
Algebra 1 Solutions for Problem Sheet 4

1. Let ϕ : G → H be a group homomorphism, and let g ∈ G be an element of finite order.
Show that ϕ(g) also has a finite order, in fact, o(ϕ(g)) | o(g).

Solution: Let n = o(g). Then (ϕ(g))n = ϕ(gn) = ϕ(1) = 1, so ϕ(g) has finite order, and
o(ϕ(g)) | n.

2. a) Suppose G = 〈a〉 ∼= C∞, and H is an arbitrary group. Prove that for every element h
of H there exists exactly one homomorphism ϕ : G→ H such that ϕ(a) = h.

b) Prove that for a finite group H, the only homomorphism H → C∞ is the trivial
homomorphism, that is, which maps every element to 1.

Solution: a) The uniqueness follows from the fact that every element of 〈a〉 is of the form
ak for some k ∈ Z, and for a homomorphism ϕ with ϕ(a) = h we have ϕ(ak) = hk.
Now we have to prove that ϕ(ak) = hk (k ∈ Z) gives a homomorphism. This map is
well-defined since o(a) = ∞ implies that all ak 6= a` if k 6= `. We only have to check
that ϕ preserves the multiplication. Indeed, ϕ(aka`) = ϕ(ak+`) = hk+` = hkh` =
ϕ(ak)ϕ(a`).

b) Suppose C∞ = 〈a〉, so ϕ(h) = ak for some k ∈ Z. Since 〈h〉 ≤ H is finite, o(h) = n for
some positive integer n. But then 1 = ϕ(1) = ϕ(hn) = akn implies kn = 0, so k = 0,
thus ϕ(h) = a0 = 1 for any h ∈ H.

3. How many different homomorphisms exist between the two given groups?

a) C10 → C33 b) Cn → Cn c) Cn → Cm

Solution: a) Let C10 = 〈a〉 and ϕ : C10 → C33 be a homomorphism. Then
o(ϕ(a)) | o(a) = 10, and 〈ϕ(a)〉 ≤ C33 implies that o(ϕ(a)) | 33, which gives
o(ϕ(a)) | gcd(10, 33) = 1, so ϕ(a) = 1, and then ϕ(ak) = 1k = 1 for any other
element ak ∈ C10. This shows that there is only one homomorphism, the trivial one,
from C10 to C33.

b),c) Note first that

(*) for a homomorphism ϕ : Cn → H the image Imϕ ∼= Cd for some d | n,

since for Cn = 〈a〉 the image Imϕ = {ϕ(x) |x ∈ 〈a〉 } = {ϕ(ak) | k ∈ Z } =
{ϕ(a)k | k ∈ Z } = 〈ϕ(a)〉 is a cyclic group, and o(ϕ(a)) = d | o(a) = n.
On the other hand, we can show that

(**) for d | n there are exactly d different homomorphisms ϕ : Cn → Cd.

Let Cn = 〈a〉 and Cd = 〈b〉. For any k ∈ 0, 1, . . . , d− 1 the map ϕ(am) = bkm (m ∈ Z)
is well-defined: am = a` ⇒ am−` = 1⇒ d | n | m− `⇒ d | k(m− `)⇒ bk(m−`) = 1⇒
bkm = bk`, and it clearly preserves the multiplication: ϕ(am+`) = bk(m+`) = bkmbk` =
ϕ(am)ϕ(a`).
This shows that there are exactly n different homomorphisms Cn → Cn, answering
part b).
It also follows from (*) that in part c), the image of Cn is Cd for some divisor of n but
Imϕ ≤ Cm also implies that d | m, so d | gcd(n,m). All these subgroups of Cm are
included in the unique subgroup Cgcd(n,m) of Cm, so every homomorphism is actually
a homomorphism Cn → Cgcd(n,m), and their number is gcd(n,m) by (**).

4. Let G be a group with |G| = 91. What is the number of homomorphisms G→ G such that
it maps at least two nonidentity elements of different order to 1?
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Solution: Suppose ϕ : G→ G is a homomorphism, and 1 6= a, b ∈ G have different orders
such that ϕ(a) = ϕ(b) = 1. Note that the only divisors of 91 = 7 · 13 are 1, 7, 13, 91, so
o(a), o(b) ∈ { 7, 13, 91 }.
If one of a and b has order 91 then this element generates the whole G, on the other hand,
it is in Kerϕ, so Kerϕ = G, hence ϕ must be the trivial homomorphism, ϕ = 1.
In the remaining case { o(a), o(b) } = { 7, 13 }, and a, b ∈ Kerϕ, so 7, 13 | |Kerϕ| ⇒
91 = lcm(7, 13) | |Kerϕ ⇒ Kerϕ = G ⇒ ϕ = 1.
Thus there is only one homomorphism G→ G, the trivial one.

