- 1. Prove that in a group of even order there always exists an element of order 2. - **2.** Show that 6 is a divisor of $|S_4|$ but S_4 has no element of order 6. - **3.** Prove that every group of prime order is cyclic. - **4.** Prove that every cyclic group is commutative. Give an example for a commutative subgroup in S_4 which is not cyclic. - **5.** Let $A, B \leq G$ and $|G| < \infty$. Prove that the cardinality of the subset $AB = \{ab \mid a \in A, b \in B\}$ is $$|AB| = \frac{|A| \cdot |B|}{|A \cap B|}.$$ - **6.** a) Let $A, B \leq G$. Show that AB is also a subgroup if and only if AB = BA. - b) Check that for $A = \langle (12) \rangle$, $B = \langle (123) \rangle$ and $C = \langle (13) \rangle$, the subset AB is a subgroup of S_3 but AC is not a subgroup. - c) Show that for $A = \langle (12) \rangle \leq S_4$ and $B = \langle (234) \rangle \leq S_4$ the cardinality |AB| of the subset AB is a divisor of $|S_4|$ but AB not a subgroup of S_4 . - 7. Show that $Hg \leftrightarrow g^{-1}H$ is a bijection between the right and left cosets of $H \leq G$, and for a right transversal R the set R^{-1} is a left transversal. - **8.** Prove that the cyclic group C_n has exactly $\varphi(d)$ elements of order d for every divisor d of n, where $\varphi(d) = \{ m \mid 1 \leq m \leq d, \gcd(m, d) = 1 \}$. - **9.** What are the possible orders of the elements of D_n , and what is the number of elements for each order? - 10. Show that every nontrivial (that is, $\neq 1$) subgroup of C_{∞} has a finite index, i.e. it has finitely many cosets. - **HW1.** Let $A, B \leq G$, where G is a finite group. Show that the subgroups A and B are contained in the set AB, and both |A| and |B| are divisors of |AB| (though AB is not necessarily a group). - **HW2.** Prove that the (multiplicative) group of invertible 3×3 upper triangular matrices over \mathbb{Z}_2 is not a cyclic group. (For example, you may show that it is not commutative.)