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Chapter 1

Intruduction

A partially ordered set is one of the simplest relational structures, so it is
quite natural to investigate the homomorphisms of such structures. As we
will see, one can define a partial order on the set of self-adjoint operators of a
Hilbert space, to make it such a structure, the monotone functions of which
we will examine mainly one the line of the proof of Loewner’s Theorem
by a recently published book of Barry Simon [2]. The original paper of
Loewner [1] is from 1934, and several remarkable results have been achived
since then. In quantum mechanics, the observable algebra is that of the self
adjoint operators of the associated Hilbert space of the quantum mechanical
system. Quasi-entropies are induced by real functions, and that of monotone
decreasing functions have some desired properties. Even John von Neumann
and Eugene Paul Wigner wrote about Loewner’s Theorem in [6]. By the II.
Gelfand-Naimark Theorem (Proposition 15.2 of [9]), every C*-algebra can
be isometrically embedded into the algebra of bounded operators on some

Hilbert space, thus an operator monotone function composed with the inverse
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of such embedding is a monotone function on the said C*-algebra.

Loewner’s student, Fritz Kraus [5] initiated the study of matrix convex
functions. Otto Heinédvaara [4] also proved great results in this topic. The
Hansen—Jensen—Pedersen Theorem (Theorem 11.1 of [2]) is a surprising gen-
eralisation of the well-known Jensen’s Theorem, but due to length affecting
reasons, we will not prove this theorem, but Lemma 4.0.1 is related to it.

In this paper we will first induce a partial order on the bounded operators
of a Hilbert space and introduce the notion of operator monotone functions.
After the basics, we state and prove Loewner’s Theorem through which we
will encounter some surprising regularity properties of operator monotone
functions. Then we will show that an operator monotone function is mono-
tone even on the operators of a infinite dimensional space. After that, we
prove a pleasent remark about operator concave and operator monotone func-
tions, which will help us in showing a surprising theorem. Then we explore
the properties of some means when used on operators, and generalise the
notion of means on the ground of those. Finally, we shall show the remark-
able connection of operator means with operator monotone functions by the
Kubo-Ando Theorem, framing the whole thesis.

The thesis may be lengthy, but two of the main aims of it is to be precise

and as self contained as possible.

1.1 Basics

Definition 1.1.1 In a normed space (V.|| - ||), we denote the open ball with
radius v > 0 and center v € V, {y € V | ||z —y|| < r}, with B.(x). The
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clousure of a set H is denoted as H, and the boundary by OH.
If (9,(-|)) is a Hilbert space, we say that a linear operator A : $ — $

is bounded, if sup ||Az| € R. In this case, this supremum is the operator
z€B1(0)
norm of A. We denote the bounded linear operators of ) with £($).

If A e Z(9), we say that A is positive (A > 0), if (v|Av) > 0 holds for
allv e 9.

We denote the set of positive operators with £ ($)", which is a positive
cone, that is aA+ BB € L (9H)T for alla,3>0 and A, B € ()"
A is referred to as strictly positive, if (v|Av) > 0 holds for allv € $H\ {0}.

One can see, that even the Vo €  (v]|Av) € R condition is equivalent

to A being self-adjoint by (v |A*v) = (v|Av), and the fact that
A=0 & (v|Av) =0Yv € 9.

Definition 1.1.2 We define a partial order relation <C Z($) x Z(9) by
A<Bo B-Ac 29"

Since any A € Z($) can be written in the form of A = Re A+ iSmA =
A+ A" A —iA* .
5 +1 5 , where both Re A and 3m A are self-adjoint, we see that

A<B & RA<ReB AN ImA=3mB. If SmA # Sm B, nor A < B neither

B < A hold, thus it is reasonable to continue just with a set of operators,
such that SmA = Ay, but to facilitate our progress, we will examine the
Ag = 0 equivalency class that is, the self-adjoint operators. We will denote
this subspace -Z($)sq-

Proposition 1.1.1 If A is self-adjoint, ||Al| = sup (z|Az)
x€d B1(0)
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Proof: Vz € 0B1(0) (z|Ax) < |z|/||Az| < ||A|l||z]/* = ||A| on the other

hand, let K = sup (z|Az) and y,z € 0B;(0). By multiplying with a
€0 B1(0)

norm one constant, we can assume that (y |Az) € R. Then

| (y|Az) | =|(z +y|A(z+y)) — (x —y|Az —y)) |/4
([ +ylAz+y) |+ [z —ylA(x —y)) |)/4

<
< K(llz +ylI* + o — yl*) /4 = KQ2l|l2°|| + 2[ly[*) /4 = K

where the second to last equation used the paralellogram law. One can choose

T
Y= HT—SEH to see that this implies ||A|| < K. |
T

This is a helpful result, because this implies 0 < A < B = [|A|| < ||B]].
Now that we have established a partially ordered structure, we can start
specifying our question, but to get to functions on operators, we need one

more definition

Definition 1.1.3 If A € Z(), let spec A= {\ € C | (A —\1)"'} denote
the spectrum of A, where the non-existence means that A — A1 can not be

wmverted as a continuous linear operator.

It is clear, that we can take a polynomial of any .Z($))s,, since the addi-
tion and the multiplication with a bounded operator or scalar is continuous.
Since we can we can uniformly approximate any continuous function with
polynomials, we can take the continuous function of any self-adjoint opera-
tor, even in the infinite dimensional case, by using some functional calculus.
One can read more about the continuous functional calculus in Chapter VII
of [3]. If Ranf C R, the image of a self-adjoint operator is self-adjoint, so
we search for such functions, since we want to compare the images via the

order relation.
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We want a function f, that is an order endomorphism on .Z($))s,, that is
A< B = f(A) < f(B). This problem however can be raised in a handier
fashion. Let us limit the problem to $ = C" first.

Definition 1.1.4 If f : (a,b) — R function, such that VA, B € M,[Cl,,
A< B = f(A) < f(B), we refer to f as n-monotone. We will denote the
set such functions with M, (a,b).

Notice, that if f € 9, (a,b), then for any A € M,,_1[C]s, we can define

A Ll My[Clsa  f(A1) T :
1= S n sa 1) = a
) a—2|—b 0 f( —;b)

so A< B = A < B = f(A) < f(B1) = f(A) < f(B) which yields
M, 1(a,b) C M, (a,b), thus it is natural to define

Definition 1.1.5 If f € m M, (a,b), we say that f is operator monotone.

neNt
Let M. (a,b) denote the set of operator monotone functions on (a,b).

We will see in the applications, that the name is justified, that is any
f € Mo (a,b) is monotone even on operators of infinite dimensional separable
Hilbert spaces. It is easy to see that 90t,(a,b) is a positive cone that is also
closed under composition, thus so is M (a, b).

One will encounter several function spaces throughout the thesis, thus we
introduce the notation of the ones, which may deviate from common nota-
tions. C”(a,b) is the set of bounded continuous functions on (a,b). Cy(a,b)
Is the space of continuous functions on (a, b) with compact support. m

is the set of continuous functions vanishing at inftinity. All of these spaces

use the ||f|| = sup |f| norm. We will only consider real valued functions.
supp f
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The paper uses limits several times in multiple spaces, but I would rather
not indicate the convergence as it is consistent in each space, except for
the space of bounded linear operators, in which some notation will be used.
To avoid confusion, I would like to introduce the topologies which are not

indicated.

Definition 1.1.6 (3, <) is a directed set, if S is a nonempty set, and
<C 3 x T 1s a reflexive and transitive relation, wich obeys
Vi,j€3dceTF: c¢c>a and c > b.
Ifa: 3 — (X,7) is a function from a directed set to a topological space,
then a is called a net. a converges to a point b € X, if

YUeT belU=3TigeF: a; € UVi>ig. Inthis case, we write lima; = b.
R

As the convergence of nets determines a topology, we will use them to define
the topologies as opposed to defining the open sets.

Normed spaces will be endowed with the norm topology, where

lni%la” =a& 171%1 l|an — al|

The space of measures on a compact topological space X will be interpretted
as the subspace of the dual space (C(X),|| - ||«) Which inherits the weak™
topology, that is

s =1 ¥f € C(X) tim [ g = [ o

1<}I~Seasures on a locally comp;ét space X will use the vague convergence, where
s = 1 & Vf € Co(X) limn [ i = [ sap

Bistributions use a similar czc;nvergence, but use smooth functions:

m7, =T < Yf e CX(X) imTi(f) = T(f)



Chapter 2

Loewner’s Theorem

Notation 2.0.1 C, ={z € C | §mz > 0}

Theorem 2.0.1 (Loewner’s Theorem) Ifa <b (a = —oc0 and/or b = co

is allowed), and f : (a,b) — R is a function, then the following are equivalent:
(a) f e M(a,b)
(b) 3u finite measure with supp u = R\ (a,b) = J and JA,C € R with
A >0, such that

LY duy) (2.1)

y—x

f(:z:):C—i-Ax—l—/

J
(¢c) [ is the restriction of a g : (C\R)U (a,b) — C analytic function which
obeys
9(Cy) CCy

Loewner called functions with g(C,) C C, "positive” functions, but they
are also called Herglotz functions, Pick functions and Nevanlinna functions

as well.
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We see right away that any f € 9 (a,b) is necessarily smooth. What is
more, one can notice that every function in f € 9 (R) is affine, moreover,

even f € My(R) = [ is affine holds, as we shall see in Theorem 4.0.2.

Corollary 2.0.1 If s > 0 and fs(x) = 2°, then f, € M, (0,00) & s < 1.
In particular, the square root function is operator monotone. Furthermore,

log € M (0,00) holds as well

Proof:  f,(re’?) = r*e"? and for r > 0, re’? € C; < ¢ € (0,7). Thus, if

r >0 and re"? € Cy, then f,(re’¥) € Cy < ¢ € (0,7) < s € (0,1].

If we take the principal branch of logarithm on C\ (—o0, 0], then

log(re?) = log(r) + iy, thus re? € C, = ¢ € (0,7) = ¢ > 0. ]
It is clear that (b) < (c¢) is the most subtle logical jump since integral

representations of analytic functions are not rare to say the least. We shall

prove this part first.

2.1 (b)) < (¢)

Notation 2.1.1 £: C*\ A — C, &(w,z) = w2
W —

, where

A ={(z,z) | x € C}. The open unit ball of C is traditionally referred to as
D, thus we shall not deviate from this notation. For a z € C, let Z denote
the complex conjugate of z. The linear span of a set H in a vectorspace is

denoted by < H >.

