root function is operator monotone. Furthermore,

log ∈M∞(0,∞) holds as well

Proof: fs(re
iϕ) = rseisϕ, and for r > 0, reiϕ ∈ C+ ⇔ ϕ ∈ (0, π). Thus, if

r > 0 and reiϕ ∈ C+, then fs(reiϕ) ∈ C+ ⇔ ϕ ∈ (0, π)⇔ s ∈ (0, 1].

If we take the principal branch of logarithm on C \ (−∞, 0], then

log(reiϕ) = log(r) + iϕ, thus reiϕ ∈ C+ ⇒ ϕ ∈ (0, π)⇒ ϕ > 0.

It is clear that (b) ⇔ (c) is the most subtle logical jump since integral

representations of analytic functions are not rare to say the least. We shall

prove this part first.

2.1 (b)⇔ (c)

Notation 2.1.1 K : C2 \∆→ C, K(w, z) =
w + z

w − z
, where

∆ = {(x, x) | x ∈ C}. The open unit ball of C is traditionally referred to as

D, thus we shall not deviate from this notation. For a z ∈ C, let z denote

the complex conjugate of z. The linear span of a set H in a vectorspace is

denoted by < H >.

Theorem 2.1.1 (Poisson representation) If f is analytic in a neighbor-
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hood of D, then

f(z) = i Im f(0) +

2π∫
0

K(eiθ, z)Re f(eiθ)
dθ
2π

(2.2)

Proof: First we notice that

K(eiθ, z) =
1 + ze−iθ

1− ze−iθ
= (1+ze−iθ)

(∑
n∈N

zne−inθ

)
= 1+2

∑
n∈N+

zne−inθ (2.3)

where the sum converges uniformly on [0, 2π] for each z ∈ D, since such sets

are compact subsets of D. Since f is analytic in the neighborhood of D, the

sum f =
∑
n∈N

anz
n converges uniformly on D Now we can rewrite

Re f(eiθ) = Re a0+
1

2

∑
n∈N+

ane
inθ+ane

−inθ also converging uniformly on [0, 2π].

The last thing we need is that
∫
e−inθeimθ

dθ
2π

= δnm∫
K(eiθ, z)Re f(eiθ)

dθ
2π

=

∫ (
1 + 2

∑
n∈N+

zne−inθ

)(
Re a0 +

1

2

∑
k∈N+

ake
ikθ + ake

−ikθ

)
dθ
2π

=

∫
Re a0 + 2

1

2

∑
n∈N+

anz
n dθ

2π
= Re a0 + f(z)

Lemma 2.1.1 H =< {K(·, z),K(·, z)|z ∈ D} > ⇒ H = C(∂D)

Proof: As K(eiθ, z) = 1 + 2
∑
n∈N+

zne−inθ and

∀u, v ∈ D
K(eiθ, u)− K(eiθ, v)

u− v
∈ H , we see that the derivative in the

second variable is in the closure, since it is a limit. Now we have that
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d

dz
K(eiθ, z)

∣∣∣∣
z=0

= e−iθ ∈ H . The same argument can be made with the

nth derivatives, to see that e−i(n+1)θ ∈H , since H is closed under multipli-

cation by scalars. Using conjugates to get the positive powers, we arrive at

{eikθ | k ∈ Z} ⊆H , which is a dense set according to Weierstrass Approxi-

mation Theorem, so C(∂D) ⊆ {eikθ | k ∈ Z} ⊆H

Theorem 2.1.2 (Herglotz representation on D) If f is an analytic func-

tion on D with Re f(z) > 0 ∀z ∈ D, then ∃µ! finite measure on ∂D such that

f(z) = i Im f(0) +

2π∫
0

K(eiθ, z)dµ(θ) (2.4)

Proof: If f satisfies the conditions, then so does g =
f − i Im f(0)

Re f(0)
, so let

us consider this function, since it has g(0) = 1. For all r ∈ (0, 1) g is analytic

in the neighborhood of rD, so by Theorem 2.1.1, ∀z ∈ D

g(rz) =

2π∫
0

K(eiθ, z)dµr(θ), dµr(θ) = Re g(reiθ)
dθ
2π

Notice, that this gives us 1 = g(0) =

∫ 2π

0

dµr(θ). By continuity of g, we have

that lim
r↗1

∫ 2π

0

K(eiθ, z)dµr(θ) = g(z) exists for each z ∈ D. The predecessing

lemma shows us, that µ = lim
r↗1

µr exists, since it is defined on a dense subset

of C(∂D). Since the convergence is that of the weak* topology, we can see

that
∫
∂D

1dµ =

∫
∂D

1dµr = 1, thus dµ is a probability measure. Since the set

of probability measures on ∂D is metrizable, thus the limit µ is unique. One

can use the inverse of the transform in the beginning of the proof to arrive

at (2.4)
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The proof shows us that the measure

dµ = lim
r↗1
Re f(reiθ)

dθ

2π
(2.5)

and that µ(∂D) = Re f(0) thus dµ is finite.

Theorem 2.1.3 (Herglotz representation on C+) If f : C+ → C+ is

an analytic function, then ∃!µ finite measure on R and ∃A ≥ 0 constant,

such that

f(z) = Re f(i) + Az +

∫
R

1 + xz

x− z
dµ(x) (2.6)

Conversely, any f in such form with A ≥ 0 obeys f(C+) ⊆ C+

Proof: Starting with the converse, we can write

1 + xz

x− z
= −x+

1 + x2

x− z

hence

Im
1 + xz

x− z
= Im

(1 + x2)(x− z)

|x− z|2
= Im

(1 + x2)z

|x− z|2
=

(1 + x2)

|x− z|2
Im z

which means that any function in the form of (2.6) obeys f(C+) ⊆ C+ Let

us consider the fractional linear function T : C→ C

T (z) =
z − i
z + i

T−1(w) = i
1 + w

1− w

One can see, that T (R) = ∂D and T (i) = 0 which implies T (C+) = D

and T−1(D) = C+ by ground properties of fractional linear maps. Thus

f : C+ → C+ ⇒ −if ◦T−1 : D→ {z ∈ C | Re z > 0}, which justifies the use
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of the previous theorem, which hands us a unique µ̃ measure on ∂D, such

that

−if(T−1w) = i Im(−if(i)) +

2π∫
0

K(eiθ, w)dµ̃(θ) (2.7)

By multiplying the equation with i, setting z = T−1(w) and µ = µ̃ ◦ T we

arrive at

f(z) = Ref(i) + az +

∫
R

K(T (x), T (z))dµ(x)

where K(T (x), T (z)) =
1 + xz

x− z
follows from elementary computation. One

can rewrite (2.6) as

f(z) = Ref(i) + az +

∫
R

1

x− z
− x

1 + x2
dν(x) (2.8)

where

dν = (1 + x2)dµ (2.9)

ν is no longer a finite measure, but still is a σ-finite one. This form is used

frequently as well.

Now we see the connection between the representation and the f(C+) ⊆ C+

property. What is left is extending this funtion to the lower half plane C−
through an (a, b) interval. After we get to know the measure of (2.6), this

problem will be more menageable.

Proposition 2.1.1 The measure of (2.6) is given by

dµ(x) = lim
ε↘0

1

1 + x2

1

π
Im f(x+ iε)dx (2.10)

where lim resebles the vague limit.
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Proof: Since (2.8) holds, we have that

1

π
Im f(x+iε) =

aε

π
+

∫
R

1

π
Im

1

y − (x+ iε)
dν(x) =

aε

π
+

∫
R

1

π

ε

(x− y)2 + ε2
dν(x)

If we make a u =
x− y
ε

substitution, we get
arctan(u) + C

π
as an antideriva-

tive, so the integral is 1 for every ε > 0. One can also see, that the integrand

goes to 0 in y uniformly on every {(x − y)2 > δ} as ε ↘ 0, so it is an ap-

proximate delta function for every fixed x. Let g ∈ C0(R)

lim
ε↘0

∫
R

g(x)
1

1 + x2

1

π
Im f(x+ iε)dx

= lim
ε↘0

∫
R

g(x)
1

1 + x2

aε
π

+

∫
R

1

π

ε

(x− y)2 + ε2
dν(y)

 dx

= lim
ε↘0

∫
R

g(x)
1

1 + x2

aε

π
dx+

∫
R

∫
R

g(x)
1

1 + x2

1

π

ε

(x− y)2 + ε2
dν(y)dx

Since the first integrand converges to 0 uniformly, it is enough to continue

with the second one, where we have a product of two σ-finite measure spaces
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and the iterated absolute integral∫
R

∫
R

∣∣∣∣g(x)
1

1 + x2

1

π

ε

(x− y)2 + ε2

∣∣∣∣ dν(y)dx

≤
∥∥∥ g(x)

1 + x2

∥∥∥ ∫
supp g

∫
R

1

π

ε

(x− y)2 + ε2
dν(y)dx

=
∥∥∥ g(x)

1 + x2

∥∥∥ ∫
supp g

1

π
Im(f(x+ iε)− aε)dx

≤
∥∥∥ g(x)

1 + x2

∥∥∥ ∫
supp g

1

π
sup
supp g

Im f(y + iε)dx

= λ(supp g)
∥∥∥ g(x)

1 + x2

∥∥∥ 1

π
sup
supp g

Im f(y + iε) <∞

is finite, since supp g is compact. In the last row, λ denotes the Lebesgue

measure. Hence we can use the Fubini-Tonelli Theorem to interchange the

interals . Notice, that
∫
R
g(x)

1

1 + x2

1

π

ε

(x− y)2 + ε2
dx has a pointwise limit

as ε↘ 0,
g(y)

1 + y2
. It can be dominated by ‖g‖1supp g, thus by the Dominated

Convergence Theorem we can interchange the limit and the outer integral,

to arrive at

lim
ε↘0

∫
R

∫
R

g(x)
1

1 + x2

1

π

ε

(x− y)2 + ε2
dν(y)dx

= lim
ε↘0

∫
R

∫
R

g(x)
1

1 + x2

1

π

ε

(x− y)2 + ε2
dxdν(y)

=

∫
R

lim
ε↘0

∫
g(x)

1

1 + x2

1

π

ε

(x− y)2 + ε2
dxdν(y)

=

∫
R

g(y)
1

1 + y2
dν(y) =

∫
g(y)dµ(y)
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By combining (2.5), (2.7) and dµ ◦ T−1 = dµ̃, one can also see that

dµ(T−1(eiθ)) = dµ̃(θ) := lim
r↗1
Re(−if(T−1(reiθ)))

dθ

2π
= lim

r↗1
Im f(T−1(reiθ))

dθ

2π
and we have a radially directed limit to the unit circle inside T−1,

lim
r↗1

T−1(reiθ), which is equivalent to a directed limit from T−1(0) = i to

T−1(eiθ) = cot(θ/2) in the form of lim
t↗1

ti+ (1− t)cot(θ/2). By further trans-

formations, we can arrive at the same form of dµ this way as well.

Corollary 2.1.1 A f : C+ → C+ function is a restriction of a

g : (C \R)∪ (a, b)→ C analytic function obeying g((a, b)) ⊆ R if and only if

in the representation (2.6) we have µ(a, b) = 0.

Proof: If Im g((a, b)) = {0}, then by (2.10) we know that µ(a, b) = 0, since

g is continuous and f(z) = g(z) ∀z ∈ C+.

If µ(a, b) = 0, then f is continuously defined on (a, b) by the representation

with f((a, b)) ⊆ (c, d) for some c < d. We can define

g(z) =

f(z) if z ∈ C+ ∪ (a, b)

f(z) if z ∈ C− ∪ (a, b)

(2.11)

g is defined on the (a, b) interval twice, to make it even more clear that g is

continuous on C+∪(a, b) and on C−∪(a, b) as well, since f is. g is continuous,

for given a Z ⊆ Rang closed set, write Z+ = Z ∩ C+ ⊆ g(C+ ∪ (a, b)) and

Z− = Z ∩C− ⊆ g(C− ∪ (a, b)) which are closed sets, the preimages of which

are closed. Since g−1(Z) = g−1(Z+) ∪ g−1(Z−), it is closed.