5. Let G = 〈S〉 and H = 〈T 〉 for some T ⊆ G. Prove that H /G ⇔ ts ∈ H for every t ∈ T
and s ∈ S ∪ S−1.

Solution: It follows from the definition that if H /G then ts ∈ H for all t ∈ T and s ∈ S.
Conversely, suppose that ts ∈ H for any t ∈ T and s ∈ S ∪ S−1, that is, T s = { ts | t ∈
T } ⊆ H. The conjugation by s is a homomorphism, so for any h = tε11 · · · t

εk
k ∈ 〈T 〉 (where

ti ∈ T, ε = ±1 ∀i), the conjugate by s is hs = (ts1)ε1 · · · (tsk)εk ∈ H, that is, Hs ⊆ H for
any s ∈ S ∪S−1. But xgh = (gh)−1x(gh) = h−1g−1xgh = h−1xgh = (xg)h, and any g ∈ G
can be written as g = s1 · · · sm for some si ∈ S ∪ S−1, so Hg = Hs1···sm = (Hs1)s2···sm ⊆
Hs2···sm ⊆ · · · ⊆ Hsm ⊆ H, thus H /G.

Note that if every element of S has a finite order (in particular, if G is finite) then in the
statement it is enought to take s ∈ S because in this case s−1 is a positive power of s, so
every element of G can be written as a product of elements of S.

6. a) Show that in a group G, ab = ba ⇔ ab = a ⇔ ba = b.
b) Show that the center Z(G) = { z ∈ G | zg = gz ∀g ∈ G } is a normal subgroup of G,

in fact, any subgroup H ≤ Z(G) is a normal subgroup in G.

Solution: a) The equations ab = ba and b−1ab = a can be transformed into each other
by multiplication by b−1 (or back by b) from the left. Similarly, ab = ba and b = a−1ba
can be transformed into each other by multiplication by a−1, and by a, respectively,
from the left.

b) By part a), the definition of Z(G) can also be written in the form: Z(G) = { z ∈
G | zg = z ∀g ∈ G }. The center is a subgroup: 1g = g1 shows that 1 ∈ Z(G), then
for z, u ∈ Z(G) we have (zu)g = zgug = zu, so zu ∈ Z(G), and (z−1)g = g−1z−1g =
(g−1zg)−1 = z−1 shows that z−1 ∈ Z(G). Part a) also proves that Z(G) is closed
under conjugation, thus Z(G) /G. In fact, if H ≤ Z(G) then for any h ∈ H and
g ∈ G, we have hg = h ∈ H, so H is also a normal subgroup in G.

7. a) Consider S4 as the group of symmetries of the regular tetrahedron, acting on the four
vertices. Show that the motions (orientation preserving isometries) of the tetrahedron
form a normal subgroup in S4. Which conjugacy classes of permutations are in this
normal subgroup?

b) Prove that the subset { 1, (12)(34), (13)(24), (14)(23) } is a normal subgroup in S4.
c) There is an embedding ϕ of D4 into S4 mapping each isometry of the square 1234

to the corresponding permutation of the vertices. Prove that Imϕ is not a normal
subgroup of S4.

d) Prove that S4 has no other normal subgroups than 1, S4 and the two subgroups defined
in part a) and b).
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Solution: a) The composition and inverses of orientation preserving isometries is also
orientation preserving (and so is the identity map), so these isometries form a sub-
group. We also proved that exactly half of all isometries of the regular tetrahedron
are orientation preserving, so this subgroup has index 2, thus it must be a normal
subgroup. If we consider the isometries as permutations of the four vertices, 1, 2, 3, 4
then the rotations about axes going through one of the vertices are 3-cycles (...) on
the other three vertices, and the 180◦ rotations about lines connecting the midpoints
of opposite edges swap the endpoints of these edges, so we get the permutations with
cycle structure (..)(..). Thus the twelve symmetries in this subgroup are all the per-
mutations with cylce structures 1, (...) and (..)(..) (altogether 1 + 4 · 2 + 3 = 12).

b) This set (let it be called V ) is clearly closed under conjugation: it is the union of
two cojugacy classes, { 1 } and {(..)(..) }. We only have to prove that they form a
subgroup. Since x2 = 1 for all x ∈ V , it is closed for inverses, and also for products of
the form 11, 1g, g1 and gg, where o(g) = 2. If we take two different elements of order 2
in V , one is (ab)(cd), and the other is (ac)(bd) (we can write the elements in this order
in the disjoint cycle decomposition), so their product is (ab)(cd)(ac)(bd) = (ad)(bc) is
the third element of order 2 in V .

c) The group D4 has 2 elements of order 4 (these are (1234) and (4321)) but the conju-
gacy class of 4-cycles in S4 consists of 6 elements, so this group cannot be closed for
conjugation.

d) If N /S4 and 1 < |N | then N must be a union of at least two complete conjugacy
classes of S4, including { 1 }. The sizes of the conjugacy classes of S4 are: | { 1 } | = 1,
| {(..)(..) } | = 3, | {(..) } | = 6, | {(....) } | = 6 and | {(...) } | = 8. The Lagrange theorem
implies that |N | | |S4| = 24. The possible sums are 1 + 3, 1 + 6, 1 + 8, 1 + 3 + 6
1 + 3 + 8 or greater than 12 (in which case N should be S4), and among these only
1 + 3 = 4 and 1 + 3 + 8 = 12 are divisors of 24. These two are exactly the normal
subgroups defined in part b) and a).