Theorem 2.1.1 (Poisson representation) If f is analytic in a neighbor-
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hood of D, then
(2.2)

Proof: First we notice that

0 1 + Ze_w —i6 n —m@ e —inf
.ﬁ(e 72)3: Ii:z;;;g ::(1%—26 ) 2{: _'1—F2 2{:

neN neN+

where the sum converges uniformly on [0, 27] for each z € D, since such sets
are compact subsets of ID. Since f is analytic in the neighborhood of D, the
sum f = Z a,z" converges uniformly on D Now we can rewrite

neN

) 1 ) )
Re £ () = Re ag+ 3 Z ane™ +a,e~" also converging uniformly on [0, 27].

neN+

oo dl
The last thing we need is that / emmbeimd _— — ¢

2
do
h/iﬁ %ef (w)gg

. 1 . , de
— / (1 + 2 Z z”e_me) (916 ag + 3 Z ae*? +a_ke_““9> o
T

neNt keN+

1 ,do
:/Sieao+2§ Z p 2 - = Reap + f(2)

neN+

Lemma 2.1.1 JZ =< {&(,2), (-, 2)|z € D} > = 2 = C(ID)

Proof: As 8(¢" 2)=1+2 Z 2"e” ™ and
neNt
K€" u) — R(e? v)
u—v
second variable is in the closure, since it is a limit. Now we have that

Yu,v € D € J, we see that the derivative in the
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d—ﬁ(ew,z) = ¢ ¢ . The same argument can be made with the
< z=0

nth derivatives, to see that e ("9

€ A, since S is closed under multipli-
cation by scalars. Using conjugates to get the positive powers, we arrive at
{e* | k € Z)} C A, which is a dense set according to Weierstrass Approxi-
mation Theorem, so C'(9D) C {e*? | k € Z} C A4 |

Theorem 2.1.2 (Herglotz representation on D) If f is an analytic func-
tion on D with Re f(z) > 0 Vz € D, then ! finite measure on 0D such that

2
2 = i 0) + [ K(e,2)aut6) (2.4
0
J— X
Proof: If f satisfies the conditions, then so does g = %TOJ;(O)’ so let

us consider this function, since it has g(0) = 1. For all » € (0,1) g is analytic
in the neighborhood of 7D, so by Theorem 2.1.1, Vz € D

21

g(rz) = /ﬁ(ew,z)dpr(e), dp,-(0) = Re g(rew)g

2w
Notice, that this gives us 1 = ¢(0) = / du-(0). By continuity of g, we have
0

that },1}1} /0 ; R, 2)du,(0) = g(z) exists for each z € D. The predecessing
lemma shows us, that yu = ll/r(r% [, exists, since it is defined on a dense subset
of C(0D). Since the convergence is that of the weak* topology, we can see
that / 1dp = / 1du, = 1, thus du is a probability measure. Since the set
of proggbility megﬂs])ures on JD is metrizable, thus the limit x is unique. One

can use the inverse of the transform in the beginning of the proof to arrive

at (2.4)
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The proof shows us that the measure

: 0
dp = 11}1} Re f(re )—2 (2.5)

and that p(0D) = Re f(0) thus dp is finite.

Theorem 2.1.3 (Herglotz representation on C,) If f : C, — C, s
an analytic function, then Iy finite measure on R and 3A > 0 constant,

such that
1+ 2z

Tr— =z

f(z) =Re f(i) + Az —i—/
R
Conversely, any f in such form with A > 0 obeys f(Cy) C C,

du(z) (2.6)

Proof: Starting with the converse, we can write

1422 1+ 22
T —z x—z
hence
1+ a2 _ (1+ 2% (z—72) _ am (1+2%)z _ (1+x2)‘3mz
T —z |z — 2|2 |z — 2|2 |z — 2|2

which means that any function in the form of (2.6) obeys f(C,) C C, Let

us consider the fractional linear function 7' : C — C

1+ w
1—w

T(2) = z;z T (w) =

One can see, that T(R) = 0D and T'(i) = 0 which implies T(C;) = D
and T7'(D) = C, by ground properties of fractional linear maps. Thus
f:Cy —-Cp = —ifoT ' :D— {z€C| Rez > 0}, which justifies the use
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of the previous theorem, which hands us a unique fi measure on 0D, such

that
27

(T ) = (=i () + [ R w) (o) (2.7)
0
By multiplying the equation with i, setting z = T~ (w) and p = jio T we
arrive at
F6) = s (i) 4 az + [ R(T(). T)p(o)
R
B 14+ zz

where R(T(z),T(z)) follows from elementary computation. One

can rewrite (2.6) as

() = Ref (i) + az + / - () (2.8)
R
where
dv = (1+ 2%)du (2.9)

v is no longer a finite measure, but still is a o-finite one. This form is used

frequently as well. [ |

Now we see the connection between the representation and the f(C,) C C,
property. What is left is extending this funtion to the lower half plane C_
through an (a,b) interval. After we get to know the measure of (2.6), this

problem will be more menageable.

Proposition 2.1.1 The measure of (2.6) is given by

: 1, :
du(x) = lg% 25 f(x +ie)dx (2.10)

where lim resebles the vague limat.
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Proof: Since (2.8) holds, we have that

1, _ ag 1, 1 ae / 1 3

- S — ()= —4 [ — = g

. Jlatie) T +/ . y — (x + ie) V(@) - (x —y)? + &2 V(@)
R R

arctan(u) + C

T —
If we make a u = i substitution, we get as an antideriva-

€
tive, so the integral is 1 for every € > 0. One can also see, that the integrand
goes to 0 in y uniformly on every {(z —3)* > d} as ¢ \, 0, so it is an ap-

proximate delta function for every fixed x. Let g € Cy(R)

. I 1 .
21{1(1) g(x)1 n xQ%S’m f(x +ie)dz
R
1 ae 1 €
=1li — - ——d d
i J 90 7r+/7r(x y)?+e’ V) |
R
£
=1 d d
tiy [ g(0) // e e L)L
R

Since the first integrand converges to 0 uniformly, it is enough to continue

with the second one, where we have a product of two o-finite measure spaces
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and the iterated absolute integral

€
//‘ 1+x2 (x —y)? + &2

dv(y)dx

< ——d d

- 1—1—902 / / (x—vy —|—62 v(y)dz
suppg R

- 195_22 / = Sm(f(z+ie) —ae)de
supp g

g(z) 1 .

< it ] d

S / Wsigfgémf(yﬂfs) z
supp g

_ g(z) |1 .

= A(supp g)|| +x2‘ ;Siggg‘Smf(yHE) <00

is finite, since supp g is compact. In the last row, A denotes the Lebesgue

measure. Hence we can use the Fubini-Tonelli Theorem to interchange the

1 1 €
interals . Noti that -
interals otice, tha /Rg(x)l—i—x%r(x—y)Z-i-é?Q

as € \, 0, 1gj(Ly;2. It can be dominated by ||g||1supp g, thus by the Dominated

Convergence Theorem we can interchange the limit and the outer integral,

dx has a pointwise limit

to arrive at

1 1 3
li — d d
E%//g(x)l—kx%r(x—y)?—l—a? v(y)dz
1 1 €
=i - dxd
a{?)//g(x)1+x2ﬂ(x—y)2+52 vdv(y)
R R

li / (x) !
1m x —
o) I T e r—y)?+e?

/ 1
— [ty vt = [t

dzdv(y)

g
Ty )du(y)
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By combining (2.5), (2.7) and du o T~ = dji, one can also see that

AT ) = dl0) = Ty Re(—i f(T (re)) ST =l S (T (7))

27
and we have a radially directed limit to the unit circle inside 777,

li}ri T (re'), which is equivalent to a directed limit from 77'(0) = i to
T7(e") = cot(#/2) in the form of 11}111 ti + (1 —t)cot(0/2). By further trans-

formations, we can arrive at the same form of du this way as well.

Corollary 2.1.1 A f: C, — C, function is a restriction of a
g: (C\R)U (a,b) — C analytic function obeying g((a,b)) C R if and only if

in the representation (2.6) we have p(a,b) = 0.

Proof: 1If 3mg((a,b)) = {0}, then by (2.10) we know that u(a,b) = 0, since
g is continuous and f(z) = g(2) Vz € C™.

If p1(a,b) = 0, then f is continuously defined on (a, b) by the representation
with f((a,b)) C (¢, d) for some ¢ < d. We can define

o(z) = ﬁ if z€ CiU(a,b) 2.11)
fZ) if ze C_U(a,b)

g is defined on the (a, b) interval twice, to make it even more clear that g is
continuous on C, U(a,b) and on C_U(a,b) as well, since f is. g is continuous,
for given a Z C Rang closed set, write Z, = ZNC, C g(C; U (a,b)) and
7Z_=7NC_ C g(C_U(a,b)) which are closed sets, the preimages of which
are closed. Since ¢ *(Z) = ¢ *(Z,)Ug *(Z_), it is closed.

As a function is analytic if and only if it is holomorphic, we only need
to check that / g = 0 for any simple closed curve v. For any v C C, or
v CC_itis triﬂ\/fial. IfyNCy # @ #~vNC_, we can divide 7 into v; and
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~vo where 7, is the portion of v which lies in C, with the connection of the
two ends, and 7, is the same, just on C_ so that 7, + 2 = 7. These are
simple closed curves, thus compact sets. Hence 1 + [0, 7] and ~, + [0, —i] are
also compact resulting in f being uniformly continuous on them, therefore

/ g(x)dz = lim/ f(z +ie)dz = lim 0. The same argument can be made
M N0 Sy, N0

to show, that / g(x)dz = 0 which tells us

Y2
ol 7 72

For any yNC, = @ or yNC_ = &, the same argument works as on y; or 7,

With this corollary, we completed the proof of the (b) < (c) part of

Loewner’s Theorem, that is

Theorem 2.1.4 For any f : C — C function the following are equivalent

(b) f:(C\R)U(a,b) — C is an analytic function which obeys f((a,b)) C R
and f(Cy) € Cy

(¢) Ju finite measure with supp(p) = R\ (a,b) = J and A, B € R with
A >0, such that

flz) =C+ Az + / Lt xydu(y) (2.12)

JYy—-x

Proof: It follows from Corollary 2.1.1 and Theorem 2.1.3. [ |
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2.2 (b)=(a)

We could prove (b) < (¢) in the original form, but for the (a) < ((b) V (¢))
part we will reduce the problem from any interval to (—1,1). Firstly, we

state this special case of Loewner’s Theorem.

Theorem 2.2.1 For any f: (—1,1) = R fuction, the following are equiva-

lent:
(C() f € s:)ﬁoo(_l?l)

(b) 3 finite measure on [—1,1], such that 3A,C € R, A > 0 obeying

1

f(:c):C—l—Ax—i—/

-1

dpe(A 2.13

o) (2.13)

(¢) f is arestriction of a g : (C\R)U(—1,1) — C analytic function, which
satisfies

9(Cy) CCy

We can prove () < (¢) right away.
Proof: Since (b) < (c¢) has already been proven for the general case with
(b) taking a different form, we only need to show that (9) is equivalent to
the (a,b) = (—1,1) case of (b), which is

f(z) =Re f(i) + az +
R\(-1,1)
1+ 2z2 1 xz 1+ 22
+ .