As a function is analytic if and only if it is holomorphic, we only need

to check that
∫
γ

g = 0 for any simple closed curve γ. For any γ ⊆ C+ or

γ ⊆ C− it is trivial. If γ ∩ C+ 6= ∅ 6= γ ∩ C−, we can divide γ into γ1 and
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γ2 where γ1 is the portion of γ which lies in C+ with the connection of the

two ends, and γ2 is the same, just on C− so that γ1 + γ2 = γ. These are

simple closed curves, thus compact sets. Hence γ1 + [0, i] and γ2 + [0,−i] are

also compact resulting in f being uniformly continuous on them, therefore∫
γ1

g(x)dz = lim
ε↘0

∫
γ1

f(z + iε)dz = lim
ε↘0

0. The same argument can be made

to show, that
∫
γ2

g(x)dz = 0 which tells us

∫
γ

g =

∫
γ1

g +

∫
γ2

g = 0

For any γ ∩C+ = ∅ or γ ∩C− = ∅, the same argument works as on γ1 or γ2

With this corollary, we completed the proof of the (b) ⇔ (c) part of

Loewner’s Theorem, that is

Theorem 2.1.4 For any f : C→ C function the following are equivalent

(b) f : (C\R)∪(a, b)→ C is an analytic function which obeys f((a, b)) ⊆ R

and f(C+) ⊆ C+

(c) ∃µ finite measure with supp(µ) = R \ (a, b) ≡ J and ∃A,B ∈ R with

A ≥ 0, such that

f(x) = C + Ax+

∫
J

1 + xy

y − x
dµ(y) (2.12)

Proof: It follows from Corollary 2.1.1 and Theorem 2.1.3.
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2.2 (b)⇒ (a)

We could prove (b)⇔ (c) in the original form, but for the (a)⇔ ((b) ∨ (c))

part we will reduce the problem from any interval to (−1, 1). Firstly, we

state this special case of Loewner’s Theorem.

Theorem 2.2.1 For any f : (−1, 1) → R fuction, the following are equiva-

lent:

( a) f ∈M∞(−1, 1)

( b) ∃µ finite measure on [−1, 1], such that ∃A,C ∈ R, A ≥ 0 obeying

f(x) = C + Ax+

1∫
−1

x

1 + λx
dµ(λ) (2.13)

( c) f is a restriction of a g : (C\R)∪(−1, 1)→ C analytic function, which

satisfies

g(C+) ⊆ C+

We can prove ( b) ⇔ ( c) right away.

Proof: Since (b)⇔ (c) has already been proven for the general case with

(b) taking a different form, we only need to show that ( b) is equivalent to

the (a, b) ≡ (−1, 1) case of (b), which is

f(z) = Re f(i) + az +

∫
R\(−1,1)

1 + xz

x− z
dµ(x)

One can notice, that
1 + xz

x− z
= x−1 +

xz

x− z
1 + x2

x2
.

Let us define c = Re f(i) +

∫
R\(−1,1)

x−1dµ(x) and change the measure to
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dν̃(−x−1) =
1 + x2

x2
dµ(x) and also the variable to λ = −x−1. Notice that

Dom ν̃ = [−1, 1] \ {0}. Now we have

f(z) = c+ az +

∫
Dom ν̃

z

1 + λz
dν̃(λ)

Since the integrand is z at λ = 0, we can absorb the linear part part with

setting ν = ν̃ + aδ, so Dom ν = [−1, 1] and we arrive at the desired form

f(z) = f(0) +

1∫
−1

z

1 + λz
dν(λ)

Notice that we only used equivalent transformations, hence the two forms

are equivalent.

Theorem 2.2.2 If (a)⇔ (c) holds in Loewner’s Theorem for the

(a, b) ≡ (−1, 1) case, then it holds for all a < b.

Proof: Suppose first that −∞ < a < b <∞. Let us define

T : (−1, 1)→ (a, b) T (x) =
b− a

2
x+

a+ b

2

which is a monotone bijection. As an affine map with positive coefficient,

clearly T and T−1 are operator monotone, thus for every f : (a, b)→ R

f ∈M∞(a, b)⇔ f ◦ T ∈M∞(−1, 1)

T extends analytically to C with T (C+) ⊆ C+, thus ∃ g : (C\R)∪(a, b)→ C

analytic with g(C+) ⊆ C+ and f ⊆ g if and only if ∃ g : (C\R)∪(−1, 1)→ C
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analytic with g(C+) ⊆ C+ and f ◦ T ⊆ g. This proves our proposition for

bounded intervals.

For (a, b) ≡ (0,∞), if f ∈ M∞(0,∞), then f ∈
⋂
n∈N+

M∞(0, n), so for all

n ∈ N+, f has a suitable analytic continuation to (C \R) ∪ (0, n) of which f

is a restriction onto (0, n). By the uniqueness of analytic continuation, f has

a suitable continuation, which is defined on (C \ R) ∪ (0,∞). Conversely, if

f has a suitable continuation to (C \ R) ∪ (0,∞), then it has one to

(C \ R) ∪ (0, n) for every n ∈ N+, hence f ∈ M∞(0, n) for every n ∈ N+,

which means that f ∈M∞(0,∞), since ∀k ∈ N+ ∀A,B ∈Mk[C]

(A,B is self-adjoint ⇒ ∃ n ∈ N+ : A,B < n1
)
. The same line of reasoning

works for any infinite interval.

Theorem 2.2.3 (Schur decomposition) If A,B,C ∈Mn[C] and C is in-

vertible, then A B

B∗ C

 =

1 BC−1

0 1

A−BC−1B∗ 0

0 C

 1 0

C−1B∗ 1

 (2.14)

holds, and  A B

B∗ C

 ≥ 0 ⇔ A ≥ BC−1B∗ and C ≥ 0 (2.15)

A−BC−1B∗ is often reffered to as the Schur complement of A.

Proof: (2.14) is straightforward computation, which after setting

M =

 1 0

C−1B∗ 1

, takes the form of

 A B

B∗ C

 = M∗

A−BC−1B∗ 0

0 C

M
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Since M is invertible, it is a bijection, so by the definition of positivity, we

see that  A B

B∗ C

 ≥ 0 ⇔

A−BC−1B∗ 0

0 C

 ≥ 0

The R.H.S. is by definition equivalent to the R.H.S. of (2.15).

Theorem 2.2.4 If n ∈ N+ and A,B ∈Mn[C] are self-adjoint matrices with

eigenvalues in (−∞, 0), then

A ≤ B ⇔ −A−1 ≤ −B−1 (2.16)

Proof: R2n = Rn ⊕ Rn, hence it is easy to check by the definition of

positivity, that for any C,D,E ∈Mn[C] where E is invertibleC D

D E−1

 ≥ 0⇔

E−1 D

D C

 ≥ 0 (2.17)

If we take D = 1 and consider the fact, that the Schur decomposition gives

us

∀C,E ≥ 0

C 1

1 E−1

 ≥ 0⇔ 0 < E ≤ C

we can set C = −A and E = −B for (2.17) to give us

0 < −B ≤ −A⇔ 0 < −A−1 ≤ −B−1

by the special case of the decomposition.

This shows us that if f(x) = −x−1, then f ∈ M∞(−∞, 0). However, one

can also consider the fact that 0 < A ≤ B ⇒ −B ≤ −A < 0

⇒ B−1 = f(−B) ≤ f(−A) = A−1 ⇒ f(A) = −A−1 ≤ −B−1 = f(B), which

yields f ∈M∞(0,∞).
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Theorem 2.2.5 (b)⇒ (a) in Loewner’s Theorem.

Proof: Since (b)⇔ (c) is already proven, and (c)⇒ (a) for (a, b) ≡ (−1, 1)

implies (c) ⇒ (a) for all (a, b), it is enough to show that (b) ⇒ (a) for

(a, b) ≡ (−1, 1).

Due to M∞(a, b) being closed under addition, and ∀A ≥ 0 ∀B ∈ R

(x 7→ Ax + B) ∈ M∞(a, b), we only need to check, that the integrand of

(2.13) is in M∞(a, b), that is,

∀λ ∈ [−1, 1] − 1 < A ≤ B < 1 ⇒ A

1 + λA
≤ B

1 + λB

Since for λ = 0, it is trivial, we can set µ = |λ|−1 µ ≥ 1, to get

∀µ ≥ 1 − 1 < A ≤ B < 1 ⇒ A

µ± A
≤ B

µ±B

Since
x

µ± x
= 1∓ µ

µ± x
,

∀µ ≥ 1 − 1 < A ≤ B < 1 ⇒ ∓(µ± A)−1 ≤ ∓(µ±B)−1

Notice that 0 < (µ±B), (µ± A), so we can use the fact that

(x 7→ −x−1) ∈M∞(0,∞). The implication follows in both cases, that is

∀µ ≥ 1 − 1 < A ≤ B < 1 ⇒ −(µ+ A)−1 ≤ −(µ+B)−1

∀µ ≥ 1 − 1 < −B ≤ −A < 1 ⇒ −(µ−B)−1 ≤ −(µ− A)−1

2.3 (a)⇒ (c)

For this section, we prove some results in the finite dimensional case, some

of which are remarkable on their own. One will encounter propositions that
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only have a citation for the proof, because the they are not closely related to

the topic or the machinery of it.

Definition 2.3.1 If n ∈ N+, A = (aij)i,j≤n ∈ Mn[C] and I ⊆ {1, . . . , n},

let dI(A) denote detAI , where AI = (aij)(i,j)∈I2. If I = {1, . . . , k}, dI(A) is

called main principle determinant and principle determinant otherwise.

Lemma 2.3.1 If A ∈ Mn[C] is self-adjoint, then A is strictly positive, if

and only if each main principle determinant is positive. A is positive, if and

only if each principle determinant is non-negative.

Proof: Proposition 5.8 of [2]

Definition 2.3.2 Let f ∈ C(a, b) be a function and x1, . . . , xn ∈ (a, b) dis-

tinct points. We define the nth divided difference of f recursively by

[x1; f ] = f(x1), [x1, . . . , xn; f ] =
[x2, . . . , xn; f ]− [x1, . . . , xn−1; f ]

xn − x1

.

Proposition 2.3.1 If f ∈ C(a, b), then the nth divided difference is a sym-

metric function on (a, b)n. If f ∈ Cn−1(a, b), then the nth divided difference

has a continuous extension to (a, b)n by

[x1, . . . , xn; f ] =
l∑

j=1

1

(mj − 1)!
Dmj−1

[
f(x)

∏
k 6=j

(x− xk)−mk
]∣∣∣∣∣
x=0

where (x1, . . . , xn) =
l∏

j=1

(
mj∏
i=1

yj

)
Proof: Theorem 5.13 of [2]

This proposition is useful, because it asserts that if we have a function

regular enough, we can approximate the nth derivative with the divided

difference, since ∀(x, . . . , x) ∈ (a, b)n+1 [x, . . . , x; f ] =
Dnf(x)

n!
.
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Definition 2.3.3 (Loewner matrix) For any n ∈ N+, f ∈ C1(a, b) and

a < x1 < . . . < xn < b we define the n× n Loewner matrix of f by

Ln(x1, . . . , xn; f)ij =

[xi, xj; f ] if i 6= j

Df(xi) if i = j

Proposition 2.3.2 Let k ∈ N and f ∈Mn(a, b)∩Ck(a, b). Then there exist

fm ∈ C∞(a+ 1
m
, b− 1

m
)∩Mn(a+ 1

m
, b− 1

m
) such that Djfm converges uniformly

to Djf on all compact subintervals of (a, b) for all j ∈ {0, . . . , k}.

