
Algebra 1 Summary for the Exam 2025 Fall

DEFINITIONS

Groups

◦ semigroup: A set with an associative binary operation.
◦ group: A set with an associative binary operation, which has a neutral (identity)

element, and every element has an inverse.
◦ subgroup: For a group G and H ⊆ G

H ≤ G ⇔

 1 ∈ H
x, y ∈ H ⇒ xy ∈ H
x ∈ H ⇒ x−1 ∈ H

⇔
{

1 ∈ H
x, y ∈ H ⇒ xy−1 ∈ H

◦ generated subgroup: For a subset S ⊆ G,

〈S〉 =
⋂

S⊆H≤G

H = { sεi1 s
ε2
2 · · · sεmm | si ∈ S, εi = ±1 }

◦ normal subgroup: N /G ⇔ N ≤ G and g−1ng ∈ N ∀n ∈ N (⇔ Ng = gN for any
g ∈ G)
(⇔ there is a homomorphism ϕ from G such that N = Kerϕ)

◦ order of a group: number of elements, |G|
◦ order of an element: o(g) is the smallest positive integer k such that gk = 1.
o(g) =∞ if no such k exists. (Equivalently, o(g) = | 〈g〉 |)

◦ cyclic groups: 〈g〉 (notation: Cn or C∞)
◦ dihedral groups: Dn is the group of symmetries (=isometries) of a regular n-gon

(n rotations, n reflections)
◦ symmetric groups SΩ and Sn: SΩ is the group of bijections Ω → Ω (that is,

permutations of Ω), where the operation is the composition from left to right. The
permutations act an the right: ω 7→ ωg.
Sn if |Ω| = n, usually, Ω = { 1, 2, . . . , n }

◦ alternating group An: the group of even permutations in Sn.
An / Sn, |Sn : An| = 2.

◦ GLn(K): multiplicative group of invertible n× n matrices over the field K
◦ SLn(K): multiplicative group of n× n matrices over K with determinant 1.
SLn(K) /GLn(K)

◦ cycles: g = (a1a2 . . . ak) ∈ SΩ, where a1, . . . , ak are distinct elements of Ω. g maps
a1 7→ a2 7→ · · · 7→ ak 7→ a1 and b 7→ b for every other b ∈ Ω.

◦ disjoint cycle decomposition (dcd): product of cylces with no common element
(it is unique up to the order of the cycles and rotations of the cycles themselves)

◦ operations with permutations in dcd:
product: apply the permutations from left to right
kth power: take the kth power of each cycle in the dcd (using k steps instead of
one)
inverse: substitute each cycle in the dcd with the reverse cycle
order: the least common multiple of the cycle lengths in dcd
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◦ even and odd permutations: A permutation g is even

⇔ the corresponding permutation matrix M(g) has determinant 1

⇔ g can be written as a product of an even number of transpositions

⇔ a (not necessarily disjoint) cyclic decomposition of g has an even number of
cycles of even length).

A permutation is odd if it is not even.

◦ transpositions: 2-cycles

◦ set product: For X,Y ⊆ G: XY := {xy |x ∈ X, y ∈ Y } ⊆ G.

◦ cosets: For H ≤ G and g ∈ G, Hg := H { g } is a right coset, gH := { g }H is a left
coset containing g.

◦ index of a subgroup: For H ≤ G, the index |G : H| is the number of right cosets
(the same as the number of left cosets) of H in G. If G is finite then |G : H| = |G|/|H|.
◦ transversal: For H ≤ G a subset R ⊆ G is a right transversal for H if every right

coset contains exactly one element of R (equivalently, G is the disjoint union of the
cosets Hr (r ∈ R). The left transversal is defined similarly.

◦ factor group: For N /G, the factor group G/N = {Ng | g ∈ G } with the set product
as operation.
For this, NaNb = Nab, N1 = N is the identily element, and (Na)−1 = Na−1.

◦ complement of a normal subgroup: For N /G, ≤ G is a complement of N if
NH = G and N ∩H = 1 (equivalently, H ≤ G is a transversal for N)

◦ homomorphism and isomorphism: ϕ : G → H is a group homomorphism if
ϕ(gg′) = ϕ(g)ϕ(g′) for every g, g′ ∈ G. A bijective homomorphism is an isomorphism.