One can notice, that ==z 5
T —z rT—z T

Let us define ¢ = Re f(i) + o 'dp(r) and change the measure to
R\(—1,1)
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1 2
do(—z7 1) = +2x dp(x) and also the variable to A = —x~'. Notice that
x

Dom v = [—1,1]\ {0}. Now we have

f(z) =c+az+ /

Dom v
Since the integrand is z at A = 0, we can absorb the linear part part with

setting v = U 4 ad, so Domv = [—1, 1] and we arrive at the desired form

1

1) = f0)+ |

-1

z
1+ Az

dv(X)

Notice that we only used equivalent transformations, hence the two forms

are equivalent.

Theorem 2.2.2 If (a) < (¢) holds in Loewner’s Theorem for the
(a,b) = (—1,1) case, then it holds for all a < b.

Proof: Suppose first that —oo < a < b < co. Let us define

T:(-1,1) = (a,b) T(a:):b;aija;—b

which is a monotone bijection. As an affine map with positive coefficient,

clearly T' and T! are operator monotone, thus for every f : (a,b) — R
feMo(ab) = foT € Mo(—1,1)

T extends analytically to C with T(C;) C C, thus 3 ¢g: (C\R)U(a,b) - C
analytic with g(C;) C C; and f Cgifandonlyif3g: (C\R)U(-1,1) - C
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analytic with ¢g(C;) C Cy; and foT C g. This proves our proposition for
bounded intervals.

For (a,b) = (0,00), if f € M (0,00), then f € ﬂ M (0,n), so for all
neN+t
n € N, f has a suitable analytic continuation to (C\ R) U (0,n) of which f

is a restriction onto (0,n). By the uniqueness of analytic continuation, f has
a suitable continuation, which is defined on (C\ R) U (0, 00). Conversely, if
f has a suitable continuation to (C\ R) U (0, 00), then it has one to
(C\R)U (0,n) for every n € N*, hence f € M, (0,n) for every n € Nt
which means that f € 9 (0,00), since Vk € N* VA, B € M,[C]

(A, B is self-adjoint == 3n e N": A B< nl). The same line of reasoning

works for any infinite interval. [ |

Theorem 2.2.3 (Schur decomposition) If A, B,C € M,[C| and C is in-

vertible, then

A B 1 BC'\ [A-BC™'B* 0 1 0
= (2.14)
B* C 0 1 0 c) \c'B* 1
holds, and
A B
>0 & A>BC'B*and C>0 (2.15)
B* C

A — BC™'B* is often reffered to as the Schur complement of A.

Proof: (2.14) is straightforward computation, which after setting

1 0
M = , takes the form of

c'B* 1

A B A—BC'B* 0
M*
B* C 0 C
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Since M is invertible, it is a bijection, so by the definition of positivity, we
see that

A B A— BC'B* 0
>0 <

B* C 0 C
The R.H.S. is by definition equivalent to the R.H.S. of (2.15).

Theorem 2.2.4 Ifn € NT and A, B € M,|[C] are self-adjoint matrices with

eigenvalues in (—oo,0), then
A<B& -A'<-B7! (2.16)

Proof: R* = R™ @ R", hence it is easy to check by the definition of
positivity, that for any C, D, F € M,[C] where E is invertible

C D E'' D
>0 >0 (2.17)

D E7! D C
If we take D = 1 and consider the fact, that the Schur decomposition gives

us

C 1
VC,E >0 >0<0<ELC
1 E!

we can set C'= —A and E = —B for (2.17) to give us
0<-—B<-Ae0<-A'lt<-pBt

by the special case of the decomposition. [ |
This shows us that if f(z) = —2~ ', then f € M, (—o0,0). However, one

can also consider the fact that 0 < A< B=-B<-A<0

= B '=f(-B) < f(-A) =A"= f(A) = -A"' < —-B~!' = f(B), which

yields f € M, (0, 00).
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Theorem 2.2.5 (b) = (a) in Loewner’s Theorem.

Proof: Since (b) < (¢) is already proven, and (¢) = (a) for (a,b) = (—1,1)
implies (¢) = (a) for all (a,b), it is enough to show that () = (a) for
(a,b) = (—1,1).

Due to M. (a, b) being closed under addition, and VA > 0 VB € R
(x = Ax + B) € My(a,b), we only need to check, that the integrand of
(2.13) is in M. (a, b), that is,

B

1] —1<A<B<1 <
vAe =11 SASE< LT AT T8

Since for A = 0, it is trivial, we can set u = [A|7* > 1, to get

B

YVu>1 —-1<A<B<1 = <
o= - uwtr A~ u+tB

Since — =1F ,
=ttt [0 =t

Vu>1 —1<A<B<1 = FpuxA) '<FupxB)

Notice that 0 < (u &+ B), (u+ A), so we can use the fact that

(z+— —27 1) € Mo (0,00). The implication follows in both cases, that is
Vu>1 —1<A<B<1= —(u+A)*'<—(u+B)"

Vu>1 —-1<-B<-A<1= —(u—B) "< —(u—A)"

2.3 (a)= (c)

For this section, we prove some results in the finite dimensional case, some

of which are remarkable on their own. One will encounter propositions that
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only have a citation for the proof, because the they are not closely related to

the topic or the machinery of it.

Definition 2.3.1 If n € N*| A = (a;)ij<n € M,[C] and I C {1,...,n},
let di(A) denote detA;, where Ar = (ai;)uyerz- If I ={1,...,k}, di(A) is

called main principle determinant and principle determinant otherwise.

Lemma 2.3.1 If A € M,[C] is self-adjoint, then A is strictly positive, if
and only if each main principle determinant is positive. A is positive, if and

only if each principle determinant is non-negative.

Proof: Proposition 5.8 of [2] ]

Definition 2.3.2 Let f € C(a,b) be a function and xq,...,z, € (a,b) dis-
tinct points. We define the nth divided difference of f recursively by

Toyoooy Tps [l — 21, .0 20
1 £ = F@), oo f] = P2 D LW Tt ]

Tp — 1

Proposition 2.3.1 If f € C(a,b), then the nth divided difference is a sym-
metric function on (a,b)". If f € C" '(a,b), then the nth divided difference

has a continuous extension to (a,b)" by

w1, f1 =) ml)mjl [f(f) [[=- $k)_mk]

j=1 ki

where (x1,...,x,) = H (H yj)

j=1 \i=1
Proof: Theorem 5.13 of |2] [
This proposition is useful, because it asserts that if we have a function

regular enough, we can approximate the nth derivative with the divided
D" f(x
o n L f] = f'( )
n!

difference, since V(z,...,z) € (a,b)
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Definition 2.3.3 (Loewner matrix) For any n € N*, f € C'(a,b) and
a <z <..<uwm, <bwe define the n x n Loewner matriz of f by

[wi,xys f] if i# ]

Lo(z1, .. sxn; fig = ’

Df(z;) ifi=y
Proposition 2.3.2 Let k € N and f € 9, (a,b) N C*(a,b). Then there exist
fm € C®(a+L,0—L)N9M, (a+L,b—L) such that D f,, converges uniformly
to D7 f on all compact subintervals of (a,b) for all j € {0,...,k}.

Proof: Let g; € C*°(R) such that /g1 =1,¢1 > 0and suppg; C [—1, 1],
R
a Gaussian distribution function for example, and let g,,(z) = mgi(mz) be

an approximate delta function with suppg,, C [—%, %] With this we can

define
/ £z = 4)gm(y)dy

Supp gm

For all y € supp g,  f(- —y) € M,(a+ +,b— L), hence
fm € M, (a + ,b— —) With a ¢t = x — y substitution, we can see that

m —t+h)—gnlr—t
D/, () = /f Vg (2 — £)dt = Tim / L +h) = gm(z =1,
h—0 h
sSupp gm sSupp gm
/ F()Dgn(z — t)dt
sSupp gm

The last equation can be justified with the Dominated convergence theorem.
Combining this with g,, € C*(R), we see that f,, € C®(a+ +=,b— L).
For every [c,d] C (a,b) compact subinterval there exists m € NT such that

[c— %, d+ %] C (a,b), which is a compact set, thus f is uniformly continuous
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on it. This implies that for every e > 0 there exists m € N7 such that
Vo€ [e,d Vy e [-L, L] |f(z—y)— f(z)| <e. Hence Vz € [¢,d] Vk > m

m

fiule) — f(2)] = / £ — 9)ge(y) — F@)gly)dy

Uupp gk
< [ Ufe-n-r@latidy<s [ awi-:

hence f,, = f on [c,d].
Since Dfy = (Df)i, f € C*(a,b) = Vj € {0,...,k} D’f € C(a,b) =
D’ f,, = D’ f on every [c,d] C (a,b). |

Definition 2.3.4 (Schur product) For any A, B € M,y.,|[C], the Schur
pTOd’LLCt (A ® B)” = AUBZ]

Lemma 2.3.2 VA, Be€ M,[C] A B>0=A0B>0

Proof: Since ® is clearly bilinear, and given the spectral theorem, any
positive matrix is the linear combination of orthogonal rank one projections
with non-negative coefficients, it is enough to check for any two rank one

projections, which take the form
Py — —T PP — 5.7
=Yy, i — Pif;

But in this case P¥ ® PY = P¥®" which is clearly positive since it is a
projection.

Theorem 2.3.1 (Daleckii-Krein formula) Let a < z; < ... < z, < b,

f €Ca,b), let C € M,[C] be a self-adjoint matriz and define
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s
A= - (2.18)
Tn
Then

%f(A+)\C) =Ly(z1,...,70; f) ©C (2.19)
A=0

The presented proof is due to Loewner.

Proof: From the definition of A, one can notice that e is an eigenvector
of A with eigenvalue z;, for all & < n. Since the eigenvalues x;(\) and
eigenvectors vg(A) are continuous in A in finite dimensions, for sufficiently

small A, we have
(A+ A 0e(A) = 2(A) 2(0) = 25 0(0) = ex () Far 1
Since Ranf C R, f(A + AC) is self-adjoint, thus
(e |[F(A+AC) = f(A)]er) = (f(A+ AC)ve(A) |er) — {or(A) [f(A)er)
= [flar(N) = f(z0)] (vx(A) [er)

In the special case of f =id, (vp(A)[ACe;) = (xp(N) —z7) (vk(A) |e;) . Com-

bining these two, we see that

(ot [ ATy SO T 3 e

Considering that the R.H.S. is continuous in A, we can take A — 0 to arrive

at

d
[af(AHC)

1 = [zr, 20, flCn = [Ln(21, -y 2s [) © Ty
A=0J ki
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One can notice, that % f(A+XC) . is the Gateaux derivative of f at A
in the C direction, Df(A)(C). In partivular, if we restrict a C*(a, b) function
onto M,[Cls,, then f is Gateaux differentiable in all directions at all points
(matrices), that have distinct eigenvalues in (a,b). The following theorem

comes from Loewner as well.