Proof: Let g1 ∈ C∞(R) such that
∫
R
g1 = 1, g1 ≥ 0 and supp g1 ⊆ [−1, 1],

a Gaussian distribution function for example, and let gm(x) = mg1(mx) be

an approximate delta function with supp gm ⊆ [− 1
m
, 1
m

]. With this we can

define

fm(x) =

∫
supp gm

f(x− y)gm(y)dy

For all y ∈ supp gm, f(· − y) ∈Mn(a+ 1
m
, b− 1

m
), hence

fm ∈Mn(a+ 1
m
, b− 1

m
). With a t = x− y substitution, we can see that

Dfm(x) = D
∫

supp gm

f(t)gm(x− t)dt = lim
h→0

∫
supp gm

f(t)
gm(x− t+ h)− gm(x− t)

h
dt

=

∫
supp gm

f(t)Dgm(x− t)dt

The last equation can be justified with the Dominated convergence theorem.

Combining this with gm ∈ C∞(R), we see that fm ∈ C∞(a+ 1
m
, b− 1

m
).

For every [c, d] ⊆ (a, b) compact subinterval there exists m ∈ N+ such that

[c− 1
m
, d+ 1

m
] ⊆ (a, b), which is a compact set, thus f is uniformly continuous
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on it. This implies that for every ε > 0 there exists m ∈ N+ such that

∀x ∈ [c, d] ∀y ∈ [− 1
m
, 1
m

] |f(x− y)− f(x)| < ε. Hence ∀x ∈ [c, d] ∀k ≥ m

|fk(x)− f(x)| =

∣∣∣∣∣∣
∫

supp gk

f(x− y)gk(y)− f(x)gk(y)dy

∣∣∣∣∣∣
≤

∫
supp gk

|f(x− y)− f(x)|gk(y)dy < ε

∫
supp gk

gk(y)dy = ε

hence fm ⇒ f on [c, d].

Since Dfk = (Df)k, f ∈ Ck(a, b) ⇒ ∀j ∈ {0, . . . , k} Djf ∈ C(a, b) ⇒

Djfm ⇒ Djf on every [c, d] ⊆ (a, b).

Definition 2.3.4 (Schur product) For any A,B ∈ Mn×m[C], the Schur

product (A�B)ij = AijBij.

Lemma 2.3.2 ∀A,B ∈Mn[C] A,B ≥ 0⇒ A�B ≥ 0

Proof: Since � is clearly bilinear, and given the spectral theorem, any

positive matrix is the linear combination of orthogonal rank one projections

with non-negative coefficients, it is enough to check for any two rank one

projections, which take the form

P ϕ = ϕϕT , P ϕ
ij = ϕiϕj

But in this case P ϕ � P ϑ = P ϕ�ϑ, which is clearly positive since it is a

projection.

Theorem 2.3.1 (Daleckǐi-Krěin formula) Let a < x1 < . . . < xn < b,

f ∈ C1(a, b), let C ∈Mn[C] be a self-adjoint matrix and define
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A =


x1

. . .

xn

 (2.18)

Then
d
dλ
f(A+ λC)

∣∣∣∣
λ=0

= Ln(x1, . . . , xn; f)� C (2.19)

The presented proof is due to Loewner.

Proof: From the definition of A, one can notice that ek is an eigenvector

of A with eigenvalue xk for all k ≤ n. Since the eigenvalues xk(λ) and

eigenvectors vk(λ) are continuous in λ in finite dimensions, for sufficiently

small λ, we have

(A+ λC)vk(λ) = xk(λ) xk(0) = xk vk(0) = ek xk(λ) 6=k 6=l xl

Since Ranf ⊆ R, f(A+ λC) is self-adjoint, thus

〈vk(λ) |[f(A+ λC)− f(A)]el〉 = 〈f(A+ λC)vk(λ) |el〉 − 〈vk(λ) |f(A)el〉

= [f(xk(λ))− f(xl)] 〈vk(λ) |el〉

In the special case of f = id, 〈vk(λ) |λCel〉 = (xk(λ)−xl) 〈vk(λ) |el〉 . Com-

bining these two, we see that〈
vk(λ)

∣∣∣∣f(A+ λC)− f(A)

λ
el

〉
=
f(xk(λ))− f(xl)

xk(λ)− xl
〈vk(λ) |Cel〉

Considering that the R.H.S. is continuous in λ, we can take λ→ 0 to arrive

at [
d
dλ
f(A+ λC)

∣∣∣∣
λ=0

]
kl

= [xk, xl, f ]Ckl = [Ln(x1, . . . , xn; f)� C]kl
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One can notice, that
d
dλ
f(A+ λC)

∣∣∣∣
λ=0

is the Gâteaux derivative of f at A

in the C direction, Df(A)(C). In partivular, if we restrict a C1(a, b) function

onto Mn[C]sa, then f is Gâteaux differentiable in all directions at all points

(matrices), that have distinct eigenvalues in (a, b). The following theorem

comes from Loewner as well.

Theorem 2.3.2 For any f : (a, b) → R function, the following are equiva-

lent:

(a) f ∈Mn(a, b)

(b) For each a < x1 < x2 < . . . < xn < b,

Ln(x1, . . . , xn; f) ≥ 0 (2.20)

Proof: (a)⇒ (b) : Pick any set of xk in strictly ascending order as in (b),

define A as (2.18), and take a C ≥ 0. By first handling the λ > 0 case, we

can see, that A+ λC ≥ A⇒ f(A+ λC) ≥ f(A)⇒ f(A+ λC)− f(A)

λ
≥ 0.

We arrive at the same conclusion in the λ < 0 case, so

0 ≤ d
dλ
f(A+ λC)

∣∣∣∣
λ=0

= Ln(x1, . . . , xn; f)� C

If we define P v = vvT ≥ 0 for v ∈ Cn and notice that every positive operator

has a non-negative trace by definition, the predecessing equation yields

∀v ∈ Cn 0 ≤ Tr(Ln(x1, . . . , xn; f)� P v) = 〈v |Ln(x1, . . . , xn; f)v〉

Thus Ln(x1, . . . , xn; f) ≥ 0 holds by definition.

(b)⇒ (a) : By lemma 2.3.2, we have

∀C ≥ 0 Df(A)(C) =
d
dλ
f(A+ λC)

∣∣∣∣
λ=0

≥ 0
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Holds for any A in the form of (2.18). This implies that for any B ≥ A, if

A+λ(B−A) has distinct eigenvalues for every λ ∈ [0, 1], then f(A) ≤ f(B),

since f(B) = f(A) +

∫ 1

0

Df(A+ λ(B − A))(B − A)dλ by the Fundamental

Theorem of Calculus for Gâteaux derivatives.

If A has distinct eigenvalues, by the finality of the dimensions and the

continuity of the eigenvalues in λ, we have that C(λ) = A + λ(B − A) has

distinct eigenvalues outside a finite 0 < λ1 < · · · < λl < 1 set, and maybe

λl+1 = 1. Since they are distinct, for any j we can choose ε > 0 such that

λj + ε < λj+1 − ε, so f(C(λj + ε)) ≤ f(C(λj+1 − ε)). By taking ε ↘ 0, by

the continuity of f , we get f(C(λj)) ≤ f(C(λj+1)), thus f(A) ≤ f(B) even

if only A has distinct eigenvalues.

Since we can approximate any A with eigenvalues in (a, b) with such matri-

ces Am with distinct eigenvalues, and f(Am) ≤ f(Am + (B−A)) for m large

enough by the previous case, we still arrive at f(A) ≤ f(B) in the general

case.

Definition 2.3.5 For any n ∈ N+, f ∈ C2n−1(a, b), x ∈ (a, b), we define

the n× n Dobsch matrix of f at x,

Bn(x; f)ij =
D i+j−1f(x)

(i+ j − 1)!

For any n ∈ N+, f ∈ C(a, b), x1, . . . , xn ∈ (a, b) we define the n× n multi-

point Loewner matrix

An(x1, . . . , xn; f)ij = [x1, . . . , xi, x1, . . . , xj, f ]

The mutipoint Loewner matrix is often used to approximate the Dobsch

matrix, since An(x, . . . , x; f) = Bn(x; f), and the kth divided difference is
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continuous by (2.3.1). The convergence here is the operator norm conver-

gence, but in finite dimension, it is equivalent to the entrywise convergence

which is easier to notice.

We call a measure trivial, if it has finite points of support.

Lemma 2.3.3 If µ is a nontrivial finite measure R \ (a, b) and

f : (a, b)→ R is defined by

f(x) =

∫
suppµ

(y − x)−1dµ(y) (2.21)

then An(x1, . . . , xn; f) is strictly positive for each x1, . . . , xn ∈ (a, b).

Proof: One can see by induction, that for any y /∈ (a, b),

[x1, . . . , xk; (y−x)−1] =
k∏
j=1

(y−xj)−1. With this in consideration, we can see

that

An(x1, . . . , xn; f)ij =

∫
suppµ

i∏
k=1

(y − xk)−1

j∏
l=1

(y − xl)−1dµ(y)

Let v ∈ Cn

〈v |An(x1, . . . , xn; f)v〉 =
n∑

i,j=1

viAn(x1, . . . , xn; f)ijvj

=

∫
suppµ

|
n∑
i=1

vi

i∏
j=1

(y − xj)−1|2dµ(y)

which is strictly positive for any non-zero vector, since dµ is nontrivial.

Theorem 2.3.3 If f ∈ Mn(a, b) ∩ C2n−1(a, b), then Bn(x, f) ≥ 0 for all

x ∈ (a, b)
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Proof: Let us take x1, . . . , xn ∈ (a, b). For space efficiency, we shorthand

L for Ln(x1, . . . , xn; f). Since the determinant is invariant under additive

transformations of the row space and column space, and we can bring scalar

multiplicators of rows and columns in front of it, we substract the first row

from the remaining ones to get

detL =
∏
j≥2

(xj − x1) detA(1) A
(1)
ij =

[x1, xj; f ] if i = 1

[x1, xi, xj; f ] if i ≥ 2

Now substract the second row from the rows of greater index to get

detL =
∏
j≥2

(xj−x1)
∏
j≥3

(xj−x2) detA(2) A
(2)
ij =


[x1, xj; f ] if i = 1

[x1, x2, xj; f ] if i = 2

[x1, x2, xi, xj; f ] if i ≥ 3

Repeating this algorithm, we arrive at

detL =
∏
i<j

(xj − xi) detA(n) A
(n)
ij = [x1, . . . , xi, xj; f ]

If we use the same argument on this equation with the columns, we get

detL =
∏
i<j

(xj − xi)2 detAn(x1, . . . , xn; f)

By the predecessing theorem, this implies detAn(x1, . . . , xn; f) ≥ 0. One can

choose a g in a form of (2.21) with µ being the Lebesgue measure on some

[c, d], and define

dk(t) = dk(An(x1, . . . , xn; tf + (1− t)g))

By the previous lemma and (2.3.1), dk(0) > 0 for all k ≤ n. Since Mn(a, b)

is convex, dk(t) ≥ 0 for all k ≤ n, but dk(t) is a polynomial of t, so it
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has finite roots in [0, 1). If we gather all the roots for each k ≤ n, which

is still a finite set, and examine its complement, T in [0, 1), we see that

An(x1, . . . , xn; tf + (1− t)g) > 0 for all t ∈ T. Taking t→ 1 in T, we see that

tf + (1− t)g ⇒ f , so An(x1, . . . , xn; tf + (1− t)g)→ An(x1, . . . , xn; f), thus

it is positive.

