
Algebra 1 Solutions for Problem Sheet 3

1. Prove that in a group of even order there always exists an element of order 2.

Solution: Note that an element g has order 2 if and only if g 6= 1 but g2 = 1, or equivalently,
g 6= 1 but g = g−1. Since the inverse of an inverse is the original element, we can form
pairs of the elements of G and their inverses. Some of them remain alone: those which
are the inverses of themselves. But G has an even number of elements, so the number of
lonely elements will also be even. 1 is among these, so there must be another g such that
g = g−1, and this is what we wanted to prove.

2. Show that 6 is a divisor of |S4| but S4 has no element of order 6.

Solution: The order of S4 is 4! = 24, which is divisible by 6. On the other hand, if
a permutation has order 6 then in its disjoint cycle form there must either be a 6-cycle
among the cycles, and for this we need at least 6 elements in the base set, or there must
be two disjoint cycles, so that the length of one is divisible by 2 and the other by 3, for
which we need at least 5 elements in the base set. But the base set of S4 has only four
elements, so neither of the two cases can happen here.

3. Prove that every group of prime order is cyclic.

Solution: Suppose |G| = p is a prime. By the Lagrange theorem, |H| is a divisor of p for
every subgroup H ≤ G, so |H| = 1 or p. But then for any g ∈ G \ { 1 }, we have | 〈g〉 | > 1,
so o(g) = | 〈g〉 | = p = |G|, implying that G = 〈g〉 is cyclic.

4. Prove that every cyclic group is commutative. Give an example for a commutative subgroup
in S4 which is not cyclic.

Solution: Let G = 〈a〉 = { ak | k ∈ Z } be cyclic. We first observe that a−1 and a commute
since aa−1 = a−1a = 1, so in a product of copies of a and a−1 we can rearrange the
elements in any way. So aka` = a`ak even if some of k or ` are negative. This shows that
G is commutative.
Since any group of order 1, 2 or 3 is cyclic by the previous problem, we try to find a
4-element subgroup which is not cyclic, that is, it has no element of order 4. But then by
the Lagrange theorem the orders of the elements can only be 1 or 2, that is, H = 〈1, a, b, c〉
where o(a) = o(b) = o(c) = 2. Since ab (and ba) cannot be equal to 1, a or b, we must
have ab = ba = c. So we are looking for a, b of order 2 which commute with each other.
Such can be two disjoint 2-cycles, so let a = (12), b = (34) and c = (12)(34). It is easy to
check that this H is indeed a subgroup, and it is abelian (the inverse of each element is
itself, and the product of any two nonidentity elements is the third nonidentity element).
(We could have chosen also a = (12)(34), b = (13)(24), c = (14)(23), they have the same
multiplication structure, that is, 〈(12), (34)〉 ∼= 〈(12)(34), (13)(24)〉.)

5. Let A,B ≤ G and |G| <∞.
Prove that the cardinality of the subset AB = { ab | a ∈ A, b ∈ B } is

|AB| = |A| · |B|
|A ∩B|

.

Solution: The cartesian product {(a, b) | a ∈ A, b ∈ B } has |A| · |B| elements. Let us
partition the elements of this cartesian product so that (a, b) and (a′, b′) are in one class if
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ab = a′b′, that is, if a−1a′ = b(b′)
−1

. Since the latter element lies both in A and B, if we call
this element x then x ∈ A ∩B, and a′ = ax, while b′ = x−1b, that is, (a′, b′) = (ax, x−1b).
So in each class there are exactly as many elements as the cardinality of A ∩ B. The
product ab can have |AB| different values, so |A| · |B| = |A ∩ B| · |AB|, which gives the
formula in the problem.

6. a) Let A,B ≤ G. Show that AB is also a subgroup if and only if AB = BA.
b) Check that for A = 〈(12)〉, B = 〈(123)〉 and C = 〈(13)〉, the subset AB is a subgroup

of S3 but AC is not a subgroup.
c) Show that for A = 〈(12)〉 ≤ S4 and B = 〈(234)〉 ≤ S4 the cardinality |AB| of the

subset AB is a divisor of |S4| but AB not a subgroup of S4.

Solution: a) We use the condition that a nonempty subset H ⊆ G is a subgroup if and
only if HH = H and H−1 = H. Note that the definition of the set product and set
inverse immediately implies that the product is associative:

(XY )Z = {(xy)z |x ∈ X, y ∈ Y, z ∈ Z } = {x(yz) |x ∈ X, y ∈ Y, z ∈ Z } = X(Y Z),

(X−1)−1 = {x−1 |x ∈ X }−1 = {(x−1)−1 |x ∈ X } = {x |x ∈ X } = X, and

(XY )−1 = {(xy)−1 |x ∈ X, y ∈ Y } = { y−1x−1 |x ∈ X, y ∈ Y } = Y −1X−1.