Theorem 2.3.2 For any f : (a,b) — R function, the following are equiva-

lent:
(a) f € M,(a,b)
(b) For each a <y <x9 <...<xp, <b,

Lo(z1,...,2,;f) >0 (2.20)

Proof: (a) = (b) : Pick any set of z;, in strictly ascending order as in (b),
define A as (2.18), and take a C' > 0. By first handling the A > 0 case, we

can see, that A+ \C' > A= f(A+)\C) > f(A) = f(A+AC) = f(A)

> 0.
h\ =

We arrive at the same conclusion in the A < 0 case, so

0< %f(AJrAC) = Lu(ar, e ) ©C

A=0

If we define P® = vo? > 0 for v € C™ and notice that every positive operator

has a non-negative trace by definition, the predecessing equation yields
VoeC" 0<Tr(Ly(x1,...,2n; [) © P) = (v|Lp(x1, ..., 20 f)V)

Thus L,(x1,...,2,; f) > 0 holds by definition.
(b) = (a) : By lemma 2.3.2, we have

YO >0 Df(A)(C) = ;—)\f(A +AC)| >0
A=0
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Holds for any A in the form of (2.18). This implies that for any B > A, if
A+ A\(B—A) has distinct eigenvalues for every A € [0, 1], then f(A) < f(B),
since f(B) = f(A) + /1 Df(A+ A(B — A))(B — A)d\ by the Fundamental
Theorem of Calculus f(gr Gateaux derivatives.

If A has distinct eigenvalues, by the finality of the dimensions and the
continuity of the eigenvalues in A, we have that C(\) = A+ A\(B — A) has
distinct eigenvalues outside a finite 0 < Ay < --- < A\; < 1 set, and maybe
Air1 = 1. Since they are distinct, for any j we can choose € > 0 such that
Aj+e <Ay —e, 50 f(CAj+¢€)) < f(C(A\jp1 —¢)). By taking € \, 0, by
the continuity of f, we get f(C(};)) < f(C(Aj41)), thus f(A) < f(B) even
if only A has distinct eigenvalues.

Since we can approximate any A with eigenvalues in (a, b) with such matri-
ces A, with distinct eigenvalues, and f(A,,) < f(A,, + (B — A)) for m large
enough by the previous case, we still arrive at f(A) < f(B) in the general

case. |

Definition 2.3.5 For any n € N*, f € C*"!(a,b), x € (a,b), we define

the n x n Dobsch matriz of f at x,

D™ f ()
B(z; f)ij = (ES TS

For anyn € N*, f € C(a,b), z1,...,2, € (a,b) we define the n x n multi-

point Loewner matrix
An<5(71, ey Ty f)” = [ZL‘h sy Lgy L1y ey Ty f]

The mutipoint Loewner matrix is often used to approximate the Dobsch

matrix, since A,(z,...,x; f) = Bp(x; f), and the kth divided difference is
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continuous by (2.3.1). The convergence here is the operator norm conver-
gence, but in finite dimension, it is equivalent to the entrywise convergence
which is easier to notice.

We call a measure trivial, if it has finite points of support.

Lemma 2.3.3 If yu is a nontrivial finite measure R\ (a,b) and

f:(a,b) = R is defined by

f(x) = / (v — 2)"'dpy) (2.21)

supp p

then Ap(xy,...,x; f) is strictly positive for each x1, ..., z, € (a,b).

Proof: One can see by induction, that for any y ¢ (a, b),
k
[z1, ...,z (y— ) H y—x;)" . With this in consideration, we can see

that

<.

Ao Sy = [ Tl =a0 Tl =) duty)

Supp k=1 =1

Let v e C"

W An(@r, s [)v) = ) TiAn(Tr, .2 figvs

ij=1
/|szH ;) Pdu(y)
suppp =h J=L

which is strictly positive for any non-zero vector, since du is nontrivial. ®

Theorem 2.3.3 If f € M, (a,b) N C*"(a,b), then B,(z,f) > 0 for all
€ (a,b)
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Proof:  Let us take z,..., 2, € (a,b). For space efficiency, we shorthand
L for L,(xy,...,z,; f). Since the determinant is invariant under additive
transformations of the row space and column space, and we can bring scalar
multiplicators of rows and columns in front of it, we substract the first row

from the remaining ones to get

(21, 2;; f] ifi=1

3=2 (@1, 25,255 f] if 1>2

det L = H — 1) det AW AL

Now substract the second row from the rows of greater index to get

;

det L = [[(a;—a0) [[(2;—w2) det A® AD =0 00 wif] ifi=2

Jj=2 j=3

[x1,$2,$i,$]’;f] ZfZZS
\
Repeating this algorithm, we arrive at

det L = H ;) det A A = (21, iy 2 f]

ij
If we use the same argument on this equation with the columns, we get

det L = H _xz detAn(x177In7f)

By the predecessing theorem, this implies det A, (z1, ..., x,; f) > 0. One can
choose a g in a form of (2.21) with x being the Lebesgue measure on some
[c,d], and define

di(t) = d(An(z1, .. s tf + (1 = 1)g))

By the previous lemma and (2.3.1), di(0) > 0 for all & < n. Since M, (a,b)

is convex, di(t) > 0 for all k& < n, but dg(t) is a polynomial of ¢, so it
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has finite roots in [0,1). If we gather all the roots for each k& < n, which
is still a finite set, and examine its complement, £ in [0,1), we see that
Ap(xy, ..z tf+(1—t)g) > 0 for all t € 2. Taking t — 1 in £, we see that
tf+(1—t)g=f,s0 An(zr,..., 20 tf + (1 —1t)g) = An(z1, ..., 25; f), thus
it is positive.

By taking z1,...,x, — x, we have that A,(xy,...,z,;f) — Bun(z; f),
hence it is positive as well. The last convergence used the diffenetiability of

I m

Definition 2.3.6 (Distributions) A distribution on an interval (a,b) is a

linear functional of the space C5°((a,b))

Any f: (a,b) — R locally integrable, measurable function induces a ditri-

bution on (a, b) by

Definition 2.3.7 A distribution T is positive, if f > 0= T(f) > 0.
For any distribution T, the distributional derivative of T is defined by
DT(f) = T(~DJ).

One can notice, that for any f € C'(a,b), DTy = Tpy, which comes from

integrating by parts.

Proposition 2.3.3 Every f € 9My(a,b) is a measurable function.
If f € My(a,b), then D** 1 f, the (2n — 1)st distributional derivative is

positive.
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Proof: Let f € My(a,b), so a monotone function. If we define

q(c) = sup{z € (a,b) | f(x) < ¢} and p(d) = sup{z € (a,b) | f(z) > d}, we
see that

fH((=00,0) = (a,q(c)) or (a,q(c)],  f7'((d, 00)) = (p(d), b) or [p(d),))

which are all Borel sets, so the preimage of any interval, hence of any open
set (, since any open set is a countable union of intervals), thus of any Borel
set is a Borel set.

If f e 9M,(a,b) then by lemma 2.3.2, we have f,, smooth functions con-
verging pointwise on (a,b), so the distributions T, of f,, converge to T of
f. By the form;er lcheorem, B,(z; fn) > 0 for all m and = € (a,b), so
B (23 fon)nn = %;_—i(;) >0, so D*""'f >0, thus D**~'T,. By the defini-
tion of the distributionai derivative and the convergence,

T, - T < DI, — D*T Vk € N, hence D*"'T,, — D*7'T, thus
D> > 0. m

Lemma 2.3.4 If T is a distribution on (a,b) with D*T > 0, then T is

induced by a continuous function.

Proof:  Since D°T is a positive linear functional of ((a,b), T(4s)), which is a

locally compact Hausdorff space, there exists a u regular Borel measure due
b

to the Riesz-Markov Theorem, such that Vf € C3°(a,b) D?T(f) = / fdu.

Set ’

d
so D?g = ﬁ, the Radon-Nykodim derivative of . The function g is clearly

continuous, and we have that T'(f) = / f(z)g(z)dx [
R
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This lemma combined with the preceding proposition tells us that any
f € M,(a,b) agrees with a C**~* function almost everywhere with non-
negative odd order derivatives. Considering the fact, that if a continuous
and a monotone function agrees almost everywhere, then they are identical,

we see that

Corollary 2.3.1 M, (a,b) C C*>(a,b), in particular Mo (a,b) C C>(a,b).
Furthermore, D*72f(2) > 0 for all k € {2,...,n} and x € (a,b).

Theorem 2.3.4 (Bernstein’s Theorem) If f € C*(—1,1) obeys
DFf(x) >0 Vo € (=1,1) Vk € NT, then f is a restriction of a function

analytic on D.

Proof: Let T, f be the Taylor approximation of order n about 0, that is

" DF(0
(0) i

k=1

By writing f(z) = f(y) + / Df(t)dt, and using it repeatedly to expand
0
the integrand, we get

R.(x) = f(z) — T, f(x) = /dxl /d..'['g . /dxnﬂ D" f(zn1)  (2.22)
0 0 0

T

= /dxnﬂ / dxn.../daﬁnH D”Hf(:cnﬂ) (2.23)

0 Tn+1 x2
= /Dn+1f<l’n+1)md$n+1 (224)
n:

0

Since there is only one variable of integration is left, we can write t = x,,11.
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At first, let us limit ourselves to the x > 0 case. By the criterion of the

theorem, 7, f(x) > 0, thus R,(z) < f(z), and R,(z) > 0 as well. If we fix

—t
an « € (0,1), then T . < z holds for all 0 < t < z < a. Thus we can write
a J—

T

0 < R,(x) :/

0

—Dn+;f ® (p — pyae

T

-/ DO (8=

n! (v —t)™

0
x

LD, DM
§:1c0/ (v —t) dtﬁxo/ (v —t)"dt

n! n!
=2"R,(a) < 2" f(«)

Hence we see that R,, =2 0 on [0, a.

If —a <z <t<0, then T,,f(x) < 0, thus R,(x) < 0. In this case
T —t

; > x holds, thus R,(x) can be upper estimated by z"(f«), Therefore
a p—

R, = 0 on [—a,0] as well. Since |f(z) — T, f(z)| = |R.(z)| = 0 on [—a, al,

T.f = f on [—a,al, but since a € (0,1) was arbitrary, we conclude that
D* D"

g(x) = Z I{!(())a:k = f(z) on (—1, 1), which also mean that Z /(0)

!
keN keN k!
is absolute convergent on the entire D, thus it is convergent, defining an

Zk

analytic function.

The integral (2.24) is called the integral form of the Taylor’s remainder.
One can also see that (2.22) is an integral of a continuous function D"*! f on
conv{0, z}"! thus by the Mean value theorem, there exists a

tne € conv{0, x}, such that D" f(¢, ) multiplied by the volume of conv{0, z}"*
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D™ f(tne)
(n+1)!
Lagrange form of the Taylor’s remainder, which will be used in the proof of

is the (n + 1)-fold integral. R, (z) = 2", This is known as the

the following theorem.