By taking x1, . . . , xn → x, we have that An(x1, . . . , xn; f) → Bn(x; f),

hence it is positive as well. The last convergence used the diffenetiability of

f .

Definition 2.3.6 (Distributions) A distribution on an interval (a, b) is a

linear functional of the space C∞0 ((a, b))

Any f : (a, b)→ R locally integrable, measurable function induces a ditri-

bution on (a, b) by

Tf (g) =

b∫
a

g(x)f(x)dx

Definition 2.3.7 A distribution T is positive, if f ≥ 0⇒ T (f) ≥ 0.

For any distribution T, the distributional derivative of T is defined by

DT (f) = T (−Df).

One can notice, that for any f ∈ C1(a, b), DTf = TDf , which comes from

integrating by parts.

Proposition 2.3.3 Every f ∈M1(a, b) is a measurable function.

If f ∈ Mn(a, b), then D2n−1f , the (2n − 1)st distributional derivative is

positive.
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Proof: Let f ∈M1(a, b), so a monotone function. If we define

q(c) = sup{x ∈ (a, b) | f(x) < c} and p(d) = sup{x ∈ (a, b) | f(x) > d}, we

see that

f−1((−∞, c)) = (a, q(c)) or (a, q(c)], f−1((d,∞)) = (p(d), b) or [p(d), b)

which are all Borel sets, so the preimage of any interval, hence of any open

set (, since any open set is a countable union of intervals), thus of any Borel

set is a Borel set.

If f ∈ Mn(a, b) then by lemma 2.3.2, we have fm smooth functions con-

verging pointwise on (a, b), so the distributions Tm of fm converge to T of

f . By the former theorem, Bn(x; fm) ≥ 0 for all m and x ∈ (a, b), so

Bn(x; fm)nn =
D2n−1f(x)

(2n− 1)!
≥ 0, so D2n−1f ≥ 0, thus D2n−1Tm. By the defini-

tion of the distributional derivative and the convergence,

Tm → T ⇔ DkTm → DkT ∀k ∈ N, hence D2n−1Tm → D2n−1T , thus

D2n−1T ≥ 0.

Lemma 2.3.4 If T is a distribution on (a, b) with D2T ≥ 0, then T is

induced by a continuous function.

Proof: Since D2T is a positive linear functional of ((a, b), τ(a,b)), which is a

locally compact Hausdorff space, there exists a µ regular Borel measure due

to the Riesz-Markov Theorem, such that ∀f ∈ C∞0 (a, b) D2T (f) =

∫ b

a

fdµ.

Set

g(x) =

x∫
a

µ([a, x])dx

so D2g =
dµ
dλ

, the Radon-Nykodim derivative of µ. The function g is clearly

continuous, and we have that T (f) =

∫
R
f(x)g(x)dx
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This lemma combined with the preceding proposition tells us that any

f ∈ Mn(a, b) agrees with a C2n−3 function almost everywhere with non-

negative odd order derivatives. Considering the fact, that if a continuous

and a monotone function agrees almost everywhere, then they are identical,

we see that

Corollary 2.3.1 Mn(a, b) ⊆ C2n−3(a, b), in particularM∞(a, b) ⊆ C∞(a, b).

Furthermore, D2k−3f(x) ≥ 0 for all k ∈ {2, . . . , n} and x ∈ (a, b).

Theorem 2.3.4 (Bernstein’s Theorem) If f ∈ C∞(−1, 1) obeys

Dkf(x) ≥ 0 ∀x ∈ (−1, 1) ∀k ∈ N+, then f is a restriction of a function

analytic on D.

Proof: Let Tnf be the Taylor approximation of order n about 0, that is

Tnf(x) =
n∑
k=1

Dk(0)

k!
xk

By writing f(x) = f(y) +

∫ x

0

Df(t)dt, and using it repeatedly to expand

the integrand, we get

Rn(x) ≡ f(x)− Tnf(x) =

x∫
0

dx1

x1∫
0

dx2 . . .

xn∫
0

dxn+1 Dn+1f(xn+1) (2.22)

=

x∫
0

dxn+1

x∫
xn+1

dxn . . .
x∫

x2

dxn+1 Dn+1f(xn+1) (2.23)

=

x∫
0

Dn+1f(xn+1)
(x− xn+1)n

n!
dxn+1 (2.24)

Since there is only one variable of integration is left, we can write t = xn+1.
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At first, let us limit ourselves to the x ≥ 0 case. By the criterion of the

theorem, Tnf(x) ≥ 0, thus Rn(x) ≤ f(x), and Rn(x) ≥ 0 as well. If we fix

an α ∈ (0, 1), then
x− t
α− t

≤ x holds for all 0 ≤ t ≤ x ≤ α. Thus we can write

0 ≤ Rn(x) =

x∫
0

Dn+1f(t)

n!
(x− t)ndt

=

x∫
0

Dn+1f(t)

n!
(α− t)n (x− t)n

(α− t)n
dt

≤ xn
x∫

0

Dn+1f(t)

n!
(α− t)ndt ≤ xn

α∫
0

Dn+1f(t)

n!
(α− t)ndt

= xnRn(α) ≤ xnf(α)

Hence we see that Rn ⇒ 0 on [0, α].

If −α ≤ x ≤ t ≤ 0, then Tnf(x) ≤ 0, thus Rn(x) ≤ 0. In this case
x− t
α− t

≥ x holds, thus Rn(x) can be upper estimated by xn(fα), Therefore

Rn ⇒ 0 on [−α, 0] as well. Since |f(x)− Tnf(x)| = |Rn(x)|⇒ 0 on [−α, α],

Tnf ⇒ f on [−α, α], but since α ∈ (0, 1) was arbitrary, we conclude that

g(x) =
∑
k∈N

Dkf(0)

k!
xk = f(x) on (−1, 1), which also mean that

∑
k∈N

Dkf(0)

k!
zk

is absolute convergent on the entire D, thus it is convergent, defining an

analytic function.

The integral (2.24) is called the integral form of the Taylor’s remainder.

One can also see that (2.22) is an integral of a continuous function Dn+1f on

conv{0, x}n+1, thus by the Mean value theorem, there exists a

tn,x ∈ conv{0, x}, such that Dn+1f(tn,x) multiplied by the volume of conv{0, x}n+1
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is the (n+ 1)-fold integral. Rn(x) =
Dn+1f(tn,x)

(n+ 1)!
xn+1. This is known as the

Lagrange form of the Taylor’s remainder, which will be used in the proof of

the following theorem.

Lemma 2.3.5 If f is a C2 function on an I interval such that there is a

δ > 0 with [−δ, δ] ⊆ I, then

|Df(0)| ≤ 2

δ
sup
[−δ,δ]
|f |+ δ

2
sup
[−δ,δ]
|D2f | (2.25)

Proof:

|f(δ)− f(0)− δDf(0)| =

∣∣∣∣∣∣
δ∫

0

D2f(x)(δ − x)dx

∣∣∣∣∣∣ ≤ δ2

2
sup
[−δ,δ]
|D2f |

The first equation uses integration by parts. By adding |f(δ)− f(0)| to both

sides, and using the triangle inequality to make the L.H.S. smaller and the

R.H.S. greater, we get

|δDf(0)| ≤ |f(δ)|+ |f(0)|+ δ2

2
sup
[−δ,δ]
|D2f |

from which one can acquire (2.25) by dividing with δ and making an upper

estimate for |f(δ)| and |f(0)|.

Theorem 2.3.5 (Berstein-Boas Theorem) If f ∈ C∞(−1, 1) obeys

D2k−1f(x) ≥ 0 ∀x ∈ (−1, 1) ∀k ∈ N+,then f is a restriction of a function

analytic on D. In particular, ∀R > 1 ∃CR > 0 : ∀n ∈ N∣∣∣∣Dnf(0)

n!

∣∣∣∣ ≤ CRR
n (2.26)
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Proof: For the upper estimate, one can use Cauchy’s differentiation for-

mula on the curve ∂BR−1(0) ⊆ D, which is a compact set, thus |f | reaches

its maximum, K on it, hence∣∣∣∣Dnf(0)

n!

∣∣∣∣ ≤ ∣∣∣∣ 1

2πi

∣∣∣∣ ∫
∂BR−1 (0)

|f(z)|
|zn+1|

dz ≤ 1

2π

∫
∂BR−1 (0)

K

R−(n+1)
dz = (KR)Rn

Let g(x) = f(x)− f(−x), so ∀k ∈ N+ D2k−1g(x) ≥ 0, D2kg(0) = 0, so we

can use the same arguments for g, as in the first half Bernstein’s theorem.

Firstly, if x ∈ (0, 1),
n∑
k=1

D2k−1g(0)

(2k − 1)!
x2k−1 =

2n∑
j=1

Djg(0)

j!
xj ≤ g(x)

Notice that D2k−1f(0) =
1

2
D2k−1g(0), from which we can see that

n∑
k=1

D2k−1f(0)

(2k − 1)!
x2k−1 <∞⇒ R−1 = lim sup

k→∞

(
D2k−1f(0)

(2k − 1)!

) 1
2k−1

≤ 1

where R is the radius of convergence of the power series on the left. The

implication follows from the Cauchy-Hadamard Theorem. Let α ∈ (0, 1),

x0 ∈ [−α, α], h(x) = f(x)− f(2x0− x) ∀x ∈ (x0− (1− |x0|), x0 + (1− |x0|)),

so

∀k ∈ N+ D2k−1h(x0) ≥ 0, D2kh(x0) = 0

thus we can use Taylor’s approximation about x0. If there exists an x > 0

such that x ∈ Dom h, we can use the exact same argument, as for g. If

Dom h ⊆ (−3, 0], we can find an x < 0 in it, thus we can use almost the

same reasoning, with Taylor’s approximation being a monotone decreasing

sequence that has a lower bound h(x). In either case, we arrive at

∀α ∈ (0, 1), x0 ∈ [−α, α] lim sup
k→∞

(
D2k−1f(x0)

(2k − 1)!

) 1
2k−1

≤ (1− |x0|)−1
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By combining the previous lemma and D2kf = DD2k−1f we see that

∀x0 ∈ (−1, 1) ∀δ ∈ (0, 1− |x0|)

lim sup
k→∞

(
D2kf(x0)

(2k + 1)!

) 1
2k

≤ lim sup
k→∞

(
2

δ
sup

Bδ(x0)

D2k−1f

(2k + 1)!
+
δ

2
sup

Bδ(x0)

D2k+1f

(2k + 1)!

) 1
2k

≤ lim sup
k→∞

(
2

δ
sup

Bδ(x0)

D2k−1f

(2k − 1)!
+
δ

2
sup

Bδ(x0)

D2k+1f

(2k + 1)!

) 1
2k

≤ lim sup
k→∞

((
2

δ
+
δ

2

)
max

i∈{−1,1}
sup

Bδ(x0)

D2k+if

(2k + i)!

) 1
2k

≤ lim sup
k→∞

(
max

i∈{−1,1}
sup

Bδ(x0)

D2k+if

(2k + i)!

) 1
2k (

2

δ
+
δ

2

) 1
2k

≤(1− δ − |x0|)−1

Where the last inequality uses
2k + i

2k
→ 1 in both cases of the maximum.

Taking δ ↘ 0, we have the same estimate as for the odd case. If x ∈ (−1
2
, 1

2
),

the estimates show us that |x|n sup
B|x|(0)

Dnf(0)

n!
→ 0, which means that the

Lagrange remainder of the Taylor’s approximation goes to zero uniformly on

all [−α, α] ⊆ (−1
2
, 1

2
). Thus f is real analytic on (−1

2
, 1

2
). Notice, that for all

x ∈ (−1, 1), If we restrict f to (x−(1−|x|), x−(1−|x|)), the same argument

shows us that f is real analytic on (x− 1
2
(1− |x|), x− 1

2
(1− |x|)). Hence f is

real analytic on (−1, 1), and by the uniqueness of the analytic continuation,

f is the restriction of g(x) =
∑
k∈N

Dkf(0)

k!
xk, which is convergent on D, for it

is absolute convergent.