⇒: If AB ≤ G then AB = (AB)−1 = B−1A−1 = BA.
⇐: Clearly, 1 = 1 · 1 ∈ AB, so AB is not empty, and supposing that AB = BA,

we have (AB)(AB) = A(BA)B = A(AB)B = (AA)(BB) = AB, and (AB)−1 =
B−1A−1 = BA = AB, so AB ≤ G.

b) We can calculate the elements of the sets AB and AC but we may first calculate the
cardinalities by the formula in problem 5. Since A = { 1, (12) }, B = { 1, (123), (132) },
C = { 1, (13) }, we see that A ∩ B = A ∩ C = 1, so |AB| = 2 · 3/1 = 6, and |AC| =
2 · 2/1 = 4. In the first case we got that for the subset AB ⊆ S3, |AB| = 6 = |S3|,
so AB is the whole S3, thus it is a subgroup. In the second, |AC| = 4 is not a
divisor of |S3| = 6, so it cannot be a subgroup by the Lagrange theorem. So in these
special cases we were able to decide if the set product is a subgroup, without actually
calculating elements in the product. In many cases, it is not enough, see part c).

c) Here A = { 1, (12) } and B = { 1, (234), (243) }, so A ∩B = 1, and |AB| = 2 · 3/1 = 6
is a divisor of |S4| = 24. So the cardinality does not decide if AB is a subgroup or
not. However, if we calculate AB = { 1, (12), (234), (1342), (243), (1432) }, we see that
it is not closed for multiplication, for example (1342)2 = (14)(23) /∈ AB, so AB is not
a subgroup.
(A shorter argument could be, though one needs a bit of intuition for this, is that
(12)(234) = (1342) ∈ B has order 4 but 4 does not divide |AB| = 6, so AB cannot be
a subgroup.)

7. Show that Hg ↔ g−1H is a bijection between the right and left cosets of H ≤ G, and for
a right transversal R the set R−1 is a left transversal.

Solution: The map Hg 7→ g−1H is well-defined and injective since Hx = Hy ⇔ Hxy−1 =
H ⇔ xy−1 ∈ H ⇔ xy−1H = H ⇔ y−1H = x−1H, and it is clearly surjective, so it gives
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a bijection between the right and left cosets of H.
R is a right transversal ⇔ G = ∪̇

r∈R
Hr, but then G = G−1 = ∪̇

r∈R
(Hr)−1 = ∪̇

r∈R
r−1H−1 =

∪̇
r∈R

r−1H = ∪̇
s∈R−1

sH, so R−1 is a left transversal.

8. Prove that the cyclic group Cn has exactly ϕ(d) elements of order d for every divisor d of
n, where ϕ(d) = {m | 1 ≤ m ≤ d, gcd(m, d) = 1 }.
Solution: Note first that by Lagrange’s theorem, all the orders of elements in Cn are
divisors of n. Now let d be a positive divisor of n.
We know that Cn = 〈a〉 = { a, . . . , an = 1 } where the n elements listed here are all

different. Furthermore we proved in 2/6., part 2) that o(am) = o(g)
gcd(m,o(g)) = n

gcd(m,n) , so

o(am) = d ⇔ gcd(m,n) = n/d ⇔ m = k n
d , where gcd(k, d) = 1. Since 1 ≤ m ≤ n, we also

have 1 ≤ k ≤ d, thus the number of possible choices for this k is exactly ϕ(d).

9. What are the possible orders of the elements of Dn, and what is the number of elements
for each order?

Solution: The n rotations form a cyclic subgroup of order n, so in it there are exactly ϕ(d)
elements of order d for every d | n. The rest of the group consists of the n reflections, and
each of those has order 2. To summarize: if n is odd then there are n elements of order 2
and ϕ(d) elements of order d for each d | n; if n is even then there are n + 1 elements of
order 2 and ϕ(d) elements of order d for every divisor d 6= 2 of n.

10. Show that every nontrivial (that is, 6= 1) subgroup of C∞ has a finite index, i.e. it has
finitely many cosets.

Solution: Let H 6= 1 be a subgroup of G = 〈a〉 ∼= C∞, and let k be the smallest positive
integer such that ak ∈ H (there is such a k since H 6= 1). (We have seen in the proof of
the theorem about the subgroups of a cyclic group that in this case H = 〈ak〉.) Now we
show that R = { 1, a, . . . , ak−1 } is a (right and left, since G is abelian) transversal for H.
For any n ∈ Z and euclidean division n = kq+ r (with 0 ≤ r < k), we have an = (ak)qar ∈
Har, so R contains an element from every coset. Furthermore, for 0 ≤ i < j ≤ k − 1,
(aj)(ai)−1 = aj−i /∈ H, so Hai 6= Haj , which shows that R contains only one element
from any coset.

HW1. Let A,B ≤ G, where G is a finite group. Show that the subgroups A and B are contained
in the set AB, and both |A| and |B| are divisors of |AB| (though AB is not necessarily a
group).

HW2. Prove that the (multiplicative) group of invertible 3× 3 upper triangular matrices over Z2

is not a cyclic group. (For example, you may show that it is not commutative.)