Lemma 2.3.5 If f is a C* function on an I interval such that there is a
d > 0 with [=6,0] C I, then

2 )
DO < = sup |f] + 5 sup D] (2.25)
[=6,9] [—4,8]

Proof:

)

6) = £0) = D50 = | [ D*1(a)(6 ~ w)da| < 5 sup D]

The first equation uses integration by parts. By adding | f(d) — f(0)| to both
sides, and using the triangle inequality to make the L.H.S. smaller and the
R.H.S. greater, we get

2

)
[SDSO)] < [F(O)] +1£(0) + 5 sup [D*f]
[7676}

from which one can acquire (2.25) by dividing with ¢ and making an upper

estimate for | f(d)| and |f(0)]. ]

Theorem 2.3.5 (Berstein-Boas Theorem) If f € C*°(—1,1) obeys
D=1 f(2) > 0 Vo € (=1,1) Yk € NT then f is a restriction of a function

analytic on D. In particular, VR >1 4Cr > 0:Vn € N

‘D”f (0)

W ‘ < CrR" (2.26)
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Proof: For the upper estimate, one can use Cauchy’s differentiation for-
mula on the curve 0Bx-1(0) C D, which is a compact set, thus |f| reaches
its maximum, K on it, hence
D" £(0) 1 / /(2| 1 / K
< |— dz < — ———dz = (KR)R"
‘ n! | 7 |2mi |z =0 R %* (KR)
9B ,—1(0) 9B ,—1(0)

Let g(x) = f(x) — f(—x), so Vk € Nt D*lg(z) >0, D*¢(0) = 0, so we

can use the same arguments for g, as in the first half Bernstein’s theorem.

Firstly, if z € (0,1),

S D9(0) sy _ R D(0)
= IV 21 NIV g <
22k Zl v =)
= j_
1
Notice that D71 f(0) = §D2k_1g(0), from which we can see that
1
~D*7UF(0) 5y 1 D> f(0)
— " =1 —_— <1

Z(ka—l)!x o= R lﬁsofp((zk—m!) =

k=1

where R is the radius of convergence of the power series on the left. The
implication follows from the Cauchy-Hadamard Theorem. Let a € (0, 1),

o € [~ 0, h(z) = f(x) = f(220 — 2) Vo € (xo — (1 — |z0]), 20 + (1 — [0])),
SO

Vk € Nt D*'h(zg) > 0, D*h(x) =0
thus we can use Taylor’s approximation about xg. If there exists an z > 0
such that x € Dom h, we can use the exact same argument, as for g. If
Domh C (—3,0], we can find an z < 0 in it, thus we can use almost the
same reasoning, with Taylor’s approximation being a monotone decreasing
sequence that has a lower bound A(x). In either case, we arrive at

Dzkflf(%) et 1
B : D™ o) <(1_ -
Va € (0,1), zg € [—a, ] lliris;jp ( k1) ) < (1 —|zo))
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By combining the previous lemma and D* f = DD?**7! f we see that

Vg € (—=1,1) V9 € (0,1 — |zo|)

DQk i 2 D2k 1 D2k+1 i
lim sup (M) <limsup | = su —f + = 0 sup —f
koo \ (2k + 1)! hooo \ O 35(10 (2k; +1)! 25 Ba(zo) (2k +1)!
2 DZkflf 5 D2k+1f i
<limsup | = sup S T o sup —_—
koo \ O B (x0) k-1 23 (Qk +1)!

9 5 D2k+if 3
<limsu -+ -] max sup ——
- k_)oop ( > i€{-L1} 5,750 P (2k +4)!

D2k+if i 9 5 i
<limsup [ max sup —— <_ T _>

koo \i€{-L1} 550y (2k:+ i)! o 2

<(1 =6 — |axo)) "

— 1 in both cases of the maximum.

Where the last inequality uses
Taking J \, 0, we have the same estimate as for the odd case. If x € (—3 > ;)

D" f(0)
!

the estimates show us that |z|® sup — 0, which means that the

B (0)
Lagrange remainder of the Taylor’s approximation goes to zero uniformly on

all [—a,a] C (—1,1). Thus f is real analytic on (—3,

279 ) NOthG that for all

1
2
€ (—1,1), If we restrict f to (z—(1—|z|),z—(1—|x|)), the same argument
shows us that f is real analytic on (z — (1 —|z|),z — (1 — |2])). Hence f is

real analytic on (—1,1), and by the uniqueness of the analytic continuation,

. - D" £(0)

f is the restriction of g(z) = E —
keN

is absolute convergent. -

z¥, which is convergent on D, for it

Corollary 2.3.2 FEvery f € M (—1,1) has an analytic continuation onto

D, and if D)

T (2.27)

Cp =
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thenVR>13dCr>0:VneN
cn| < CRR" (2.28)

Proof: By Corollary 2.3.1, we see that f satisfies the condition of the
Bernstein-Boas Theorem, which has almost the same consequences, but with

len| < CrR""!. By setting Cr = RCp, one can see that (2.28) also holds. ®

Lemma 2.3.6 Let R > 0. Then all P € Clz] polynomial obeying P([—R, R]) C

Ry is the finite sum of terms in the form of
Q) (R-2)Q(x)*, (R+2)Qx)’, (R —2)Q(x)* (2.29)
where @ € R[z]| polynomial.

In both the statement and the proof we use R[z] and Clz], which indicates
whether a polynomial has real or complex coefficients. However, this deno-
tation is not accurate, because an element of Clz] is not a function until it
is restricted to a domain. Hence in the following, we will use R[z] and C[z]

as R[z]|. and Clz]|..

Proof: Let P(x) = Z a,x", and notice, that by the condition, P € Rlz],
k=0

since P(0) = ap € R and F(z) = @ —ap € Clz] with F([-R, R]) € R,
so F(0) = a; € R, and so on. This implies, that for all z € C\ R, z and
Z is a root of the same multiplicity, if any of them is a zero of P. Also
any y € [—R, R] has even multiplicity, since if g(z) = f(__x; € C[z] then
g((y,R]) C Ry, g([-R,y)) C Ry, thus g(y) = 0. With these in mind, we
can write

Pa)=C [ le==P ] G- I] @¢—v) [ (w;—2)

z;€C z;€[—R,R] Yi<—R w;>R
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with the indexed numbers being the roots, and C' > 0. We can punctuate
the complex terms by writing z; = a; + ib;, |z — 2> = (2 — a;)* + b7, hence

we can write P(x) as a finite sum of terms in the form of

Q) I (x—wy) [ (wj—=)

Yi<—R w; >R
with @ € R[z]. By expanding (z —y;) = (—R—y;) + (R+x) and (w; —x) =

(R—x)+ (w; — R), we get a finite sum of term such as
Q(z)*(R+z)"(R — )™

where n is the number of roots less than —R and m is the number of zeros
greater than R. If n and m are even, this simplifies to Q(7)*, Q(z)*(R* — 2?)
if both are odd, and Q(x)*(R — z) or Q(z)*(R + z) otherwise. [

Theorem 2.3.6 (Hausdorff Moment Problem) If {¢, | n € N} C R
and R > 0, then

R
Alu finite measure on [—R, R], such that ¢, = /x”d,u(a:) (2.30)
“R

if and only iof
(a) (2.28) Holds for R, and

(b) for all n € NT, the n x n Hankel matriz, Hi(]m = Ciyj_2 1S positive.

Proof: If (2.30) holds, then for any a € C"', define P,(z) = Zakxk SO
k=0

n R n+1
0 < (PualPa) oy = Y, @ty / e dp(e) = Y @Giiaj a6y = (a|[H"a)
"R

1,7=0 1,7=1
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holds, thus H™*' > 0 for all n > 0 by definition. We can also notice that

R R
ol < [ 1e"ldute) < B [ dute) < R
-R -R

It is clear, that du is unique on the space of polynomials, as

R n n
/Zakxkd,u(x) = Zakck
k=0

k=0

The polynomials are dense in C[—R, R], so du is unique.

For the converse, we examine (C[—R, R], || - || ). Firstly, we define
(Saet) - Y
k=0 k=0

We show, that P([—R, R]) C [0,00) = f(P) >0

By the previous lemma, such polynomials are a finite sum of terms in the form
of (2.29) with @ € R|xz]. f defines a scalar product on the real polynomials
with (P |Py); = §f(P1P2). One can see that 0 < (¢|H""'q) = (Q|Q); =
f(Q%), where the coefficients of @ are the elements of ¢. By the Cauchy-
Schwartz-Bunyakovsky inequality, we have f(PQ) < f(P*)'?§(Q*)"?, and

we can use it repeatedly to see, that for any @ € R[x]
H0Q) < f(@*Q*)PHQMY” < f* Q) THQ?)T < f(a™ Q) H(Q)' 7

Note, that if Q*(z) = Z gex”, then
k=0

2" N2\ A< k427 ) J|p2" 2m
[f(=*" Q)| g;mm%y_ZMm%R < mmax|q,CaR/|R*" = KpoRt

k=0
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Using (2.28). This implies limsup [f(z>"Q?)|?" < R, which in combination
with the iterated C-S-B inequ;lmﬁ;)/ yields [f(zQ?)| < R§(Q?). Since f is linear,
this means f((R + 2)Q?),f((R — x)Q*) > 0. One can use the same reasoning
to arrive at §(2°Q?) < f(z*2" Q) §(Q?)' 27, |}(22Q?)| < R*(Q?) and finally
f((R* — 2*)Q?) > 0, so we proved our first aim.
For any P € R[z] real polynomial, we have ||P|| £ P > 0, therefore

f(|P|| &£ P) > 0, hence |f(P)| < ||P]|co- This means that f is continuous on
the space of polynomials, which are dense in C|—R, R|. Thus f extends to
§ on continuous functions with f > 0 = §(f) > 0, since if f > 0, then
[EnRi%} f = xo > 0, and we can approximate f with polynomials in B,,(f)

which are all non-negative, and § is continuous. Again by the continuity, if

we write [ = li{% el + f, we see that
€

f>0=F(f)>0

In conclusion, § is a continuous positive linear functional of C|—R, R], so by

the Riesz-Markov theorem

R
du measure on [—R, R|, such that F(f) = /fd,u
“R

By the definition of §, ¢, = / x"dp holds, and we already concluded, that if

there exists such g, it is unique. Since ¢o = p([—R, R]), u is a finite measure.

Theorem 2.3.7 Vf € M (—1,1) 3lv finite measure on [—1,1], such that

1

fla) =50+ |

-1

x
14+ Az

dv(\) (2.31)
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D" f(0) () D™ f(0)
= I G  HY — e = —— T B0 ),
which is positive by theorem 2.3.3. By corollary 2.3.2, (2.28) is met for every

Proof: Let ¢, =

R > 1, thus by the previous theorem, there is a unique measure p g supported

n [—R, R] with

R
Cp = /x”duR(:E)
-R
By uniqueness, they agree for all R > 1, so there exists a unique finite
1
measure g supported on ﬂ [—R, R] = [-1,1] with ¢,, = / z"du(x). Define
R>1 -1

dv(z) = du(—=z), and write the Taylor approximation for z € B;(0)

1

flz) =) —+= bt f( (0)+ ) z2¥(— //\kdy(A)

keN keN i)

+Z/ Y ARdp(A / > (= z)kdu(A

keN*~ keN

= (0 + / eIz

The sum and the integral can be interchanged since the Neumann series

Z z* converges uniformly on B|.(0), thus for all A € [-1,1]. [ |
keN



Chapter 3

Bounded operators

In this chapter, we shall see that the name "operator monotone" is justified,
since an operator monotone function is monotone on the bounded linear
operators of any separable Hilbert space. To show this, we have to introduce
a continuity notion on Z(9), that is a topology. We will not use the norm
topology, for it has a too fine. In the below introduced topology, any bounded
operator of a separable Hilbert space can be approximated by finite rank
operators, which is not in the norm topology of an infinite dimensional space,

since it would mean that every continuous operator is compact.