Corollary 2.3.2 Every f ∈ M∞(−1, 1) has an analytic continuation onto

D, and if

cn ≡
Dn+1f(0)

(n+ 1)!
(2.27)
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then ∀R > 1 ∃CR > 0 : ∀n ∈ N

|cn| ≤ CRR
n (2.28)

Proof: By Corollary 2.3.1, we see that f satisfies the condition of the

Bernstein-Boas Theorem, which has almost the same consequences, but with

|cn| ≤ C̃RR
n+1. By setting CR = RC̃R, one can see that (2.28) also holds.

Lemma 2.3.6 Let R > 0. Then all P ∈ C[x] polynomial obeying P ([−R,R]) ⊆

R+
0 is the finite sum of terms in the form of

Q(x)2, (R− x)Q(x)2, (R + x)Q(x)2, (R2 − x2)Q(x)2 (2.29)

where Q ∈ R[x] polynomial.

In both the statement and the proof we use R[x] and C[x], which indicates

whether a polynomial has real or complex coefficients. However, this deno-

tation is not accurate, because an element of C[x] is not a function until it

is restricted to a domain. Hence in the following, we will use R[x] and C[x]

as R[x]|C and C[x]|C.

Proof: Let P (x) =
n∑
k=0

anx
n, and notice, that by the condition, P ∈ R[x],

since P (0) = a0 ∈ R and F (x) =
P (x)

x
− a0 ∈ C[x] with F ([−R,R]) ∈ R,

so F (0) = a1 ∈ R, and so on. This implies, that for all z ∈ C \ R, z and

z is a root of the same multiplicity, if any of them is a zero of P . Also

any y ∈ [−R,R] has even multiplicity, since if g(x) =
P (x)

x− y
∈ C[x] then

g((y,R]) ⊆ R+
0 , g([−R, y)) ⊆ R−0 , thus g(y) = 0. With these in mind, we

can write

P (x) = C
∏
zj∈C+

|x− zj|2
∏

xj∈[−R,R]

(x− xj)2
∏

yj<−R

(x− yj)
∏
wj>R

(wj − x)
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with the indexed numbers being the roots, and C > 0. We can punctuate

the complex terms by writing zj = aj + ibj, |x− zj|2 = (x− aj)2 + b2
j , hence

we can write P (x) as a finite sum of terms in the form of

Q(x)2
∏

yj<−R

(x− yj)
∏
wj>R

(wj − x)

with Q ∈ R[x]. By expanding (x− yj) = (−R− yj) + (R+x) and (wj−x) =

(R− x) + (wj −R), we get a finite sum of term such as

Q(x)2(R + x)n(R− x)m

where n is the number of roots less than −R and m is the number of zeros

greater than R. If n and m are even, this simplifies to Q(x)2, Q(x)2(R2−x2)

if both are odd, and Q(x)2(R− x) or Q(x)2(R + x) otherwise.

Theorem 2.3.6 (Hausdorff Moment Problem) If {cn | n ∈ N} ⊆ R

and R > 0, then

∃!µ finite measure on [−R,R], such that cn =

R∫
−R

xndµ(x) (2.30)

if and only if

(a) (2.28) Holds for R, and

(b) for all n ∈ N+, the n× n Hankel matrix, H(n)
ij = ci+j−2 is positive.

Proof: If (2.30) holds, then for any a ∈ Cn+1, define Pa(x) =
n∑
k=0

akx
k so

0 ≤ 〈Pa |Pa〉L2(µ) =
n∑

i,j=0

aiaj

R∫
−R

xi+jdµ(x) =
n+1∑
i,j=1

ai−1aj−1ci+j−2 =
〈
a
∣∣Hn+1a

〉
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holds, thus Hn+1 ≥ 0 for all n ≥ 0 by definition. We can also notice that

|cn| ≤
R∫

−R

|xn|dµ(x) ≤ Rn

R∫
−R

dµ(x) ≤ Rnc0

It is clear, that dµ is unique on the space of polynomials, as

R∫
−R

n∑
k=0

akx
kdµ(x) =

n∑
k=0

akck

The polynomials are dense in C[−R,R], so dµ is unique.

For the converse, we examine (C[−R,R], ‖ · ‖∞). Firstly, we define

f

(
n∑
k=0

akx
k

)
=

n∑
k=0

akck

We show, that P ([−R,R]) ⊆ [0,∞)⇒ f(P ) ≥ 0

By the previous lemma, such polynomials are a finite sum of terms in the form

of (2.29) with Q ∈ R[x]. f defines a scalar product on the real polynomials

with 〈P1 |P2〉 f = f(P1P2). One can see that 0 ≤
〈
q
∣∣Hn+1q

〉
= 〈Q |Q〉 f =

f(Q2), where the coefficients of Q are the elements of q. By the Cauchy-

Schwartz-Bunyakovsky inequality, we have f(PQ) ≤ f(P 2)1/2f(Q2)1/2, and

we can use it repeatedly to see, that for any Q ∈ R[x]

f(xQ2) ≤ f(x2Q2)1/2f(Q2)1/2 ≤ f(x4Q2)
1
4 f(Q2)

3
4 ≤ f(x2nQ2)

1
2n f(Q2)1− 1

2n

Note, that if Q2(x) =
m∑
k=0

qkx
k, then

|f(x2nQ2)| =
m∑
k=0

|qk||ck+2n| ≤
m∑
k=0

|qk|CRRk+2n ≤ mmax
j≤m
|qjCRRj|R2n = KR,QR

2n
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Using (2.28). This implies lim sup
n→∞

|f(x2nQ2)|
1
2n ≤ R, which in combination

with the iterated C-S-B inequality yields |f(xQ2)| ≤ Rf(Q2). Since f is linear,

this means f((R+ x)Q2), f((R− x)Q2) ≥ 0. One can use the same reasoning

to arrive at f(x2Q2) ≤ f(x2·2nQ2)
1
2n f(Q2)1− 1

2n , |f(x2Q2)| ≤ R2f(Q2) and finally

f((R2 − x2)Q2) ≥ 0, so we proved our first aim.

For any P ∈ R[x] real polynomial, we have ‖P‖ ± P ≥ 0, therefore

f(‖P‖ ± P ) ≥ 0, hence |f(P )| ≤ ‖P‖c0. This means that f is continuous on

the space of polynomials, which are dense in C[−R,R]. Thus f extends to

F on continuous functions with f > 0 ⇒ F(f) ≥ 0, since if f > 0, then

min
[−R,R]

f = x0 > 0, and we can approximate f with polynomials in Bx0(f)

which are all non-negative, and F is continuous. Again by the continuity, if

we write f = lim
ε↘0

ε1 + f , we see that

f ≥ 0⇒ F(f) ≥ 0

In conclusion, F is a continuous positive linear functional of C[−R,R], so by

the Riesz-Markov theorem

∃µ measure on [−R,R], such that F(f) =

R∫
−R

fdµ

By the definition of f, cn =

∫
xndµ holds, and we already concluded, that if

there exists such µ, it is unique. Since c0 = µ([−R,R]), µ is a finite measure.

Theorem 2.3.7 ∀f ∈M∞(−1, 1) ∃!ν finite measure on [−1, 1], such that

f(x) = f(0) +

1∫
−1

x

1 + λx
dν(λ) (2.31)
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Proof: Let cn =
Dn+1f(0)

(n+ 1)!
, so H(n)

ij = ci+j−2 =
Di+j−1f(0)

(i+ j − 1)!
= Bn(0; f)ij,

which is positive by theorem 2.3.3. By corollary 2.3.2, (2.28) is met for every

R > 1, thus by the previous theorem, there is a unique measure µR supported

on [−R,R] with

cn =

R∫
−R

xndµR(x)

By uniqueness, they agree for all R > 1, so there exists a unique finite

measure µ supported on
⋂
R>1

[−R,R] = [−1, 1] with cn =

∫ 1

−1

xndµ(x). Define

dν(x) = dµ(−x), and write the Taylor approximation for z ∈ B1(0)

f(z) =
∑
k∈N

Dkf(0)

k!
zk = f(0) +

∑
k∈N

zzk(−1)k
1∫

−1

λkdν(λ)

= f(0) +
∑
k∈N

1∫
−1

z(−z)kλkdν(λ) = f(0) +

1∫
−1

z
∑
k∈N

(−λz)kdν(λ)

= f(0) +

1∫
−1

z

1 + λz
dν(λ)

The sum and the integral can be interchanged since the Neumann series∑
k∈N

xk converges uniformly on B|z|(0), thus for all λ ∈ [−1, 1].



Chapter 3

Bounded operators

In this chapter, we shall see that the name "operator monotone" is justified,

since an operator monotone function is monotone on the bounded linear

operators of any separable Hilbert space. To show this, we have to introduce

a continuity notion on L (H), that is a topology. We will not use the norm

topology, for it has a too fine. In the below introduced topology, any bounded

operator of a separable Hilbert space can be approximated by finite rank

operators, which is not in the norm topology of an infinite dimensional space,

since it would mean that every continuous operator is compact.

Notation 3.0.1 Let H be a Hilbert space. We endow the bounded linear

operators of H, L (H) with the topology of pointwise convergence, and call it

strong topology to create (L (H), τs). In this notion, for any net A : I →

L (H) lim
i,I

Ai = L ∈ L (H) ⇔ lim
i,I
Aiv = Lv ∀v ∈ H. This will be the

convergence used throughout the rest of the thesis, not the norm convergence.

If H is separable, this topological space is metrizable, because let {sk | k ∈ N+}

43
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be a countable dense subset of B and let d(A,B) =
∑
k∈N+

‖(A−B)sk‖
1 + ‖(A−B)sk‖

.

In this case, it is enough to check sequence continuity of function as opposed

to net continuity, because the space is M1.

Lemma 3.0.1 (Continuity) If H be a Hilbert space, then

Cb(R) ⊆ C((L (H)sa, τs), (L (H)sa, τs))

Proof: We start with proving that if S ⊆ L (H) is a norm bounded

set, then the multiplication (composition) S × L (H) → L (H) is strongly

continuous, where the topology of S ×L (H) is τs× τs. For this, we use that

‖ABv − CDv‖ ≤ ‖ABv − ADv‖+ ‖ADv − CDv‖

≤ ‖A‖‖Bv −Dv‖+ ‖(A− C)Dv‖

≤ K‖Bv −Dv‖+ ‖(A− C)Dv‖

where the last equation uses the boundedness of S. If (A,B) : I→ S×L (H)

is a net converging strongly to (C,D), then Ai and Bi converges to C and

D. With this in mind, we can reduce the first and second term of the R.H.S.

arbitrarily, thus the L.H.S..