◦ kernel and image: For a homomorphism ϕ : G→ H,

Kerϕ = { g ∈ G |ϕ(g) = 1 } /G
Imϕ = {h ∈ H | ∃g ∈ G : ϕ(g) = h } ≤ H

◦ conjugation: gh = h−1gh. For every h conjugation by h is an automorphism of G
(that is, isomorphism from G to G)

◦ conjugacy classes: The conjugacy class of g in G is gG := { gh |h ∈ G }.
G is the disjoint union of its conjugacy classes.

◦ conjugation of permutations: If g : α 7→ β then h−1gh = gh maps αh to βh. From
the dcd of g we get the dcd of gh by applying h on the elements of the cycles of g.

◦ cycle structures and partitions in Sn: Cycle structure: describes how many cycles
and what lengths appear in the dcd of the permutation. To this belongs a partition
of n into a sum of positive integers, 1’s belonging to fixed-points.

◦ group action: ϕ : G→ SΩ homomorphism. Notation: αg := αϕ(g).

orbit of α ∈ Ω: αG := {αg | g ∈ G } ⊆ Ω.

stabilizer of α ∈ Ω: Gα = { g ∈ G |αg = α } ≤ G.

set of fixed-points of g ∈ G: Fix(g) = {α ∈ Ω |αg = α } ⊆ Ω.

The group action is transitive if it has only one orbit, that is, for any α, β ∈ Ω
∃g ∈ G: αg = β.

The group action ϕ is faithful if Kerϕ = 1, that is, g = 1 is the only element
which fixes every element of Ω. In this case G is isomorphic to its ϕ-image, so G
can be considered as a subgroup of SΩ, that is, a permutation group.
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◦ centralizer of an element g ∈ G: CG(g) = {x ∈ G |xg = gx }, that is, the stabilizer
of g with respect to the conjugation on G as a group action.
center of the group: Z(G) = { z ∈ G | zg = gz ∀g ∈ G }. (Note that every subgroup
of Z(G) is a normal subgroup of G.)
◦ For a prime p a p-group is a group such that every element of G has p-power order.

A finite group is a p-group ⇔ |G| is a p-power.
◦ direct product of groups G1×· · ·×Gk = {(g1, . . . , gk) | gi ∈ Gi ∀i = 1, . . . , k } (the

cartesian product of G1, . . . , Gk) with the operation acting componentwise.
inner characterization of the direct product: If Ni /G (i = 1, . . . , k), where
N1 · · ·Nk = G andNi∩(N1 · · ·Ni−1Ni+1 · · ·Nk) = 1 for every i thenG = N1×· · ·×Nk.
◦ quaternion group: Q = {±1,±i,±j,±k }, where multiplication by ±1 acts natu-

rally, i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.
The orders of the elements: o(1) = 1, o(−1) = 2 and all the other elements have
order 4.
Apart from Q itself, every subgroup is cyclic: 〈i〉, 〈j〉, 〈k〉 ∼= C4 and their inter-
section is 〈−1〉 ∼= C2. Every subgroup of Q is normal.

◦ Sylow p-subgroups: If |G| = pam, where p is a prime and p does not divide m, then
the subgroups of order pa are the Sylow p-subgroups of G. Sylp(G) is the set of Sylow
p-subgroups of G.
◦ The normalizer of a subgroup H in G is NG(H) = { g ∈ G |Hg = H }, where
Hg := g−1Hg. Clearly, H /NG(H) ≤ G.
◦ action on Sylp(G) by conjugation: ψ : G → SΩ, where Ω = Sylp(G), and ϕ(g) :
P 7→ P g. This is a transitive action by Sylow (3).

Rings

◦ ring: (R,+, ·) where (R,+) is an abelian group, (R, ·) is a semigroup, and the dis-
tributivity holds: a(b+ c) = ab+ ac and (b+ c)a = ba+ ca ∀a, b, c ∈ R.
A ring R is a

commutative ring if ab = ba ∀a, b ∈ R;
ring with identity if ∃1 ∈ R: 1r = r1 = r ∀r ∈ R;
ring with no zero divisors if ab = 0 ⇒ a = 0 or b = 0;
integral domain if it is commutatative, it has an identity, and it has no zero
divisors.
division ring: if it is a ring with identity where every 0 6= r ∈ R has an inverse:
rr−1 = r−1r = 1.

