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. Prove that in a group of even order there always exists an element of order 2.

Solution: Note that an element ¢ has order 2 if and only if g # 1 but g2 = 1, or equivalently,
g # 1but g = g~'. Since the inverse of an inverse is the original element, we can form
pairs of the elements of G and their inverses. Some of them remain alone: those which
are the inverses of themselves. But G has an even number of elements, so the number of
lonely elements will also be even. 1 is among these, so there must be another g such that
g = ¢~ ', and this is what we wanted to prove.

. Show that 6 is a divisor of |S4| but Sy has no element of order 6.

Solution: The order of Sy is 4! = 24, which is divisible by 6. On the other hand, if
a permutation has order 6 then in its disjoint cycle form there must either be a 6-cycle
among the cycles, and for this we need at least 6 elements in the base set, or there must
be two disjoint cycles, so that the length of one is divisible by 2 and the other by 3, for
which we need at least 5 elements in the base set. But the base set of S4 has only four
elements, so neither of the two cases can happen here.

. Prove that every group of prime order is cyclic.

Solution: Suppose |G| = p is a prime. By the Lagrange theorem, |H| is a divisor of p for
every subgroup H < G, so |H| =1 or p. But then for any g € G\ {1}, we have | (g) | > 1,
so o(g9) =|{g)| = p = |G|, implying that G = (g) is cyclic.

. Prove that every cyclic group is commutative. Give an example for a commutative subgroup
i Sq which is not cyclic.

Solution: Let G = (a) = {a* |k € Z} be cyclic. We first observe that a~! and a commute
since aa™! = a~'a = 1, so in a product of copies of a and a~! we can rearrange the
elements in any way. So a¥a’ = a’a” even if some of k or £ are negative. This shows that
G is commutative.

Since any group of order 1, 2 or 3 is cyclic by the previous problem, we try to find a
4-element subgroup which is not cyclic, that is, it has no element of order 4. But then by
the Lagrange theorem the orders of the elements can only be 1 or 2, that is, H = (1, a, b, c)
where o(a) = o(b) = o(c) = 2. Since ab (and ba) cannot be equal to 1, a or b, we must
have ab = ba = c¢. So we are looking for a, b of order 2 which commute with each other.
Such can be two disjoint 2-cycles, so let a = (12), b = (34) and ¢ = (12)(34). It is easy to
check that this H is indeed a subgroup, and it is abelian (the inverse of each element is
itself, and the product of any two nonidentity elements is the third nonidentity element).
(We could have chosen also a = (12)(34), b = (13)(24), ¢ = (14)(23), they have the same
multiplication structure, that is, ((12), (34)) = ((12)(34), (13)(24)).)

. Let A,B <G and |G| < 0.
Prove that the cardinality of the subset AB ={abla € A, b€ B} is

Al - 1B

AB| = F—F—-.
[AB| |AN B|

Solution: The cartesian product {(a,b)|a € A, b € B} has |A| - |B| elements. Let us
partition the elements of this cartesian product so that (a,b) and (a’,b’) are in one class if
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ab = a't/, that is, ifa='a’ = b(b’)_l. Since the latter element lies both in A and B, if we call
this element x then x € AN B, and @’ = ax, while &’ = x7!b, that is, (a’, V") = (ax,x7b).
So in each class there are exactly as many elements as the cardinality of A N B. The
product ab can have |AB| different values, so |A|-|B| = |AN B| - |AB|, which gives the
formula in the problem.

6. a) Let A,B < G. Show that AB s also a subgroup if and only if AB = BA.
b) Check that for A = ((12)), B = ((123)) and C = ((13)), the subset AB is a subgroup
of S3 but AC is not a subgroup.
c) Show that for A = ((12)) < Sy and B = ((234)) < Sy the cardinality |AB| of the
subset AB is a divisor of |S4| but AB not a subgroup of Sy.

Solution: a) We use the condition that a nonempty subset H C G is a subgroup if and
only if HH = H and H~! = H. Note that the definition of the set product and set
inverse immediately implies that the product is associative:

(XY)Z ={(zy)z|lzeX,yeY, zeZ}={z(y2)|ze X,yeY, z€ 2} =X(YZ),

(X_l)_lz{x_lktEX}il ={(z Y MreX}={z|lrec X} =X, and
(XY) P ={(zy) tzeX, yeY}={y ot |zeX, yecY}=Y"1X"1

=: If AB <G then AB=(AB)"!=B'A71 = BA.