Let A denote the set of strongly continuous functions, which is a vector

space endowed with the pointwise operations. By the above argument, we

have that fh ∈ A for all h, f ∈ A , if h is bounded. Firstly we show

that C0(R) ⊆ A . Let A0 = A ∩ C0(R), which is a closed subalgebra of

C0(R). Let z be the indetity on R, f(x) = (1 + x2)−1, and g = fz. Clearly
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f, g ∈ B1(0) ⊆ C0(R). If a, b ∈ L (H)sa, then

g(a)− g(b) = a(1 + a2)−1 − b(1 + b2)−1

= (1 + a2)−1[a(1 + b2)− (1 + a2)b](1 + b2)−1

= (1 + a2)−1[a− b+ a(b− a)b](1 + b2)−1

so if we take a v ∈ H, then

‖g(a)v − g(b)v‖ ≤ ‖(1 + a2)−1(a− b)(1 + b2)−1v‖+ ‖(1 + a2)−1a(b− a)b(1 + b2)−1v‖

≤ ‖(1 + a2)−1‖‖(a− b)(1 + b2)−1v‖+ ‖(1 + a2)−1a‖‖(b− a)b(1 + b2)−1v‖

≤ ‖(a− b)(1 + b2)−1v‖+ ‖(b− a)b(1 + b2)−1v‖

with ‖(1+a2)−1‖, ‖(1+a2)−1a‖ ≤ 1 in consideration. If we substitute a for a

net c : I→ L (H)sa converging to b strongly, the first and second term of the

R.H.S. can be arbitrarily small, since b(1 + b2)−1v and (1 + b2)−1v are just

fixed vectors in H. In conclusion, g ∈ A0. z ∈ A also holds, thus gz ∈ A ,

hence by direct computation f = 1 − gz ∈ A resulting in f ∈ A0. Since

{f, g} separates the points of R, and vanishes nowhere, so by the Stone-

Weierstrass Theorem the closed algebra generated by f and g is C0(R). We

already mentioned, that A0 ⊆ C0(R), and on the gound of the closed algebra

generated by f and g being in A0, A0 = C0(R)

Now take any h ∈ Cb(R). Clearly hf, hg ∈ C0(R) = A0 ⊆ A . If hg is

a continuous function vanishing at infinity, it is bounded, so (hg)z ∈ A ,

therefore h = hf + hgz ∈ A

For a set H in a vector space V , let convH denote the convex hull of H
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Lemma 3.0.2 If H is a Hilbert space, P,A ∈ L (H)sa with P being an or-

thogonal projection and AP = PAP |RanP , then specAP ⊆ conv(specA). In

particular, if specA ⊆ (a, b), then specAP ⊆ (a, b)

Proof: Since the spectrum of a bounded operator is compact and a is

self-adjoint so it has a real spectrum, with a greatest element g and a least

element l.

This implies specA ⊆ [l, g] ⇒ l1 ≤ A ≤ g1 ⇒ l1RanA ≤ AP ≤ g1RanP ⇒

specAP ⊆ [l, g] ⊆ conv(specA)

Theorem 3.0.1 Let H be an infinite dimensional separable Hilbert space,

A,B ∈ L (H)sa with spectra in some (a, b), and f ∈M∞(a, b). Then

A ≤ B ⇒ f(A) ≤ f(B) (3.1)

Proof: We can assume, that 0 ∈ (a, b), because a we can translate the

interval with T (x) =
2

b− a
x− a+ b

b− a
and use T (A), T (B), f ◦ T−1, (−1, 1).

If H is separable, then it has an orthonormal basis {vk | k ∈ N+ }. If

Pn be the orthogonal projection onto the span of the first n basis vectors,

then Pn
s−→ 1, thus PnAPn → A, and PnBPn → B, because PnAPn − A =

PnAPn − PnA+ PnA− A.

Since PnAPn = APn ⊕ 01−Pn , specPnAPn = specAPn ∪ spec 01−Pn

⊆ conv(specA ∪ 0) by the previous lemma and the fact, that spec 0 = {0}.

This set, and conv(specB ∪ 0) are compact subsets of (a, b), so by Urysohn’s

lemma, there is a continuous g : (a, b)→ [0, 1] function which has g(x) = 1 for

all x ∈ (conv(specA∪0)∪conv(specB∪0)), and g(y) = 0 outside of a compact

subinterval of (a, b). Since an operator monotone function is continuous, fg
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is a bounded continuous function that agrees with f on (conv(specA ∪ 0) ∪

conv(specB ∪ 0)). Hence f(PnAPn) is well defined, and so is f(PnBPn).

Since PnAPn and PnBPn are n× n matrices with PnAPn ≤ PnBPn, we have

that f(PnAPn) ≤ f(PnBPn). f is strongly continuous, hence it is strongly

sequence continuous, so f(PnAPn) → f(A) and f(PnBPn) → f(B), thus

f(A) ≤ f(B)



Chapter 4

Convexity

In this chapter, we prove an analogue of a theorem from real analysis, which is

if f : (0,∞)→ [0,∞) is a concave function, then f is monotone increasing.

With the help of this remark, we can show that not only every operator mono-

tone function on R is affine, but this is the case for even 2-monotone functions

on R.

Definition 4.0.1 An f : (a, b)→ R function is called concave, if

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y) holds for all x, y ∈ (a, b) and t ∈ [0, 1].

f is referred to as convex, if −f is concave.

Definition 4.0.2 An f : (a, b)→ R function is referred to as n-concave, if

f(tA+(1−t)B) ≥ tf(A)+(1−t)f(B) holds for all t ∈ [0, 1] and A,B ∈Mn[C]

that obeys specA, specB ⊆ Domf . We denote the set of such functions

Cn(a, b). f is called n-convex, if −f ∈ Cn(a, b).

If f ∈
⋂
n∈N+

Cn(a, b), then f is called operator concave. Let C∞(a, b) denote

the set of such functions.f is called operator concave, if −f ∈ C∞(a, b).

48
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Recall, that if A is a bounded operator on a Hilbert space H, and P is an

ortogonal projection, then AP = PAP |RanP .

Lemma 4.0.1 Let A ∈ L (H)+, where H is an arbitrary Hilbert space, and

let P ∈ L (H)+ be an ortogonal projection. If f : (L (H)+, τs)→ (L (H), τs)

is a continuous and monotone function, then

f(A)P ≤ f(AP ) (4.1)

Proof: By writing H = P (H)⊕ (1− P )(H), we can decompose

A =

a11 a12

a21 a22



Where a11 = AP . Given an ε > 0, we define Tε =

√ε 0

0 −
√
ε
−1

, thus

T ∗εATε =

 εa11 −a12

−a21 ε−1a22


Notice, that A ≥ 0⇒ T ∗εATε ≥ 0, since we just made a basis transformation.

Hence

A ≤ A+ T ∗εATε =

(1 + ε)a11 0

0 (1 + ε−1)a22


For f is monotone,

f(A) ≤

f((1 + ε)a11) 0

0 f((1 + ε−1)a22)


It is clear that X ≥ Y ⇒ XP ≥ YP holds, thus

f(A)P ≤ f((1+ε)a22) = f((1+ε)AP ) for all ε > 0. Since (1+ε)AP converges
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to AP strongly as ε↘ 0 and f is strongly continuous,

f(A)P ≤ lim
ε↘0

f((1 + ε)AP ) = f(AP ).

Theorem 4.0.1 If f : (0,∞)→ R and n ∈ N+, then

(a) f ∈ Cn(0,∞) and f ≥ 0 ⇒ f ∈Mn(0,∞)

(b) f ∈M2n(0,∞) ⇒ f ∈ Cn(0,∞)

In particular, f ≥ 0 ⇒ f ∈ C∞(0,∞)⇔ f ∈M∞(0,∞).

Proof: (a): If A,B ∈ Mn[C] are self-adjoint matrices with 0 ≤ A ≤ B,

then

B = A+ εε−1(B − A) = (1 + ε)

[
1

1 + ε
A+

ε

1 + ε
ε−1(B − A)

]
Dividing both sides by (1 + ε) and using the n-concavity of f , we see that

f

(
B

1 + ε

)
≥ 1

1 + ε
f(A) +

ε

1 + ε
f
(
ε−1(B − A)

)
f ≥ 0 implies

ε

1 + ε
f
(
ε−1(B − A)

)
≥ 0, thus f

(
B

1 + ε

)
≥ 1

1 + ε
f(A). One

can change to a basis in which B is diagonal to see that f
(

B

1 + ε

)
→ f(B),

and clearly
1

1 + ε
f(A)→ f(A), hence by taking ε↘ 0, we get

f(B) ≥ f(A)

(b): Write C2n = Cn ⊕ Cn, and let P be the orthogonal projection onto

Cn ⊕ {0}. Given A,B ∈Mn[C]+ and Ξ ∈ [0, 1], we define

TΞ =

 √
Ξ1 −

√
1− Ξ1

√
1− Ξ1

√
Ξ1
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which is clearly unitary. By direct computation, one can see thatT ∗Ξ
A 0

0 B

TΞ


11

= ΞA+ (1− Ξ)B. Thus by the preceding proposition

Ξf(A) + (1− Ξ)f(B) =

T ∗Ξ
f(A) 0

0 f(B)

TΞ


11

=

f
T ∗Ξ

A 0

0 B

TΞ


11

≤ f

T ∗Ξ
A 0

0 B

TΞ


11


= f(ΞA+ (1− Ξ)B)

which yields f ∈ Cn(a, b).

Theorem 4.0.2 If f ∈M2(R), then f is an affine function, that is

f(x) = ax+ b for some a ≥ 0 and b ∈ R.

Proof: If f ∈M2(R), then take any a < 0 and write ga(x) = f(x+a). We

see that ga ∈M2(0,∞), thus it is concave on (0,∞). Hence, f is concave on

(a,∞) for all a < 0, therefore on all R. −f(−x) ∈M2(R) also holds, which

implies that −f(−x) is concave as well, which is by definition means that

f(−x) is convex. Since f(−x) is convex on a symmetric domain if and only

f(x) is, f is also convex. Every function that is both convex and concave is

affine, therefore so is f .



Chapter 5

Applications

5.1 Operator means

In this chapter, we will discuss operations on L (H), the space of bounded

linear operators of a separable Hilbert space H, which is allowed to be infinite

dimensional. The subgroup of invertible elements in L (H) will be denoted

as G L (H). The set positive elements in these spaces will use the L (H)+ and

G L (H)+ notations. We need symbols as we will discuss multiple functions

on these spaces, and the domains will be easier to notate. The convergence

of this chapter is the strong convergence.

In this context, the Schur decomposition (2.2.3) can be rewritten, but

proven the same way.

Theorem 5.1.1 (Schur complement) If A,X ∈ L (H) and B ∈ G L (H)

52
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with A,B ≥ 0, then A X

X∗ B

 ≥ 0 ⇔ A ≥ XB−1X∗ (5.1)

Corollary 5.1.1 The funtion F : L (H)× G L (H)+ → L (H),

(X,B) 7→ XB−1X∗ is jointly convex, and

F1 : L (H)×L (H)×G L (H)+ → L (H), (A,X,B) 7→ A−XB−1X∗ is jointly

concave.

Proof: The second statement follows from the first. Take any (X,B)

and (Y,A) from DomF , and a t ∈ [0, 1]. From the predecessing theorem,XB−1X∗ X

X∗ B

 ≥ 0 , so by the convexity of L (H)+,

tXB−1X∗ + (1− t)Y A−1Y ∗ tX + (1− t)Y

tX∗ + (1− t)Y ∗ tB + (1− t)A

 ≥ 0

If we use the theorem on this as well, we get

F (t(X,B) + (1− t)(Y,A)) ≤ tF (X,B) + (1− t)F (Y,A).

Definition 5.1.1 We define the parallel sum G L (H)+×G L (H)+ → G L (H)+

(A,B) 7→ A : B = (A−1 +B−1)−1, and the harmonic mean A!B = 2(A : B)

Proposition 5.1.1 The parallel sum obeys

(a)

A : B = A− A(A+B)−1A = B −B(A+B)−1B (5.2)

(b) (A,B) 7→ A : B is jointly monotone and jointly concave
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(c) A : B ≤ A, A : B ≤ B

(d)

A : B = max

{
Y ∈ L (H)+

∣∣∣∣∣∣
A A

A A+B

 ≥
Y 0

0 0

 } (5.3)

where max means greatest element.

(e) A ≤ B ⇒ A ≤ A!B ≤ B

Proof: (a):

(A−1 +B−1)−1 = (A−1(A+B)B−1)−1 = B(A+B)−1B

= B(A+B)−1[(A+B)− A] = B −B(A+B)−1B

The other equation follows from the obvious symmetry of the parallel sum

in the original form.

