

1. Determine the cardinality of the factor ring $K[x]/(x^2 + x + 1)$ if $K = \mathbb{Z}_2$ or \mathbb{Z}_3 . Which of the two factor rings is a field?
2. Let $K = \mathbb{Z}_2$ and $p(x) = x^3 + x + 1$. Show that $R = K[x]/(p(x))$ is a field of 8 elements. Find all the roots of $x^3 + x^2 + 1$ in R as polynomials of $\alpha = x + (p(x))$.
3. Prove that $\mathbb{Q}[x]/(x^2 - 2) \cong \mathbb{Q}[x]/(x^2 - 2x - 1)$.
4. What is the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} and over $\mathbb{Q}(\sqrt{6})$?
5. Suppose that for some $\alpha, \beta \in \mathbb{C}$, the numbers $\alpha + \beta$ and $\alpha\beta$ are algebraic over \mathbb{Q} . Prove that α and β are also algebraic.
6. Let $\alpha \in \mathbb{C}$ be a root of the polynomial $x^3 - 2x^2 + x + 1 \in \mathbb{Q}[x]$. Express the reciprocal of $\alpha^2 + 2$ as an at most second degree polynomial of α .
7. Determine the degrees of the following extensions over \mathbb{Q} .
 - a) $\mathbb{Q}(i + \sqrt{3})$
 - b) $\mathbb{Q}(\sqrt[3]{2})$
 - c) $\mathbb{Q}(\sqrt[3]{2} + \sqrt[3]{4})$
 - d) $\mathbb{Q}(\sqrt[3]{2} + \sqrt{2})$
8. Let α be a root of the polynomial $x^3 + x + 1$ over \mathbb{Z}_2 , and let $K = \mathbb{Z}_2(\alpha)$. Is the polynomial $x^2 + x + \alpha$ irreducible over K ?

HW. Let $K = \mathbb{Z}_2(\alpha)$ be the extension of \mathbb{Z}_2 by a root α of the polynomial $x^4 + x + 1 \in \mathbb{Z}_2[x]$. Write the element $\frac{\alpha^2}{\alpha + 1} \in K$ as an at most third degree polynomial of α .