8. a) Determine the conjugacy classes, subgroups and normal subgroups of D4.
b) Embed D4 into S4 by restricting the isometries on the set of the vertices { 1, 2, 3, 4 }

of the square, and describe the elements of the image as permutations. Find two
elements which are conjugate in S4 but not conjugate in D4, and give a conjugating
permutation.

Solution: a) Let r be the rotation by 90◦ and t one of the reflections. Then 〈r〉 ∩ 〈t〉 = 1
implies that | 〈t〉 〈r〉 | = | 〈t〉 | · | 〈r〉 |/1 = 2 · 4 = 8, so

D4 = { rk, trk | k = 0, 1, 2, 3 } = { rk, trk | k = 0, 1, 2,−1 }

where rk are the rotations and trk the reflections. We can also notice that if we apply
a reflection, then a rotation, and then the same reflection again then we get a rotation
by the same degree in the opposite direction:

trt = r−1, or equivalently, t−1rt = r−1,

since o(t) = 2. So the conjugate of a rotation by a reflection is the inverse of the
rotation. Note also that, since every element of D4 can be written as a product of t’s
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and r’s, a subset is closed under conjugation in D4 if and only if it is closed under
conjugation by t and r. From the equation t−1rt = r−1, we can quickly deduce that

r−1tr = tt−1r−1tr = t(t−1rt)−1r = t(r−1)−1r = tr2, and

rkt = tt−1rkt = t(t−1rt)k = tr−k,

and using these, we can calculate the conjugates of the elements of D4 by t and r.

g 1 r r2 r−1 t tr tr2 tr−1

t−1gt 1 r−1 r2 r t tr−1 tr2 tr

r−1gr 1 r r2 r−1 tr2 tr−1 t tr

This shows that the conjugacy classes are

{ 1 }, { r2 }, { r, r−1 }, { t, tr2 }, { tr, tr−1 } .
The one-element conjugacy classes contain the elements of the center of the group, that
is, those elements whose conjugates by any element are themselves, so Z(G) = { 1, r2 }.
Every normal subgroup is the union of some conjugacy classes. The nontrivial con-
jugacy classes generate a subgroup which contains r2 (for the two-element conju-
gacy classes { a, b }, a−1b = r2), so 〈r2〉 is part of the nontrivial normal subgroups.
〈r2〉 = Z(G) is a normal subgroup, and besides this, 1 and G, there are only 4-element
normal subgroups by the Lagrange theorem, that is, the union of { 1, r2 } and one of the
two-element conjugacy classes. These all form subgroups: { 1, r2, r, r−1 } = 〈r〉 ∼= C4,
and the other two, { 1, r2, t, tr2 } and { 1, r2, tr, tr−1 } contain only elements of order
1 or 2, and it is easy to check that the product of any two nontrivial elements gives
the third, thus these are also normal subgroups, and they are isomorphic to the Klein
group.
By the Lagrange Theorem, the subgroups of G, apart from 1 and G can only be of
order 2 or 4, and those of order 4 have index 2, so they must be normal. We have
already listed them. What remains are the subgroups of order 2. But groups of prime
order are cyclic, so the subgroups of order 2 are generated by elements of order 2.
They are 〈t〉, 〈tr〉, 〈tr2〉, 〈tr−1〉, 〈r2〉.

b) It τ = (12)(34) and ρ = (1234) are the permutations corresponding to the isome-
tries t and r, respectively, then the conjugacy classes are { 1 }, { ρ2 } = {(13)(24) },
{ ρ, ρ−1 } = {(1234), (1432) }, { τ, τρ2 } = {(12)(34), (14)(23) } and { τρ, τρ−1 } =
{(13), (24) }. ρ2 = (13)(24) and τ = (12)(34) are not conjugate in 〈τ, ρ〉 ∼= D4,
but they are conjugate in S4, since they have the same cycle structure. We can find
a conjugating element if we write the second permutations under the first (adjusting
the order of the cycles if necessary), and map every element to the one below it:

(13)(24)
(12)(34)

gives g = (23) ∈ S4

so (ρ2)g = τ .

HW1. Let x = (1345)(27) and y = (28)(3156) be elements of the symmetric group S8. Calculate
the expressions xy and xy = y−1xy, and find a permutation h ∈ S8 such that xh = y.

HW2. Suppose that the subgroups A,B ≤ G are commutative, and AB = G.
Prove that A ∩B /G.