(b): We have proved in (2.2.4) that if f : A 7→ −A−1, then f ∈M∞(0,∞),

so A : B = f(f(A) + f(B)) = −(−A−1−B−1)−1 is indeed jointly monotone,

since + is. By Corollary 5.1.1, (A,B) 7→ F1(A,A,A + B) = A − A(A +

B)−1A = A : B is jointly concave.

(c): A,B ≥ 0 ⇒ (A + B)−1 ≥ 0 ⇒ A(A + B)−1A,B(A + B)−1B ≥ 0 by

definition, hence A− A(A+B)−1A ≤ A, B −B(A+B)−1B ≤ B.

(d) By the Schur decomposition,the inequality holds exactly when

(A− Y ) ≥ A(A+B)−1A, which is A : B = A− A(A+B)−1A ≥ Y .

(e) A ≤ B ⇒ 2A ≤ A + B ≤ 2B ⇒ B−1 ≤ 2(A + B)−1 ≤ A−1 ⇒

B ≤ 2B(A + B)−1B and 2A(A + B)−1A ≤ A ⇒ 2B − B ≥ A : B and

A : B ≥ 2A− A
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Theorem 5.1.2 If An, Bn ∈ G L (H)+, A,B ∈ L (H)+ such that An ↘ A

and Bn ↘ B, then lim
n→∞

An : Bn exists in the strong topology, and An : Bn ↘

A : B independent of the choice of An and Bn.

Proof: The monotonicity of the sequence follows from the joint mono-

tonicity of the parallel sum.

First, we assume that A and B are invertible. In this case (An + Bn)−1 ≤

(A + B)−1 ⇒ An(An + Bn)−1An ≤ An(A + B)−1An Since {An | n ∈ N} is

pointwise convergent, it is pointwise bounded, thus by the Uniform bound-

edness principle, it is norm bounded by a K > 0. Also An +Bn ≥ A+B ⇒

0 ≤ (An+Bn)−1 ≤ (A+B)−1, hence ‖(An+Bn)−1‖ ≤ ‖(A+B)−1‖. Utilising

the triangle inequality with, wee see that for all v ∈ H

‖An(An +Bn)−1Anv − A(A+B)−1Av‖

≤ ‖An(An +Bn)−1Anv − An(An +Bn)−1Av‖

+ ‖An(An +Bn)−1Av − An(A+B)−1Av‖

+ ‖An(A+B)−1Av − A(A+B)−1Av‖

≤ K‖(A+B)−1‖‖Anv − Av‖

+K‖(An +Bn)−1(Av)− (A+B)−1(Av)‖

+ ‖An((A+B)−1Av)− A((A+B)−1Av)‖

The first and third term can be arbitrarily small since An → A.For the

second one we consider spec(A+B) ⊆ (0,∞), which a compact set, so it has

a least element c. An +Bn ≥ A+B ≥ c thus
⋃
n∈N

spec(An +Bn) ∪ spec(A+

B) ⊆ [c,∞) thus we can truncate the inversion function to create a bounded

continuous function f(x) = x−11x≥c + c−11x<c which is strongly continuous
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by Lemma 3.0.1, thus (An +Bn)−1 = f(An +Bn)→ f(A+B) = (A+B)−1,

hence the second term vanishes as well. This implies An(An + Bn)−1An →

A(A + B)−1A, thus (An : Bn) → (A : B). In this case, the independecy is

obvious.

For general A,B ∈ L (H)+, by the joint monotonicity of the parallel sum,

0 ≤ An : Bn is a monotone decreasing sequence, thus it has a strong limit.

For any other A′m, B
′
m ∈ G L (H)+ pair of sequences with A′m ↘ A and

B′m ↘ B, An + A′m − A ↘ An and Bn + B′m − B ↘ Bn as m → ∞ for all

n ∈ N. Thus by the first case, (An+A′m−A) : (Bn+B′m−B)↘ An : Bn for

all n ∈ N. Since An : Bn ≤ (An +A′m −A) : (Bn +B′m −B), taking n→∞,

we see that lim
n→N

An : Bn ≤ A′m : B′m for all m ∈ N. Taking limit in m, we

get lim
n→∞

An : Bn ≤ lim
m→∞

A′m : B′m. As the whole argument was symmetric

in An, Bn and A′m, B
′
m, we conclude that lim

n→∞
An : Bn ≤ lim

m→∞
A′m : B′m also

holds, which proves independency.

This theorem not only shows us, that the parallel sum is upper semi-

continuous, but also

Corollary 5.1.2 The parallel sum can be extended onto L (H)+ × L (H)+

by A : B = lim
ε↘0

(A+ ε1) : (B + ε1)

Proof: For any A ≥ 0, A + ε1 ≥ ε1, thus (A + ε1)−1 ≤ ε−11, hence

(A + ε1)−1 ∈ G L (H)+, and clearly A + ε1 ↘ A. The same can be noted

about B and Bn.

If A and B are invertible,then the above expresion is the original A : B,

and still exists otherwise by the preceding theorem.
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In the following, when use the parallel sum, we refer to this extension. We

will encounter some variational formulas that show a minimality or maxi-

mality property of an expression. These formulae are quite useful, as we will

see, particularly for proof of convexity, or concavity.

Lemma 5.1.1 ∀v ∈ H 〈v |A : Bv〉 = min{〈x |Ax〉 + 〈y |By〉 | v = x+ y}

Proof: The scalar product is continuous and the parallel sum is upper semi-

continuous, so by taking limits we can assume that A and B are invertible.

Since A : B = B −B(A+B)−1B,

〈x |Ax〉 + 〈v − x |B(v − x)〉 − 〈v |A : Bv〉

= 〈x |(A+B)x〉 + 〈v |Bv〉 − 2Re 〈x |Bv〉 − 〈v |A : Bv〉

= 〈x |(A+B)x〉 − 2Re 〈x |Bv〉 +
〈
x
∣∣B(A+B)−1Bx

〉
= ‖(A+B)1/2x‖2 + ‖(A+B)−1/2Bv‖2 − 2Re

〈
(A+B)1/2x

∣∣(A+B)−1/2Bv
〉

= ‖(A+B)1/2x− (A+B)−1/2Bv‖2 ≥ 0

and the equality can be reached with x = (A+B)−1Bv.

Proposition 5.1.2 ∀A,B,C,D ∈ L (H)+:

(a) ∀T ∈ L (H) T ∗(A : B)T ≤ (T ∗AT ) : (T ∗AT )

(b) A : B + C : D ≤ (A+ C) : (B +D)

Proof: (a): By the lemma above, ∀v ∈ H ∃x, y ∈ H such that v = x + y

and 〈x |T ∗ATx〉 + 〈y |T ∗BTy〉 = 〈v |(T ∗AT ) : (T ∗BT )v〉 , thus

〈v |T ∗(A : B)Tv〉 = 〈Tv |(A : B)Tv〉

≤ 〈Tx |ATx〉 + 〈Ty |BTy〉 = 〈x |T ∗ATx〉 + 〈y |T ∗BTy〉
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Where the inequality uses the lemma as well.

(b) Again ∀v ∈ H ∃x, y ∈ H such that v = x+ y and

〈x |(A+ C)x〉 + 〈y |(B +D)y〉 = 〈v |(A+ C) : (B +D)v〉 , thus

〈v |(A : B + C : D)v〉 = 〈v |(A : B)v〉 + 〈v |(C : D)v〉

≤ 〈x |Ax〉 + 〈y |By〉 + 〈x |Cx〉 + 〈y |Dy〉

= 〈x |(A+ C)x〉 + 〈y |(B +D)y〉

Definition 5.1.2 We define the geometric mean,

# : G L (H)+ ×L (H)+ → L (H)+,

(A,B) 7→ A#B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2.

Proposition 5.1.3

A#B = max{X ∈ L (H)+ | XA−1X ≤ B} (5.4)

where the max notates the greatest element of the set, not the maximal.

Moreover, (A#B)A−1(A#B) = B holds, which implies that X = A#B is

the unique positive solution of XA−1X = B.

Proof: A#BA−1A#B = A1/2
(
A−1/2BA−1/2

) 1
2
·2
A1/2 = B

If XA−1X ≤ B, then A−1/2XA−1XA−1/2 ≤ A−1/2BA−1/2 which is

(A−1/2XA−1/2)2 ≤ A−1/2BA−1/2, thus by the monotonicity of the square

root, A−1/2XA−1/2 ≤
(
A−1/2BA−1/2

)1/2
which yieldsX ≤ A#B. IfXA−1X =

B, then the inequalities turn into equalities, so X = A#B, hence the positive

solution of X = A#B is unique.
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Corollary 5.1.3 ∀A,B ∈ G L (H)+ A#B = B#A

Proof: XB−1X = A ⇔ B−1 = X−1AX−1 ⇔ B = XA−1X, since if both

A and B is invertible, then so is X. By the proposition, A#B ≤ B#A and

B#A ≤ A#B.

Theorem 5.1.3 A#B = max

{
X ∈ L (H)+

∣∣∣∣∣∣
 A X

X∗ B

 ≥ 0

}
Where the max means greatest element.

Proof: This follows from Proposition 5.4 and Theorem 5.1.1 of the Schur

complement.

Corollary 5.1.4 The geometric mean # is jointly concave.

Proof:

Let (A,B), (C,D) ∈ Dom# and t ∈ [0, 1]. If X = A#B and Y = C#D,

we have thatA X

X B

 ≥ 0,

C Y

Y D

 ≥ 0⇒

tA+ (1− t)B tX + (1− t)Y

tX + (1− t)Y tB + (1− t)D

 ≥ 0

Thus tA#B+(1−t)C#D = tX+(1−t)Y ≤ (tA+(1−t)B)#(tB+(1−t)D)

We ca ngive a similar proof for the concavity of the parallel sum using

(5.3).

Proposition 5.1.4 The parallel sum is jointly concave.
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Proof: Let (A,B), (C,D) ∈ Dom : and t ∈ [0, 1]. If we write X = A : B

and Y = C : D, we see that

A A

A A+B

 ≥
X 0

0 0

 and

C C

C C +D

 ≥
Y 0

0 0


⇒

tA+ (1− t)C tA+ (1− t)C

tA+ (1− t)C t(A+B) + (1− t)(C +D)

 ≥
tX + (1− t) 0

0 0


Thus t(A : B)+(1−t)(C : D) = tX+(1−t)Y ≤ (tA+(1−t)C) : (tB+(1−t)D)

Kubo and Ando generalised the notion of means in [8] using a few of the

above presented properties of some natural examples.

Definition 5.1.3 An operator mean is a map

σ : L (H)+ × L (H)+ → L (H)+, (A,B) = AσB which obeys four axioms:

∀A,B,C,D ∈ L (H)+

(i) Joint monotonicity: A ≤ C ∧ B ≤ D ⇒ AσB ≤ CσD

(ii) Transformer inequality: C(AσB)C ≤ (CAC)σ(CBC)

(iii) Upper semi-continuity: An ↘ A ∧ Bn ↘ B ⇒ AnσBn ↘ AσB

(iiii) Normalisation: 1σ1 = 1

During the following discussion, we will often suppose that A and B are

invertible, since we can approximate them with A + n−11 and B + n−11

which are, and use the upper semi-continuity. Moreover, if C is invertible,
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the transformer inequality tells us C−1[(CAC)σ(CBC)]C−1 ≤ AσB resulting

in

C ∈ G L (H)+ ⇒ C(AσB)C = (CAC)σ(CBC) (5.5)

Notice that this is a quite broad definition, since even (A,B) 7→ A is an

operator mean.