Notation 3.0.1 Let  be a Hilbert space. We endow the bounded linear
operators of ), L (9) with the topology of pointwise convergence, and call it
strong topology to create (Z£(9),7s). In this notion, for any net A : § —
Z®) lmA, =Le Z®H) & lirjnAifu = Lv Yv € $. This will be the
convergerzgse used throughout the rest 70f the thesis, not the norm convergence.

If $ is separable, this topological space is metrizable, because let {s;, | k € N}

43
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[(A = B)sgll
be a countable dense subset of B and let d(A, B) = .
2 T Bl

In this case, it is enough to check sequence continuity of function as opposed

to net continuity, because the space is M.

Lemma 3.0.1 (Continuity) If $) be a Hilbert space, then
Cb(R) CCU(Z(9)sarTs), (ZL(D)sar T5))

Proof: We start with proving that if S C Z(9) is a norm bounded
set, then the multiplication (composition) S x Z(9) — Z(9) is strongly

continuous, where the topology of S x Z(9) is 7, X 7. For this, we use that

|ABv — CDvl|| < ||ABv — ADv|| + ||[ADv — C' Dv||
< [[A[[[[Bv = Dv|[ +[[(A = C) Du]|
< K|[Bv = Dol + |[(A = C) Do

where the last equation uses the boundedness of S. If (4, B) : § — S x . Z(9)
is a net converging strongly to (C, D), then A; and B; converges to C' and
D. With this in mind, we can reduce the first and second term of the R.H.S.
arbitrarily, thus the L.H.S..

Let @ denote the set of strongly continuous functions, which is a vector

space endowed with the pointwise operations. By the above argument, we

have that fh € & for all h,f € o, if h is bounded. Firstly we show

that Co(R) C o. Let o = o/ N Cy(R), which is a closed subalgebra of
Co(R). Let z be the indetity on R, f(x) = (1 +2°)"!, and g = fz. Clearly
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f,g € Bl(O) Q CO(R) If a, be g(‘@)sa, then

g(a) —g(b) = a(l +a*)' —b(1+b*)"
(14 a®)"a(l + ) — (1 +a®)b)(1 +b*)

(1+a*)"ta—b+alb—a)b)(l+b*)"

so if we take a v € 9, then

lg(a)o — g(0)oll < [I(1+a*) " (a = b)(1 +b%) "ol + [|(1 + a®)~"a(b — a)b(1 + b%) ||
< 1L+ a®) 7 HllI(a = 0)(1 +6%) "ol + (1 + a®) all|(b — a)b(1 + b%) ]|

< [l(a = b)(1+ %) ol + (b — a)b(1 +b%) o]

with [[(14+a*) 7|, ||[(14+a®)"a|| < 1 in consideration. If we substitute a for a
net ¢: 3 = Z(9H)s, converging to b strongly, the first and second term of the
R.H.S. can be arbitrarily small, since b(1 + b?)"'v and (1 + b*) v are just
fixed vectors in . In conclusion, g € 9. z € &/ also holds, thus gz € &7,
hence by direct computation f = 1 — gz € & resulting in f € 4. Since
{f, g} separates the points of R, and vanishes nowhere, so by the Stone-
Weierstrass Theorem the closed algebra generated by f and g is W. We
already mentioned, that o7, C m, and on the gound of the closed algebra
generated by f and g being in o, @ = Cy(R)

Now take any h € C,(R). Clearly hf,hg € Co(R) = o C /. If hg is

a continuous function vanishing at infinity, it is bounded, so (hg)z € <,

therefore h = hf + hgz € o [ |

For a set H in a vector space V, let convH denote the convex hull of H
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Lemma 3.0.2 If § is a Hilbert space, P, A € £ ($)s, with P being an or-
thogonal projection and Ap = PAP|ranp, then spec Ap C conv(spec A). In
particular, if spec A C (a,b), then spec Ap C (a,b)

Proof: Since the spectrum of a bounded operator is compact and a is
self-adjoint so it has a real spectrum, with a greatest element g and a least
element .

This implies spec A C [I,9] = 11 < A < g1 = [1Rana < Ap < glranp =

spec Ap C [l, g] C conv(spec A) [ |

Theorem 3.0.1 Let § be an infinite dimensional separable Hilbert space,

A, B € ZL(9)sa with spectra in some (a,b), and f € M (a,b). Then
A<B= [(4) < f(B) (3.1)

Proof: We can assume, that 0 € (a,b), because a we can translate the
2 b

interval with T'(z) = Tt Z+ and use T(A), T(B), foT™*, (—1,1).
—a —a

If §) is separable, then it has an orthonormal basis {v, | £ € Nt }. If

P, be the orthogonal projection onto the span of the first n basis vectors,
then P, > 1, thus P,AP, — A, and P,BP, — B, because P,AP, — A =
P,AP, — P,A+ P,A — A.

Since P,AP, = Ap, ®0,_p,, spec P, AP, = spec Ap, Uspec0;_p,

C conv(spec A U 0) by the previous lemma and the fact, that spec0 = {0}.
This set, and conv(spec BUQ) are compact subsets of (a, b), so by Urysohn’s
lemma, there is a continuous ¢ : (a,b) — [0, 1] function which has g(x) = 1 for
all z € (conv(spec AUO)Uconv(spec BUO)), and g(y) = 0 outside of a compact

subinterval of (a,b). Since an operator monotone function is continuous, fg
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is a bounded continuous function that agrees with f on (conv(spec AU O0) U
conv(spec B U 0)). Hence f(P,AP,) is well defined, and so is f(P,BP,).
Since P,AP, and P,BP, are n x n matrices with P,AP, < P,BP,, we have
that f(P,AP,) < f(P,BP,). f is strongly continuous, hence it is strongly
sequence continuous, so f(P,AP,) — f(A) and f(P,BF,) — f(B), thus

f(A) < f(B)



Chapter 4

Convexity

In this chapter, we prove an analogue of a theorem from real analysis, which is
if f:(0,00) = [0,00)is aconcave function, then fis monotone increasing.
With the help of this remark, we can show that not only every operator mono-
tone function on R is affine, but this is the case for even 2-monotone functions

on R.

Definition 4.0.1 An f: (a,b) — R function is called concave, if
fltx+ (1 —t)y) > tf(x)+ (1 —1t)f(y) holds for all z,y € (a,b) and t € [0,1].

f is referred to as convex, if —f is concave.

Definition 4.0.2 An f: (a,b) — R function is referred to as n-concave, if
FtA+(1—t)B) > tf(A)+(1—t) f(B) holds for allt € [0,1] and A, B € M,|[C]
that obeys spec A,spec B C Domf. We denote the set of such functions
C.(a,b). [ is called n-convez, if —f € €,(a,b).

If f e ﬂ C.(a,b), then f is called operator concave. Let €y (a,b) denote

neNt
the set of such functions.f is called operator concave, if —f € €,(a,b).

48
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Recall, that if A is a bounded operator on a Hilbert space §), and P is an

ortogonal projection, then Ap = PAP|g..p-

Lemma 4.0.1 Let A € Z(9H)T, where 9 is an arbitrary Hilbert space, and
let P € Z(9H)" be an ortogonal projection. If f : (L(9H)T, 1) = (L(9), )

s a continuous and monotone function, then

f(A)p < f(Ap) (4.1)
Proof: By writing $ = P($) ® (1 — P)($)), we can decompose

11 Q12

A:

Q21 A22

Where a1; = Ap. Given an € > 0, we define T, =

€an —Q12
TFAT. =

-1
—Q21 £ A2

Notice, that A > 0 = T AT, > 0, since we just made a basis transformation.

Hence
1+ 0
A < A—l-TE*ATE _ ( 5)&11
0 (1 + 5_1)(122
For f is monotone,
f((l + 6)(111) 0
f(4) = B
0 f((1+e7)a)

It is clear that X > Y = Xp > Yp holds, thus
f(A)p < f((1+¢€)an) = f((1+e)Ap) for all e > 0. Since (1+¢)Ap converges
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to Ap strongly as € N\, 0 and f is strongly continuous,
F(A)p <l f(1+2)Ar) = F(Ar) .
Theorem 4.0.1 If f: (0,00) = R and n € N*, then
(a) fe€,(0,00) and f >0 = f e M,(0,00)
(b) feMy(0,00) = fe,(0,00)
In particular, f >0 = f€C€x(0,00) < f € My(0,00).

Proof: (a): If A, B € M,[C] are self-adjoint matrices with 0 < A < B,
then

1
B=A+e ' (B-A)=(1+¢) {1+€A+1i551(B—A)1

Dividing both sides by (1 + ¢) and using the n-concavity of f, we see that

B 1 € 1
f(1+5) 2 1+€f(A)+1+€f(€ <B_A))

f > 0 implies

f(A). One

)= 1o,

B 1
1j_5f(5_1(B_A))20’ thusf( ) 1Tz
B

>
can change to a basis in which B is diagonal to see that f (
and clearly %_l_gf(A) — f(A), hence by taking € \, 0, we get
f(B) = f(4)
(b): Write C*" = C" @ C", and let P be the orthogonal projection onto

C" @ {0}. Given A, B € M,|C]" and = € [0, 1], we define

V1 —V/1-Z1
V1I—Z1 VZ=1

T =
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which is clearly unitary. By direct computation, one can see that

A 0
z T=| =ZA+ (1—-EZ)B. Thus by the preceding proposition
0 B U
- - L[ fA) 0
Ef(A+(Q-5)f(B)= = 1=
0o 1m) )|
0 A 0
0 B 0 B
11 In
— f(EA+(1-E)B)
which yields f € €,(a,b). ]

Theorem 4.0.2 If f € My(R), then f is an affine function, that is
f(z) =azx +b for some a >0 and b € R.

Proof: If f € My(R), then take any a < 0 and write g,(z) = f(x+a). We
see that g, € My (0, 00), thus it is concave on (0, 00). Hence, f is concave on
(a,00) for all a < 0, therefore on all R. —f(—xz) € My(R) also holds, which
implies that —f(—z) is concave as well, which is by definition means that
f(—x) is convex. Since f(—=z) is convex on a symmetric domain if and only
f(x) is, f is also convex. Every function that is both convex and concave is

affine, therefore so is f. [ |
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Applications

5.1 Operator means

In this chapter, we will discuss operations on .Z($)), the space of bounded
linear operators of a separable Hilbert space ), which is allowed to be infinite
dimensional. The subgroup of invertible elements in .Z($)) will be denoted
as 4.Z(9). The set positive elements in these spaces will use the .Z($)" and
4% ()" notations. We need symbols as we will discuss multiple functions
on these spaces, and the domains will be easier to notate. The convergence

of this chapter is the strong convergence.