◦ field: a commutative division ring with more than one element.
◦ quaternions: H = { a+bi+cj+dk | a, b, c, d ∈ R }, which is a vector space with basis
{ 1, i, j, k }, the product of basis elements is determined by the multiplication in the
quaternion group, and this extends to the general elements by distributivity, and the
property that λ(uv) = (λu)v = u(λv) for λ ∈ R and u, v ∈ H. H is a noncommutative
division ring.

◦ group algebra: For a field K and finite group G, KG = {
∑
g∈G λgg |λg ∈ K ∀g ∈

G } is a vector space over R with G as a basis, and the multiplication is extended from
the group multiplication by using distributivity and the identities λ(uv) = (λu)v =
u(λv) for λ ∈ K and u, v ∈ KG.
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◦ subring: S ⊆ R is a subring of R if it is nonempty, and closed under addition,
multiplication and additive inverse (or equivalently, 0 ∈ S, and S is closed under
subtraction and multiplication). Notation: S ≤ R
◦ subring generated by a subset T ⊆ R: 〈T 〉 = ∩

T⊆S≤R
S.

◦ ideal: I is an ideal ofR if it is a subring, and ∀a ∈ I, ∀r ∈ R: ar, ra ∈ I. (Equivalently,
0 ∈ I, and I is closed under subtraction and under multiplication by any element of
R from both sides.) Notation: I /R.
◦ ideal generated by a subset T ⊆ R: (T ) = ∩

T⊆S /R
S.

◦ principal ideal: an ideal generated by a single element: (a), where a ∈ R.
◦ I /R is a maximal ideal if I 6= R, and for any I ⊆ J /R, J = I or J = R.
◦ factor ring: For I /R: R/I = { r + I | r ∈ R } whith the operations:

(r + I) + (r′ + I) = r + r′ + I

(r + I)(r′ + I) := rr′ + I.

◦ For rings R,S the map ϕ : R→ S is a ring homomomorphism if

ϕ(r + r′) =ϕ(r) + ϕ(r′)

ϕ(rs) =ϕ(r)ϕ(r′)
∀r, r′ ∈ R.

◦ The kernel of ϕ is Kerϕ = { r ∈ R |ϕ(r) = 0 } /R.
◦ The image of ϕ is Imϕ = { s ∈ S | ∃r ∈ R : ϕ(r) = s } ≤ S.

◦ R is a simple ring if the only ideals of R are 0 and R.
◦ direct sum of rings: R1 ⊕ · · · ⊕ Rk = {(r1, . . . , rk) | ri ∈ Ri ∀i = 1, . . . , k } (the

cartesian product of R1, . . . , Rk) with the operations acting componentwise.
inner characterization of the direct sum : If Ii /R (i = 1, . . . , k),
where I1 + . . . + Ik = R and Ii ∩ (I1 + . . . + Ii−1 + Ii+1 + . . . + Ik) = 0 for every i,
then R = I1 ⊕ . . .⊕ Ik.
◦ Let R be an integral domain, and a, b ∈ R
◦ a is a divisor of b (in notation a | b) if ∃c ∈ R such that b = ac.
◦ a is a unit in R if it is invertible, that is, ∃a′ ∈ R such that aa′ = 1.
◦ a is irreducible if a 6= 0, a is not a unit, and

if a = cd for some c, d ∈ R then c or d is a unit.
◦ d ∈ R is a greatest common divisor of a and b (d = gcd(a, b)) if

d | a and d | b;
whenever c | a and c | b for some c ∈ R then c | d.

◦ An integral domain R is a euclidean ring if there is a norm N : R \ { 0 } → N0 such
that

∀a, b ∈ R, b 6= 0, ∃q, r ∈ R : a = bq + r, r = 0 or N(r) < N(b).

◦ An integral domain R is a principal ideal domain (PID) if every ideal of R is a
principal ideal, i.e.
∀I /R ∃a ∈ R : I = (a) = aR
◦ An integral domain R is a unique factorization domain (UFD) if every element
a ∈ R, which is nonzero and not invertible, can be written as a product of irreducible
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elements, and this factorization is unique up to order and multiplication by invertible
elements.