We can also see that

A ≤ B ⇒ A ≤ AσB ≤ B (5.6)

since we can assume thatA andB are invertible, A = A1/21A1/2 = A1/2(1σ1)A1/2 =

(A1/21A1/2)σ(A1/21A1/2) = AσA ≤ AσB ≤ BσB = B. During this proof,

we also concluded that

∀A ∈ L (H)+ A = AσA

In retrospection, we have proven that the harmonic mean is an operator

mean, since the parallel sum obeys axioms i− iii.

5.2 Kubo-Ando Theorem

For any f ∈M∞(0,∞) obeying f(1) = 1 and f ≥ 0, by Loewner’s theorem

and a λ = −x substitution, we have a Herglotz representation

f(z) = a+ bz +

∞∫
0

z(1 + λ)

z + λ
dν(λ) (5.7)

f(1) = a+ b+

∞∫
0

dν(λ) (5.8)

with a, b ≥ 0
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Theorem 5.2.1 (Kubo-Ando Theorem) If (A,B) 7→ AσB is an opera-

tor mean, then 1σ(t1) is the scalar multiple of 1 for all t ∈ [0,∞), henceforth

there exists an f : [0,∞)→ [0,∞) operator monotone function, such that

f(t)1 = 1σ(t1) (5.9)

and f(1) = 1 holds. If f is represented by (5.7), then for all A,B ∈ L (H)+

AσB = aA+ bB +

∫ ∞
0

1 + λ

λ
((λA) : B)dν(λ) (5.10)

Conversely, if f : [0,∞) → [0,∞) is an operator monotone function with

f(1) = 1 represented by (5.7), then (5.10) defines an operator mean that

obeys (5.9). Furthermore:

(a) If A ∈ G L (H)+, then

AσB = A1/2f(A−1/2BA−1/2)A1/2

(b) AσA = A for all A ∈ L (H)+

From the integral representation of σ, one can see that every operator mean

is jointly concave, since for all λ > 0, (A,B) 7→ (λA) : B is for the parallel

sum is by Proposition (5.1.4). Utilising this, we can see that the theorem

gives another proof for f ≥ 0 and f ∈M∞(0,∞) ⇒ f ∈ C∞(0,∞) by (5.9)

If we introduce an order on the set of non-negative operator monotone

functions on [0,∞) with f(1) = 1 by f ≤ g ⇔ f(t) ≤ g(t) ∀t > 0, and on the

set of operator means by σ1 ≤ σ2 ⇔ Aσ1B ≤ Aσ2B ∀A,B ∈ L (H)+, from

(5.9), it is clear that the mapping f 7→ σf is monotone, an order isomorphism

even.
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From (5.9) we can find the representing functions of the geometric (#),

harmonic (!) and arithmetic (O) means. 1#(t1) =
√
t1, thus the function

g of the geometric mean is the square root. 1!(t1) = 2(1 + t−11)−1, hence

h(t) =
2t

1 + t
. 1O(t1) =

1 + t1

2
, so a(t) =

1 + t

2
.

Corollary 5.2.1 ∀A,B ∈ L (H)+ A!B ≤ A#B ≤ AOB

Proof: Since f 7→ σf is an order isomorphism, we only have to prove that

h(t) ≤ g(t) ≤ a(t) for all t > 0, that is

2t

1 + t
≤
√
t ≤ 1 + t

2

The right inequality is just the regular inequality of geometric and arithmetic

means. If we divide the left inequality by t > 0, we get
2

1 + t
≤
√
t
−1
, hence

1 + t

2
≥
√
t, which the same inequality once again.

Lemma 5.2.1 Let σ be an operator mean and A,B ∈ L (H). For any or-

thogonal projection P commuting with both A and B, we have that

[(AP )σ(BP )]P = (AσB)P (5.11)

and P commutes with AσB.

Proof: By the transformer inequality and monotonicity, we note that

P (AσB)P ≤ (PAP )σ(PBP ) ≤ AσB (5.12)

which means that C ≡ AσB − P (AσB)P ≥ 0. Since P 2 = P ,

0 = PCP = (C1/2P )∗C1/2P so CP = C1/2(C1/2P ) = C1/20 = 0, thus
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(AσB)P = P (AσB)P so P commutes with AσB for the right side is self-

adjoint. Since P commutes with AP and BP , it commutes with (AP )σ(BP )

as well. If we turn back to (5.12) now, we see that

P (AσB)P ≤ (PAP )σ(PBP ) ≤ AσB

P (AσB)P ≤ (AP )σ(BP ) ≤ AσB

P (AσB)P ≤ [(AP )σ(BP )]P ≤ (AσB)P

(AσB)P ≤ (AP )σ(BP ) ≤ (AσB)P

which is just (5.11).

In the following proof, we will use some properties of the Dirac notation

of the scalar product. So far, the only difference between this notation and

the the standard one has been that the former uses a "〈· |·〉" instead of

"〈·, ·〉". However, in the Dirac notation, |·〉 is a linear function from H onto

L (C,H) defined by |v〉 : C → H, λ 7→ λv for all v ∈ H. 〈·| is a conjugate

linear function from H to the space of linear functionals of H defined by

〈v| : H→ C, u 7→ 〈v |u〉 for all v ∈ H.

In this notation, the ortogonal projection onto a unit vector e is given by

|e〉〈e|. We will utilize this and the associativity of the operator composition.

Proposition 5.2.1 If σ is an operator mean, then 1σ(t1) = f(t)1 is a mul-

tiple of the identity. For any A ∈ L (H)+

1σA = f(A) (5.13)

In particular, f is operator monotone with f(1) = 1.
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Proof: for any operator C, C = λ if and only if C commutes with every

projection, since if C commutes with every rank one projection P , then

(1 − P )CP = 0, so RanP , so every one dimensional subspace of H is an

invariant subspace of C. This means that we can use the former lemma, f

is a non-negative function with f(1) = 1 by the normalisation axiom, and f

is monotone by the monotonicity axiom.

If that A =
n∑
k=1

αkPk where {Pk | k ≤ n} are mutually orthogonal projec-

tions with 1 =
n∑
k=1

Pk, then

1σA =
n∑
k=1

(1σA)Pk =
n∑
k=1

(Pkσ(APk))Pk (5.14)

=
n∑
k=1

(Pkσ(αkPk))Pk =
n∑
k=1

(1σ(αk1))Pk =
n∑
k=1

f(αk)Pk = f(A) (5.15)

where the second and fourth equation both used lemma 5.2.1.

We can approximate any self-adjoint operator with a decreasing sequence of

such maps, because if H is infinite dimensional, let {ei | in} be an ortonormal

basis of it, and let Pi be the orthogonal projection onto < ei >. Define

πk =
n∑
k=1

Pk and An = πkAπk + (1 − πn)‖A‖ =
n∑
k=1

PkAPk + (1 − πn)‖A‖,

which is a map in the desired form, since

PkAPk = (|ek〉〈ek|)A(|ek〉〈ek|) = |ek〉〈ek|(A|ek〉)〈ek|

= |ek〉(〈ek||Aek〉)〈ek| = |ek〉 〈ek |Aek〉 〈ek|

= 〈ek |Aek〉 Pk

Moreover, (An−1)πn = (An)πn = Aπn , (An−1)1−πn ≥ (An)1−πn ≥ A1−πn with

the notation as in Lemma 3.0.2. Since An = (An)πk ⊕ (An)1−πk and
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A = Aπk⊕A1−πk , An−1 ≥ An ≥ A holds. Finally, πk → 1 implies πkAπk → A

and (1− πk)‖A‖ → 0, thus An ↘ A.

Proposition 5.2.2 For any operator mean σ, define f by f(t) = 1σ(t1).

Then ∀A ∈ G L (H)+ ∀B ∈ L (H)+

AσB = A1/2f(A−1/2BA−1/2)A1/2 (5.16)

Furthermore, (5.10) holds.

Proof: With C = A1/2 which is invertible for A is, we have by (5.5), that

C[1σ(A−1/2BA−1/2)]C, which is (5.16) by the preceding proposition. If B is

invertible, notice that

f(B) = a+ bB +

∞∫
0

B

B + λ1
(1 + λ)dν(λ)

f(B) is well-defined, since the invertibility of B implies its lower bounded-

ness, that is we have c1 ≤ B ≤ ‖B‖1. The norm of the integrand can be up-

per estimated by
‖B‖
c

c

c+ λ
(1+λ), which has an integral

‖B‖
c

(f(c)−a−bc).

Considering λ
B

B + λ1
= [λ−1B−1(B + λ1)]−1 = (B−1 + λ−11)−1 = λ1 : B,

we see that

f(B) = a+ bB +

∞∫
0

1 + λ

λ
(λ1 : B)dν(λ)

proving (5.10), when A = 1 and B is invertible.

If A is invertible as well, considering λ1 = A1/2[λ1 : (A−1/2BA−1/2)]A1/2,

this integral is combined with (5.16) is (5.10) in the case, when both A and B

are invertible. Using the upper semi-continuity of σ and A+n−11, B+n−11,

we get the result for general A,B ∈ L (H).
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With this Propositions (5.2.2) and (5.2.1) proven, the proof of one direction

of the Kubo-Ando theorem is done. The converse requires less machinery,

hence we can prove it in one proposition.

Proposition 5.2.3 Let f be a non-negative function on (0,∞) with f(1) =

1, and has the form

f(z) = a+ bz +

∞∫
0

z(1 + λ)

z + λ
dν(λ)

If σ is defined by

AσB = aA+ bB +

∞∫
0

1 + λ

λ
((λA) : B)dν(λ)

then σ is an operator mean obeying 1σ(t1) = f(t)1.

Proof: For every λ > 0, (A,B) 7→ (λA) : B obeys axioms i−iii of operator

means.

In order to prove that the integral is well defined, we separate (0,∞) into

(0, 1) and [1,∞). Using the monotonicity of A 7→ −A−1, we show that both

integrals are bounded. By the upper semi-continuity of :, we can assume that

both A and B are invertible. If λ ∈ (0, 1],

1 + λ

λ
((λA) : B) =

1 + λ

λ
(λ−1A−1 +B−1)−1 ≤ 1 + λ

λ
(λ−1A−1)−1

= (1 + λ)A ≤ 2A ≤ 2‖A‖

If λ ≥ 1

1 + λ

λ
((λA) : B) =

1 + λ

λ
(λ−1A−1 +B−1)−1 ≤ 1 + λ

λ
(B−1)−1

=
1 + λ

λ
B ≤ 2B ≤ 2‖B‖
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Thus

0 ≤
∞∫

0

1 + λ

λ
((λA) : B)dν(λ) ≤

1∫
0

2‖A‖dν(λ) +

∞∫
1

‖B‖dν(λ)

≤ 2 max{‖A‖, ‖B‖}
∞∫

0

dν(λ) = 2 max{‖A‖, ‖B‖}(f(1)− a− b) <∞

Thus the integral is well defined for every A,B ∈ L (H), and σ obeys axiom

i− iii. What is more, since λ1 : t1 =
λt

λ+ t
, we conclude that

1σ(t1) = a1 + bt1 +

∞∫
0

t(1 + λ)

λ+ t
1dν(λ) = f(t)1

Since f(1) = 1, σ obeys the normalisation axiom as well.
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Abstract

Loewner’s Theorem gives a handy condition for deciding whether a function

is operator monotone or not. It also asserts that any operator monotone

function is real analytic. Even n-monotone functions admit pleasant regu-

larity properties by the behavior of the Dobsch matrix. Although the notion

of operator monotonicity comes from finite dimensional definitions, it also

inherits the monotonicity in the infinite dimensional case. non-negative op-

erator concave functions on (0,∞) are precisely the non-negative operator

monotone functions on (0,∞). The operator means are in order isomorphism

with the normalised non-negative operator monotone functions on [0,∞).
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