«<: Clearly, 1 = 1-1 € AB, so AB is not empty, and supposing that AB = BA,
we have (AB)(AB) = A(BA)B = A(AB)B = (AA)(BB) = AB, and (AB)~! =
B7'A' = BA = AB, so AB < QG.

b) We can calculate the elements of the sets AB and AC but we may first calculate the
cardinalities by the formula in problem 5. Since A = {1, (12) }, B = {1,(123), (132) },
C=1{1,(13) }, we see that ANB=ANC =1,s0 |AB| =2-3/1 =6, and |AC| =
2-2/1 = 4. In the first case we got that for the subset AB C S35, |AB| = 6 = |S3],
so AB is the whole S3, thus it is a subgroup. In the second, |[AC| = 4 is not a
divisor of |S3| = 6, so it cannot be a subgroup by the Lagrange theorem. So in these
special cases we were able to decide if the set product is a subgroup, without actually
calculating elements in the product. In many cases, it is not enough, see part c).

c) Here A={1,(12) } and B =1{1,(234),(243) },s0 ANB =1, and |[AB|=2-3/1=6
is a divisor of |S4] = 24. So the cardinality does not decide if AB is a subgroup or
not. However, if we calculate AB = {1, (12), (234), (1342), (243), (1432) }, we see that
it is not closed for multiplication, for example (1342)? = (14)(23) ¢ AB, so AB is not
a subgroup.

(A shorter argument could be, though one needs a bit of intuition for this, is that

(12)(234) = (1342) € B has order 4 but 4 does not divide |AB| = 6, so AB cannot be

a subgroup.)

7. Show that Hg <+ g~ *H is a bijection between the right and left cosets of H < G, and for
a right transversal R the set R~ is a left transversal.

Solution: The map Hg +— g~ 'H is well-defined and injective since Hx = Hy < Hay ' =

Hoerzy 'eHe oy 'H=H®y 'H=z"1'H, and it is clearly surjective, so it gives



10.

HW1.

HW2.
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a bijection between the right and left cosets of H.
R is a right transversal & G = U Hr,butthen G =G~ '= U (Hr)"'!= U r1H 1 =
reER reR reR

Ur'H= U sH,so R™!is a left transversal.
reR seR~1

. Prove that the cyclic group C,, has exactly ¢(d) elements of order d for every divisor d of

n, where p(d) = {m|1 <m <d, ged(m,d) =1}.
Solution: Note first that by Lagrange’s theorem, all the orders of elements in C,, are
divisors of n. Now let d be a positive divisor of n.
We know that C,, = (a) = {a,...,a™ = 1} where the n elements listed here are all

different. Furthermore we proved in 2/6., part 2) that o(a™) = gcd(‘;flgi(g)) = gedlmm)> SO

o(a™) = d < ged(m,n) = n/d & m = k%, where ged(k,d) = 1. Since 1 < m < n, we also
have 1 < k < d, thus the number of possible choices for this k is exactly ¢(d).

What are the possible orders of the elements of D,,, and what is the number of elements
for each order?

Solution: The n rotations form a cyclic subgroup of order n, so in it there are exactly ¢(d)
elements of order d for every d | n. The rest of the group consists of the n reflections, and
each of those has order 2. To summarize: if n is odd then there are n elements of order 2
and ¢(d) elements of order d for each d | n; if n is even then there are n + 1 elements of
order 2 and ¢(d) elements of order d for every divisor d # 2 of n.

Show that every nontrivial (that is, # 1) subgroup of Coy has a finite indez, i.e. it has
finitely many cosets.

Solution: Let H # 1 be a subgroup of G = (a) = C, and let k be the smallest positive
integer such that a* € H (there is such a k since H # 1). (We have seen in the proof of
the theorem about the subgroups of a cyclic group that in this case H = (a*).) Now we
show that R = {1,a,...,a* !} is a (right and left, since G is abelian) transversal for H.
For any n € Z and euclidean division n = kq+r (with 0 < r < k), we have a" = (a*)%a" €
Ha", so R contains an element from every coset. Furthermore, for 0 < i < j < k — 1,
(a?)(a")™! = a’~% ¢ H, so Ha' # Ha’, which shows that R contains only one element
from any coset.

Let A, B < G, where G is a finite group. Show that the subgroups A and B are contained
in the set AB, and both |A| and |B| are divisors of |AB| (though AB is not necessarily a

group).

Prove that the (multiplicative) group of invertible 3 x 3 upper triangular matrices over Zs
is not a cyclic group. (For example, you may show that it is not commutative.)