Fields

◦ The characteristic of a field K:
charK = 0 if na 6= 0 for all 0 6= a ∈ K and n positive integer,

◦ charK = p (p prime) if pa = 0 for every a ∈ K.
◦ The prime field of the field K is its smallest subfield (that is, the intersection of all

its subfields).
If charK = 0 then the prime field of K is Q,
if charK = p then the prime field of K is Zp.

◦ L|K is a field extension if K is a subfield of L.
◦ The degree of the field extension L|K is (L : K) = dimLK , that is, the dimension

of L as a vector space over K.
◦ Let L|K be a field extension.
◦ α ∈ L is algebraic over K if ∃0 6= f(x) ∈ K[x] : f(α) = 0.
◦ α ∈ L is transcendental over K if it is not algebraic.
◦ The extension L|K is an algebraic extension if every element of L is algebraic

over K.
◦ For α ∈ L, the simple extension generated by α is K(α) = ∩

K,α in M≤L
M ,

that is, the smallest subfield of L which contains K and the element α. (Nota-
tion: for α1, . . . , αk ∈ L: K(α1, . . . , αk) is the smallest subfield of L containing
K,α1, . . . , αk. This can be obtained by a series of simple extensions.)

◦ minimal polynomial: Let L|K be a field extension and α an algebraic element over
K. Then 0 6= p(x) ∈ K[x] is the minimal polynomial of α over K if

p(α) = 0,
deg p is minimal among those nonzero polynomials of K[x] whose root is α,
the main coefficient of p(x) is 1.

(Equivalently, p(x) ∈ K[x] is an irreducible polynomial with main coefficient 1 such
that p(α) = 0 in L.)
◦ Let f(x) ∈ K[x] and K ≤ L. The field L is a splitting field for f(x) if

f(x) can be written as a product of linear polynomials in L[x],
and if α1, . . . , αn ∈ L are all the roots of f(x) then L = K(α1, . . . , αn).

THEOREMS AND PROPOSITIONS

Groups

◦ Disjoint cycle decomposition (dcd): |Ω| < ∞ ⇒ g ∈ SΩ can be written as a
product of disjoint cycles and this decomposition is unique up to cyclic permutations
of the elements in each cycle, and up to the order of the cycles.
◦ Subgroups and orders of elements of a cyclic group:

P Every subgroup of a cyclic group is cyclic,
and for every 0 < d | n

◦ a) there is exactly one subgroup of order d in Cn;
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◦ b) the number of elements of order d in Cn is ϕ(d).

◦ Order of a permutation: If g = c1 · · · ck is a dcd, and ci is of length ni then
o(g) = lcm(n1, . . . , nk).

P Lagrange Theorem: If |G| <∞ and H ≤ G, then |H| | |G|.
(More generally: |G| = |H| · |G : H| for any G and H ≤ G.)

◦ Order of group and element: If |G| <∞ and g ∈ G then o(g) | |G|.
◦ Order of a homomorphic image of an element: If ϕ : G → H is a homomor-

phism, g ∈ G and o(g) <∞ then o(ϕ(g)) | gcd(o(g), |H|).
P Homomorphism Theorem: If ϕ : G→ H is a hom., then G/Kerϕ ∼= Imϕ.

◦ Normal subgroups and kernels: N /G ⇔ ∃ hom. ϕ : G → H such that N =
Kerϕ.

◦ Complement of a normal subgroup If a normal subgroup N /G has a complement
H ≤ G, i.e. N ∩H = 1 and NH = G, then G/N ∼= H.

◦ Action of conjugation: The conjugation by g ∈ G is an isomorphism from G to G,
so it preserves product, inverses and orders of elements.

◦ Conjugacy as an equivalence relation: G is the disjoint union of its conjugacy
classes.

P Conjugacy classes of Sn: g, h ∈ Sn are conjugate

⇔ their cycle structures are the same

⇔ they belong to the same partition of n.

◦ 1st Isomorphism Theorem: If N /G and H ≤ G then NH/N ∼= H/N ∩H.

