- 1. Describe the following factor groups (find a known group or a naturally definable subgroup of such a group isomorphic to the given factor group).
 - a) $\mathbb{R}^{\times}/\langle \pm 1 \rangle$
 - b) $\langle a \rangle / \langle a^n \rangle$ if $G = \langle a \rangle \cong C_{\infty}$
 - c) $S_4/\langle (12)(34), (13)(24)\rangle$
- **2.** Determine the factor groups of D_4 .
- **3.** Let G be a group and $H \leq G$. Are the following statements true or false?
 - a) There always exists a group L and homomorphism $\varphi: G \to L$ such that $\operatorname{Ker} \varphi = H$.
 - b) If $H \triangleleft G$, then there exists a group L and homomorphism $\varphi : G \rightarrow L$ such that $\operatorname{Ker} \varphi = H$.
 - c) There always exists a group L and homomorphism $\varphi: L \to G$ such that $\operatorname{Im} \varphi = H$.
 - d) If $\varphi: G \to L$ is a homomorphism then $\varphi(H) \leq L$.
 - e) If $H \triangleleft G$, and $\varphi : G \rightarrow L$ is a homomorphism then $\varphi(H) \triangleleft L$.
 - f) If $H \triangleleft G$, and $\varphi : G \rightarrow L$ is a homomorphism then $\varphi(H) \triangleleft \varphi(G)$.
 - g) If $\varphi: G \to L$ is a homomorphism then $|G| \mid |\varphi(G)|$.
 - h) If $\varphi: G \to L$ is a homomorphism then $|\varphi(G)| \mid |G|$.
 - i) A group L is a homomorphic image of G (that is, there exists a surjective homomorphism $G \to L$) if and only if L is isomorphic to a factor group of G.
- **4.** Let $H \leq G$ and $M, N \triangleleft G$. Prove that
 - a) $H \cap N \triangleleft H$; $N \cap M \triangleleft G$;
 - b) $HN \leq G$; $NM \triangleleft G$;
 - c) if $M \leq N$ then G/N is a homomorphic image of G/M.
- **5.** Let $N \triangleleft G$. Prove that the map $H \mapsto H/N := \{Nh \mid h \in H\}$ is a bijection between the subgroups of G containing N and the subgroups of G/N. Show that this map connects normal subgroups with normal subgroups, and it preserves the inclusion of subgroups, that is, $H_1 \leq H_2$ if and only if the subgroup of G/N corresponding to H_1 is contained in the one corresponding to H_2 .
- **6.** Prove that if $N \triangleleft G$, and |G:N| is even then there is an H with $N \leq H \leq G$ such that |H:N|=2.
- 7. Let $N \triangleleft G$, $H \leq G$, |G| = 24, |N| = 4, and |H| = 6. What can be the cardinality of H at the natural homomorphism $G \rightarrow G/N$? Give an example for each case.
- **8.** What is the number of elements of order 4 in A_8 ?
- **9.** Prove that the elements (123) and (234) of A_4 are conjugate in S_4 but they are not conjugate in A_4 .
- **HW1.** Let $G = \langle a \rangle \cong C_{24}$ and $N = \langle a^{40} \rangle$. Determine the order of the (normal) subgroup N and of the factor group G/N. Find an element $g \in G$ such that $o(\overline{g}) = 4$ in G/N but $o(g) \neq 4$ in g.
- **HW2.** Suppose that $N \triangleleft G$, $H \leq G$, |G| = 100, |N| = 20 and |H| > 20. Prove that there is a subgroup $L \leq H$ with |H:L| = 5. (Hint: what can be the order of NH?)