In this context, the Schur decomposition (2.2.3) can be rewritten, but

proven the same way.

Theorem 5.1.1 (Schur complement) If A, X € £($) and B € 9.£(9)

52
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with A, B > 0, then

A X
X" B

>0 & A>XB'X* (5.1)

Corollary 5.1.1 The funtion F : £(9) x YL (H)" — ZL(9),
(X, B) = XB ' X" is jointly convex, and
Fi: L(9)xZLH)x9GL(H)T — L), (A, X,B) — A—XB ' X" is jointly

concave.

Proof: The second statement follows from the first. Take any (X, B)

and (Y, A) from Dom F', and a t € [0,1]. From the predecessing theorem,
XB'X* X
X B

> 0, so by the convexity of Z($)%,

tXB' X+ (1-t)YA'Y* tX+(1-t)Y

>0
tX*+(1—-t)Y”" tB+(1—-1t)A
If we use the theorem on this as well, we get
Ft(X,B)+(1—-1t)(Y,A) <tF(X,B)+ (1—-t)F(Y, A). |

Definition 5.1.1 We define the parallel sum 9L (H)*xGL(H)" - 4L(H)*
(A,B) = A: B=(A""+ B! and the harmonic mean A!B = 2(A : B)

Proposition 5.1.1 The parallel sum obeys

(a)
A:B=A—-A(A+B)'A=B-B(A+B)'B (5.2)

(b) (A, B) — A: B is jointly monotone and jointly concave
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(c) A:B< A A:B<B

(d)

A A Y 0
A:B=max{Y € Z($H)" > (5.3)
A A+ B 0 0

where max means greatest element.
(e) A< B=A<AB<B
Proof: (a):

At'+ B HY ' '=AYA+B)B Y '=BA+B)'B
=BA+B) ' (A+B)-A=B-BA+B)'B

The other equation follows from the obvious symmetry of the parallel sum
in the original form.

(b): We have proved in (2.2.4) that if f: A+ —A~" then f € M, (0, 00),
so A: B=f(f(A)+ f(B)) = —(=A"'— B™')"! is indeed jointly monotone,
since + is. By Corollary 5.1.1, (A,B) — Fi(A,A,A+ B) = A— A(A+
B)™'A = A: B is jointly concave.

() AB>0= (A+B)'>0= A(A+B)'A,B(A+ B)'B >0 by
definition, hence A — A(A+ B) 'A< A, B— B(A+ B)'B<B.

(d) By the Schur decomposition,the inequality holds exactly when
(A-Y)>A(A+ B)'A whichis A: B=A—-AA+B)'A>Y.

() A< B=2A< A+B<2B=B"'<2M4+B)'< A=
B <2B(A+B)'Band 24(A+B) 'A< A=2B-B > A: B and
A:B>2A—- A [ ]
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Theorem 5.1.2 If A,, B, € 92(9H)", A,B € Z(9H)" such that A, \ A
and B, \( B, then lim A, : B, exists in the strong topology, and A, : B, \,

n—oo

A : B independent of the choice of A,, and B,,.

Proof: The monotonicity of the sequence follows from the joint mono-
tonicity of the parallel sum.

First, we assume that A and B are invertible. In this case (A, + B,) ™' <
(A+B)"' = A, (A, + B, 'A, < A, (A+ B)'A, Since {A, | n € N} is
pointwise convergent, it is pointwise bounded, thus by the Uniform bound-
edness principle, it is norm bounded by a K > 0. Also A, + B, > A+ B =
0< (A, +B,) " <(A+B)™ ! hence |[(A,+B,) " < ||(A+B)™. Utilising

the triangle inequality with, wee see that for all v € $

| An(An + By) " Anv — A(A + B) ' Av||

< ||An (A, + B,) A — Ay (A, + By)HAv||
+ | An (A, + By) tAv — A, (A + B) T Av||

+ | Ap(A+ B) ' Av — A(A+ B)t Av|

< K[[(A+ B) | Apv — Av|

+ K|[(A, + B,) ' (Av) — (A + B) H(Av)|

+ | An((A+ B) "t Av) — A((A + B) T Av)||

The first and third term can be arbitrarily small since A,, — A.For the
second one we consider spec(A+ B) C (0, 00), which a compact set, so it has

a least element c. A, + B,, > A+ B > ¢ thus U spec(A,, + B,) Uspec(A +

neN
B) C [¢,00) thus we can truncate the inversion function to create a bounded

continuous function f(x) = 27 '1,5. + ¢ '1,-, which is strongly continuous
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by Lemma 3.0.1, thus (A, + B,) ' = f(A, + B,) = f(A+B) = (A+B)™",
hence the second term vanishes as well. This implies A, (A, + B,) *4, —
A(A+ B)'A, thus (A, : B,) — (A : B). In this case, the independecy is
obvious.

For general A, B € £(9)", by the joint monotonicity of the parallel sum,
0 < A, : B, is a monotone decreasing sequence, thus it has a strong limit.

For any other A/, Bl € 4.£($H)" pair of sequences with A/ \, A and
B N\(B, A, + A, — AN A, and B, + B/, — B\ B, as m — oo for all
n € N. Thus by the first case, (A, + A/ —A) : (B,+ B, — B) \( A, : B, for
all n € N. Since A, : B, < (A, + A, — A): (B, + B,, — B), taking n — o0,
we see that 7El_r)rllN A, : B, <Al : B forall m € N. Taking limit in m, we
get lim A, : B, < lim A/ : B/ . As the whole argument was symmetric

n—oo m— 00

in A,, B, and A | B/  we conclude that lim A, : B, < lim A/ : B/ also

holds, which proves independency.

This theorem not only shows us, that the parallel sum is upper semi-

continuous, but also

Corollary 5.1.2 The parallel sum can be extended onto £(9H)" x L(H)"
by A : lei{f&(A—i-él) :(B+e¢l)

Proof: For any A > 0, A+ el > €1, thus (A +¢1)™' < £7'1, hence
(A+el) ! € 9Z(H)", and clearly A + 1 N\, A. The same can be noted
about B and B,,.

If A and B are invertible,then the above expresion is the original A : B,

and still exists otherwise by the preceding theorem. [ |
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In the following, when use the parallel sum, we refer to this extension. We
will encounter some variational formulas that show a minimality or maxi-
mality property of an expression. These formulae are quite useful, as we will

see, particularly for proof of convexity, or concavity.
Lemma 5.1.1 Yo €  (v|A: Bv) = min{(z |Az) + (y|By) |v=2+y}

Proof: The scalar product is continuous and the parallel sum is upper semi-

continuous, so by taking limits we can assume that A and B are invertible.

Since A: B=B — B(A+ B)'B,

(v|Ax) + (v —2|B(v— 1)) — (v]A: B)
= (z|(A+ B)x) + (v|Bv) — 2% (z|Bv) — (v|A: Bv)

= (z|(A+ B)z) —2%e(z|Bv) + (z |B(A+ B)"'Bx)

= (A + B)Y%z|)? + ||(A + B) "2 Bul|> — 2%e ((A + B)?z |(A + B)"Y2Bv)
= [[(A+ B)"?z — (A+ B)"'/*Bu|> > 0

and the equality can be reached with z = (A + B)™'Bu. [

Proposition 5.1.2 VA, B,C,D € ()"
(a) VT € 2(5) T*(A: B)T < (T"AT) : (T* AT)
() A:B+C:D<(A+C): (B+D)

Proof: (a): By the lemma above, Vv € $ 3x,y € $ such that v =z + y
and (x |T*ATzx) + (y|T*BTy) = (v|(T*AT) : (T*BT)v), thus
(v|T*(A: B)Tv) = (Tv|(A: B)Tv)

< (Tx|ATxz) + (Ty|BTy) = (x|T*ATz) + (y |T*BTy)
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Where the inequality uses the lemma as well.
(b) Again Yv € $ Jz,y € $H such that v =z + y and
(|(A+C)x)y + (y|(B+ D)y) = (v|[(A+C): (B+ D)v), thus

(W|(A: B+C:D)v) =(wl|(A: B)v) + (v|(C: D)v)
< (z|Az) + (y|By) + {z|Cz) + (y |Dy)
= (z[(A+ C)z) + (y[(B+ D)y)

|
Definition 5.1.2 We define the geometric mean,
#:9LH)"xLH)T = ZLH)T,
(A, B) — A#B = AY2 (A2 A-12)"% q1/2
Proposition 5.1.3
A#B =max{X € Z(H)" | XA'X < B} (5.4)

where the max notates the greatest element of the set, not the mazimal.
Moreover, (A#B)A ' (A#B) = B holds, which implies that X = A#B is
the unique positive solution of XA ' X = B.

Proof: A#BAT'A#B = AV? (A"V2BA12)27 V2 — g

If XA™'X < B, then A7V2XA'XA™Y2 < A7Y2BA™Y2 which is
(A7Y2XAY2?2 < A"Y2BA~Y2 thus by the monotonicity of the square
root, A7V2X A2 < (A_1/2BA_1/2)1/2 which yields X < A#B. f XA™'X =
B, then the inequalities turn into equalities, so X = A# B, hence the positive
solution of X = A#B is unique. [ |
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Corollary 5.1.3 VA, B 9.2(9H)" A#B = B#A

Proof: XB'X=Ae B!'=X14AX"'1e B=XA"X, since if both
A and B is invertible, then so is X. By the proposition, A#B < B#A and
B#A < A#B. [ |

A X
Theorem 5.1.3 A#B =max<{ X € Z ()" >0

X* B
Where the max means greatest element.

Proof: This follows from Proposition 5.4 and Theorem 5.1.1 of the Schur

complement. [ |

Corollary 5.1.4 The geometric mean # 1is jointly concave.

Proof:
Let (A, B),(C,D) € Dom# and t € [0,1]. If X = A#B and Y = C#D,

we have that

A X Y tA+(1-t)B tX+(1-t)Y
> () >0 = >0

X B Y D tX +(1—8)Y tB+(1—t)D

Thus tA#B+(1—t)C#D =tX+(1-t)Y < (tA+(1—t)B)#(tB+(1—t)D)
|
We ca ngive a similar proof for the concavity of the parallel sum using

(5.3).

Proposition 5.1.4 The parallel sum is jointly concave.