◦ 2nd Isomorphism Theorem: If M ≤ N ≤ G and M,N /G then
G/N ∼= (G/M)/(N/M).

◦ Order of an element in G/N : for ḡ := Ng ∈ G/N o(ḡ) is the smallest pos. int. k
such that gk ∈ N . If no such k exists then o(ḡ) =∞.

P Transpositions generating Sn: Every element g ∈ Sn can be written as a product
of transpositions.

◦ 3-cycles generating An: Every element g ∈ An can be written as a product of
3-cycles.

P An is simple for n ≥ 5.

◦ Normal subgroups of S4: The only normal subgroups of S4 are 1 ,V , A4 and S4.

◦ For a group action G→ SΩ:

◦ Cosets of stabilizer vs. orbit: Gαg = Gαh ⇔ αg = αh,
so there is a bijection between the cosets of the stabilizer of α and the elements
of the orbit of α.

P Orbit-stabilizer lemma: |G| = |Gα| · |αG|.
Cor.: The cardinality of any orbit αG is a divisor of |G|.

P Orbit-counting lemma: The number of orbits of the group action is
1
|G|

∑
g∈G
|Fix(g)|.

P Class equation: |G| = |Z(G)|+
∑
i

|Ci|, where Ci are the conjugacy classes of G with

more than one element.

◦ Groups of order p2 and 8:
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◦ For any prime p there are two groups of order p2 up to isomorphism: Cp2 and
Cp × Cp.

◦ There are 5 groups of order 8 up to isomorphism: C8, C4×C2, C2×C2×C2, D4

and Q.
P Cauchy theorem: If p is a prime dividing |G| then ∃g ∈ G: o(g) = p.
◦ Direct product of cyclic groups of coprime order: If gcd(m,n) = 1 ⇒ Cm ×
Cn ∼= Cmn.
◦ Order of elements in a direct product: If g = (g1, . . . , gk) ∈ G1 × · · · ×Gk then
o(g) = lcm(o(g1), . . . , o(gk)).
◦ Krull–Schmidt theorem: Every finite group can be written as a direct product

of directly indecomposable groups, and this decomposition is unique up to order and
isomorphism of the components.
◦ Fundamental theorem of finite abelian groups: Every finite abelian group can

be written as a direct product of cyclic groups of prime power order, and this decom-
position is unique up to order and isomorphism of the components.
◦ Sylow theorems: For a finite group G and prime p

P (1) Sylp(G) 6= ∅;
(1+) if S ≤ G and S is a p-group then ∃P ∈ Sylp(G): S ≤ P ;

(2) |Sylp(G)| ≡ 1 (mod p);
(3) for any P,Q ∈ Sylp(G) ∃g ∈ G: Q = P g.

P Number of Sylow p-subgroups: |Sylp(G)| = |G : NG(P )| if P ∈ Sylp(G).
◦ Cor.: If |G| = pam with p a prime, and p does not divide m, then
|Sylp(G)| ≡ 1 (mod p) and |Sylp(G)| | m.

◦ Normality of a Sylow subgroup: For P ∈ Sylp(G) the following are equivalent:
(i) P /G;
(ii) |Sylp(G)| = 1;

(iii) the elements of G of p-power order form a subgroup.
◦ Elements covered by Sylow p-subgroups: If the Sylow p-subgroups are of order
p and |Sylp(G)| = m, then G has exactly m(p − 1) elements of order p, and all the
Sylow subgroups belonging to other primes are in the remaining part of the group.

Rings

◦ Homomorphism theorem for rings: If ϕ : R → S is a ring homomorphism then
R/Kerϕ ∼= Imϕ.

P Simplicity of the matrix ring: If K is a field then Kn×n is a simple ring.
◦ Generated ideal of a ring R with identity:

◦ For a subset S ⊆ R the ideal generated by S is
RSR = {

∑
i risir

′
i | ri, r′i ∈ R, si ∈ S }∪ { 0 }.

◦ For an element a ∈ R, the principal ideal generated by a is
(a) = RaR = {

∑
i riar

′
i | ri, r′i ∈ R }.

