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1. Keressünk olyan x és y egész számokat, amelyekre 581x+ 119y = 7.
Megoldás: Kib®vített euklideszi algoritmussal:

581 119
581 1 0
119 0 1
−14 1 −5
7 8 −39

Tehát x = 8 és y = −39 egy megoldása az egyenletnek.

2. Határozzuk meg azokat az n természetes számokat, amlelyekre σ(n) = d(n) + 4.
Megoldás: Mivel n osztói között van n is, σ(n) ≥ d(n) + (n− 1), és így σ(n) = d(n) + 4-b®l n ≤ 5
következik. 1-t®l 5-ig ellen®rizve σ(n) és d(n) értékét látjuk, hogy csak n = 4 (itt σ(n) = 7 és
d(n) = 3) és n = 5 (itt σ(n) = 6 és d(n) = 2) megoldások.

3. Bizonyítsuk be, hogy 2n nem osztója n!-nak. Melyek azok az n természetes számok, amelyekre 2n−1

osztója n!-nak?
Megoldás: 2 kitev®je n! kanonikus alakjában:
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2t ) < n (ahol 2t ≤ n < 2t+1), így 2n nem osztója n!-nak. Az is
látható ebb®l, hogy 2n−1 csak akkor lehet osztója n!-nak, ha n − 1 ≥ n · (1 − 1

2t ), amib®l n ≤ 2t

következik, és így 2t ≤ n miatt n = 2t. Erre az n-re pedig valóban teljesül az oszthatóság: 2t!
kanonikus alakjában a 2 kitev®je 2t−1 + 2t−2 + · · ·+ 2 + 1 = 2t − 1.

4. Oldjuk meg a 25x165 + 17x− 3 ≡ 0 (mod 83) kongruenciát!

Megoldás: x ≡ 0 (mod 83) láthatóan nem megoldás, és x 6≡ 0 (mod 83)-ra x82 ≡ 1 (mod 83), és így
x164 ≡ 1 (mod 83). Tehát 25x165 + 17x− 3 ≡ 25x+ 17x− 3 ≡ 42x− 3 ≡ 0 (mod 83). Ekvivalens
átlalakításokkal ebb®l:

42x ≡ 3 (mod 83)
84x ≡ 6 (mod 83)
x ≡ 6 (mod 83)

.

5. Legyenek p és q különböz® prímszámok. Bizonyítsuk be, hogy (p+1)q+(q+1)p−(p+q+2) osztható
pq-val.

Megoldás: A kis Fermat-tételt használva modulo p és modulo q:

(p+ 1)q + (q + 1)p − (p+ q + 2) ≡ 1q + (q + 1)− (q + 2) ≡ 0 (mod p) és

(p+ 1)q + (q + 1)p − (p+ q + 2) ≡ (p+ 1) + 1p − (p+ 2) ≡ 0 (mod q).

Tehát a kifejezés osztható p-vel és q-val is, és így (p, q) = 1 miatt pq-val is.

6. Adjuk meg mindazokat a természetes számokat, amelyekre ϕ(n) osztója n-nek!

Megoldás: Legyen n = pα1
1 pα2
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r kanonikus alakban, ahol p1 < p2 < . . . < pr. Ekkor
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ekvivalens a
(p1 − 1)(p2 − 1) · · · (pr − 1) | p1p2 · pr

oszthatósággal.
Ha n 2-hatvány, akkor az oszthatóság teljesül.
Ha n nem 2-hatvány, akkor ϕ(n) osztható p − 1-gyel valamely páratlan prímre, és így ϕ(n),

és következésképpen n is páros. Ebb®l következik, hogy r ≥ 2, p1 = 2, és p2 − 1, . . . , pr − 1 mind
páros. Viszont p1p2 · · · pr nem osztható 4-gyel, így r = 2, és p2 − 1 | p1p2-b®l (p2 − 1, p2) = 1
miatt p2 − 1 | 2 következik, tehát p2 = 3, és ekkor teljesül is az oszthatóság. Tehát azok a ϕ(n) | n
feltételt n = 2α3β alakú számok elégítik ki, ahol α, β ≥ 0, és α = 0 esetén β = 0.



7. Bizonyítsuk be, hogy minden k természetes számhoz van k egymást követ® szám, amelyek közül egyik
sem prímhatvány.

Megoldás:
((k + 1)!)2 + 2, ((k + 1)!)2 + 3, . . . ((k + 1)!)2 + (k + 1)

ilyen számok, ugyanis 2 ≤ a ≤ k + 1-re
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egész, mert a szerepel (k + 1)! tényez®i között, és
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= 1, tehát

mindegyik számnak legalább két különböz® prímosztója van.