CHAPTER 5. APPLICATIONS 60

Proof: Let (A,B),(C,D) € Dom : and t € [0,1]. If we write X = A: B
and Y = C : D, we see that

A A X 0 c C Y 0
> and >
A A+B 0 0 C C+D 0 0
tA+(1-t)C tA+(1-t)C - tX+(1—-1t) 0
= >
tA+(1—-t)C t(A+B)+(1—-1)(C+ D) 0 0

Thus ¢(A : B)+(1—t)(C : D) = tX+(1-t)Y < (tA+(1—t)C) : (tB+(1—t)D)
|

Kubo and Ando generalised the notion of means in [8] using a few of the

above presented properties of some natural examples.

Definition 5.1.3 An operator mean is a map
o: O x L) - Z®7", (A, B) = AocB which obeys four azioms:
VA, B,C,D € Z(9)*"

(i) Joint monotonicity: A< C N B<D = AoB<CoD

(ii) Transformer inequality: C(AoB)C < (CAC)o(CBC)

(i1i) Upper semi-continuity: A, \yA N B, \ B = A,0B, \ AcB
(#1ii) Normalisation: 1ol =1

During the following discussion, we will often suppose that A and B are
invertible, since we can approximate them with A + n7'1 and B + n~'1

which are, and use the upper semi-continuity. Moreover, if C' is invertible,
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the transformer inequality tells us C ' [(CAC)o(CBC)|C~" < Ao B resulting
in

Ce9Z(H)"T = C(AoB)C = (CAC)as(CBO) (5.5)
Notice that this is a quite broad definition, since even (A, B) — A is an
operator mean.

We can also see that
A<B=A<AcB<B (5.6)

since we can assume that A and B are invertible, A = AY21A4Y2? = AY2(151)AY? =
(AY21AY2)5(AY21AY?) = AcA < AoB < BoB = B. During this proof,

we also concluded that
VA € f(ﬁ)* A= AcA

In retrospection, we have proven that the harmonic mean is an operator

mean, since the parallel sum obeys axioms ¢ — 7i1.

5.2 Kubo-Ando Theorem

For any f € MM, (0,00) obeying f(1) =1 and f > 0, by Loewner’s theorem

and a A = —x substitution, we have a Herglotz representation
o

(2) —a—l—bz+/ (5.7)

f()y=a+b+ /dl/()\) (5.8)

0
with a,b > 0
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Theorem 5.2.1 (Kubo-Ando Theorem) If (A, B) — AoB is an opera-
tor mean, then 1o(t1) is the scalar multiple of 1 for allt € [0,00), henceforth

there exists an f : [0,00) — [0,00) operator monotone function, such that
f(t)1 =10(t1) (5.9)

and f(1) = 1 holds. If f is represented by (5.7), then for all A, B € £ ($)*

AoB =aA+bB + /00 ?((AA) : B)dv(\) (5.10)

Conversely, if f : [0,00) — [0,00) is an operator monotone function with

f(1) = 1 represented by (5.7), then (5.10) defines an operator mean that
obeys (5.9). Furthermore:

(a) If A€ 9ZL(H)", then

AcB = AI/Zf(A—1/2BA—1/2)A1/2

(b) AcA=A forall Ac Z(H)"

From the integral representation of o, one can see that every operator mean
is jointly concave, since for all A > 0, (A, B) — (AA) : B is for the parallel
sum is by Proposition (5.1.4). Utilising this, we can see that the theorem
gives another proof for f > 0 and f € M (0,00) = f € €,(0,00) by (5.9)

If we introduce an order on the set of non-negative operator monotone
functions on [0, 00) with f(1) =1by f < g < f(t) < g(t) Vt > 0, and on the
set of operator means by 0y < 0y & Ao B < AoyB VA, B € Z($H)", from
(5.9), it is clear that the mapping f — o is monotone, an order isomorphism

even.
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From (5.9) we can find the representing functions of the geometric (#),
harmonic (!) and arithmetic (V) means. 1#(t1) = v/#1, thus the function
g of the geometric mean is the square root. 1!(t1) = 2(1 + ¢ '1)"", hence
ht) = 2 1) = 2R o g = L

1 ,soa():T.

Corollary 5.2.1 VA, B € £(9)" A!B< A#B < AvVB

Proof: Since f — o is an order isomorphism, we only have to prove that

h(t) < g(t) < a(t) for all ¢ > 0, that is

The right inequality is just the regular inequality of geometric and arithmetic

2 _
< Vit 1, hence
1+t

> +/t, which the same inequality once again. [ |

means. If we divide the left inequality by ¢ > 0, we get
14t

Lemma 5.2.1 Let o be an operator mean and A, B € £($)). For any or-
thogonal projection P commuting with both A and B, we have that
[((AP)o(BP)|P = (AoB)P (5.11)
and P commutes with AcB.
Proof: By the transformer inequality and monotonicity, we note that
P(AocB)P < (PAP)o(PBP) < AoB (5.12)

which means that C = AcB — P(AcB)P > 0. Since P* = P,
0 = PCP = (CV2P)*CY?P so CP = CY*(CY?P) = C"Y?0 = 0, thus
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(AcB)P = P(AoB)P so P commutes with Ao B for the right side is self-
adjoint. Since P commutes with AP and BP, it commutes with (AP)o(BP)

as well. If we turn back to (5.12) now, we see that

which is just (5.11). [ |

In the following proof, we will use some properties of the Dirac notation
of the scalar product. So far, the only difference between this notation and
the the standard one has been that the former uses a "(-|-)" instead of
"(.,-)". However, in the Dirac notation, |-) is a linear function from $ onto
Z(C,$) defined by |[v) : C — 9, A — v for all v € H. (-| is a conjugate
linear function from $ to the space of linear functionals of $) defined by
(v :9H = C,ur (v]u) for all v € 9.

In this notation, the ortogonal projection onto a unit vector e is given by

le)(e|]. We will utilize this and the associativity of the operator composition.

Proposition 5.2.1 If o is an operator mean, then 1o(t1) = f(t)1 is a mul-
tiple of the identity. For any A € £ ($)"

10A = f(A) (5.13)

In particular, f is operator monotone with f(1) = 1.
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Proof: for any operator C', C' = X if and only if C' commutes with every
projection, since if C' commutes with every rank one projection P, then
(1— P)CP = 0, so RanP, so every one dimensional subspace of §) is an
invariant subspace of C'. This means that we can use the former lemma, f
is a non-negative function with f(1) =1 by the normalisation axiom, and f
is monotone by the monotonicity axiom.

If that A = Z ay P, where {P; | k < n} are mutually orthogonal projec-

tions with 1 = z”: Py, then
k=1
10A =) (10A)P, =) (Po(AP,))Py (5.14)
= (Po(axPy)) P =Y (1o(a1)) Py = > flow) P = f(A)  (5.15)

where the second and fourth equation both used lemma 5.2.1.

We can approximate any self-adjoint operator with a decreasing sequence of
such maps, because if ) is infinite dimensional, let {e; | in} be an ortonormal
basis o£ it, and let P; be the orthogonal projectign onto < e; >. Define
T = Y P and A, = mAm + (1= m,) || Al = > PeAP + (1 —m,)|| Al

k=1 k=1
which is a map in the desired form, since

Py AP, = (lex) (ex|) A(lex)(er]) = [ex)(er](Alex))(ex]
= |ex) ((ex|[Aex))(ex| = [ex) (e |Aex) (ex]
= <€k |A€k> Pk

MOI‘GOVGI‘, (An—l)Trn = (An)Trn - Awna (An—l)l—Trn 2 (An)l—wn Z A1—7rn with
the notation as in Lemma 3.0.2. Since A,, = (4,)x, ® (An)1-r, and
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A=A, ®A1_r,, An1 > A, > Aholds. Finally, m, — 1 implies mAm, — A
and (1 — )| Al — 0, thus A, \, A. ]

Proposition 5.2.2 For any operator mean o, define f by f(t) = 1lo(t1).
ThenVA € 4.4(H)" VB € Z(H)*

AoB = AV2f(ATY2BA-Y2) A2 (5.16)
Furthermore, (5.10) holds.

Proof: With C' = AY? which is invertible for A is, we have by (5.5), that
Cl1o(A™Y2BAY%)]C, which is (5.16) by the preceding proposition. If B is
invertible, notice that

o0

f(B):a+bB+/

0

RO VICRRALZCY

f(B) is well-defined, since the invertibility of B implies its lower bounded-

ness, that is we have ¢1 < B < ||B||1. The norm of the integrand can be up-

B B
per estimated by ML(1 + ), which has an integral u(f(c) —a—bc).
BC c+ A c
idering A =B B+t =BT+ =018
Considering RN [ (B + \1)] ( + ) :

we see that
[o@)

f(B)=a+bB+ / %(Al : B)dv(\)

0

proving (5.10), when A = 1 and B is invertible.

If A is invertible as well, considering A\1 = AY2[\1 : (A7Y/2BA~1/2)|AY2
this integral is combined with (5.16) is (5.10) in the case, when both A and B
are invertible. Using the upper semi-continuity of o and A+n"'1, B4+n"'1,

we get the result for general A, B € Z(9).
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With this Propositions (5.2.2) and (5.2.1) proven, the proof of one direction
of the Kubo-Ando theorem is done. The converse requires less machinery,

hence we can prove it in one proposition.

Proposition 5.2.3 Let f be a non-negative function on (0,00) with f(1) =
1, and has the form

F(2) = a+ bz + / %@(A)
0
If o is defined by
AoB =aA+bB + / %((AA) : B)dv()\)
0

then o is an operator mean obeying 1o(t1) = f(t)1.

Proof: Forevery A > 0, (A, B) — (AA) : B obeys axioms i —iii of operator
means.

In order to prove that the integral is well defined, we separate (0,00) into
(0,1) and [1,00). Using the monotonicity of A+ —A~! we show that both
integrals are bounded. By the upper semi-continuity of :, we can assume that

both A and B are invertible. If X € (0, 1],

%(()\A) :B) = %(A_IA_I B )< ﬂ(/\—lA—l)—l
= (14+ M)A <24 < 2|4
IfA>1
#«AA) :B) = #()\_114_1 +BHl< #(B—l)—l
I+ A

- —"B<2B<2B]
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Thus
[es) 1

o< [F20a): Ba) < [2alam)+ [ 15ja)

< 2max{|| Al IIBH}/dV(A) = 2max{[|A[|, | B[}(f(1) —a —b) < o0

Thus the integral is well defined for every A, B € £ (%), and o obeys axiom

A
1 — 441. What is more, since A1 : {1 = Fut we conclude that
[H1+N)

0

Since f(1) = 1, o obeys the normalisation axiom as well. [ |
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Abstract

Loewner’s Theorem gives a handy condition for deciding whether a function
is operator monotone or not. It also asserts that any operator monotone
function is real analytic. Even n-monotone functions admit pleasant regu-
larity properties by the behavior of the Dobsch matrix. Although the notion
of operator monotonicity comes from finite dimensional definitions, it also
inherits the monotonicity in the infinite dimensional case. non-negative op-
erator concave functions on (0,00) are precisely the non-negative operator
monotone functions on (0, c0). The operator means are in order isomorphism

with the normalised non-negative operator monotone functions on [0, co).

69
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