◦ If R is commutative then (a) = aR.
◦ Fields and simple rings: Let R be a commutative ring, 1 ∈ R. Then

◦ R is a field ⇔ R is simple.
◦ For an ideal I /R, R/I is a field ⇔ I is a maximal ideal in R.
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P Euclidean ring and PID: If R is a euclidean ring then R is a PID.
◦ PID and UFD: If R is a PID then it is a UFD.
◦ Connection between arithmetic properties of elements and properties of

ideals in a PID R
◦ a | b ⇔ (b) ⊆ (a)
◦ a is a unit ⇔ (a) = R
◦ ∃ unit c: a = bc ⇔ (a) = (b)

P a is irreducible ⇔ (a) /
max

R

◦ d = gcd(a, b) ⇔ (d) = (a) + (b)
◦ Factor rings of PID’s:
◦ For a PID R and a ∈ R,
R/(a) is a field ⇔ a is irreducible.

◦ Cor.: For a field K and p(x) ∈ K[x],
K[x]/(p(x)) is a field ⇔ p(x) is irreducible.

Fields

◦ Characteristic of a field: In the additive group (K,+) of a field either every nonzero
element has infinite order (charK = 0) or there is a prime p such that the order of
every nonzero element is p (charK = p).

◦ Prime field: Every field K has a smallest subfield, the prime field, and it is Q if
charK = 0, and Zp if charK = p.

◦ Factor ring of a polynomial ring: Let K be a field, p(x) ∈ K[x] irreducible,
and deg p(x) = n. Then L = K[x]/(p(x)) is a field, containing K as a subfield, and
α := x + (p(x)) is a root of p(x). Furthermore, every element of L can be uniquely
written as a polynomial of α of degree ≤ n− 1 over K.

P Multiplicativity theorem of degrees of field extensions: If K ≤ L ≤ M are
fields then (M : K) = (M : L) · (L : K).

P Simple algebraic extension: Let K ≤ L and α ∈ L be algebraic over K with
minimal polynomial p(x) of degree n. Then

K(α) ∼= K[x]/(p(x)),

and every element of L can be uniquely written as a polynomial of α of degree ≤ n−1
over K. Consequently, (K(α) : K) = n.

◦ Simple trancendental extension: Let K ≤ L and α ∈ L be a transcendental
element over K. Then

K(α) =

{
f(α)

g(α)

∣∣∣ f, g ∈ K[x], g(x) 6= 0

}
,

where a(α)/b(α) = c(α)/d(α) ⇔ a(x)d(x) = b(x)c(x).
◦ Isomorphic extensions: If p(x) ∈ K[x] is irreducible, and α, β ∈ L ≥ K are roots

of p(x) then K(α) ∼= K(β).
◦ Algebraic extensions and finite degree extensions:

P If K ≤ L are fields, and (L : K) <∞ then the extension L|K is algebraic.
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◦ For α ∈ L ≥ K, the extension K(α)|K is algebraic ⇔ (K(α) : K) <∞.
P The field of algebraic elements: In an extension L|K, if α, β ∈ L are algebraic

then α + β, α − β, α · β and α/β are also algebraic. So the algebraic elements of L
over K form a field.
◦ A is algebraically closed: The field A ≤ C of algebraic numbers over Q is alge-

braically closed.
◦ Splitting field: Every polynomial f(x) ∈ K[x] has a splitting field over K, and it is

unique up to isomorphism.
◦ The multiplicative group of a finite field:

The multiplicative group K× = (K \ { 0 }, ·) of any finite field K is cyclic.
◦ Finite fields:
◦ The cardinality of any finite field is a prime-power.

For any prime p and positive integer n there exists exactly one finite field of
cardinality pn up to isomorphism.

P Finite field as a splitting field: If K is a field of cardinality pn then K is the
splitting field of xp

n − x over Zp.

Other important facts from the problem sheets

2/6, 3/3, 5, 6.a), 4/6, 5/4, 6/1, 3, 7/2, 3, 8/2, 10/1, 6, 11/ review of
facts in the arithmetics of polynomials.

Requirements for the exam

You are expected to be able to precisely state the definitions and statements learned in
the course, and also to prove those denoted by P in the above list (some of them are
substatements, altogether 20). Be able to give examples and counterexamples. There will
also be problems in the topic of problem sheets 11 and 12, which were not covered in the
midterm tests.
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