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1 Introduction

Complex networks have been in the focus of research for decades, especially since

the millennium owing to the fact that the prompt evolution of information tech-

nology made the comprehensive exploration of real networks possible. The study

of networks pervades all of science, such as Biology (e.g. neuroscience networks),

Chemistry (e.g. protein interaction networks), Physics, Information Technology

(e.g. WWW and Internet), Economics (e.g. interbank payment flows) and Social

Sciences (e.g. collaboration and social networks).

Despite the fact that networks can originate from different domains, they share

a few common characteristics such as scale-free and small-world property [1, 2, 3],

high clustering [4, 5] and sparseness [6], i.e. they differ in many ways form the

completely random graphs introduced by Erdős and Rényi [7]. Scale-free property

means, that the degree distribution follows a power-law, small-world behaviour

refers to the fact that the diameter is relatively small compared to the size of the

network i.e. the average distance between vertices scales logarithmically with the

number of nodes. High clustering means there is a high probability that “the friend

of my friend is also my friend” [2], in topological terms this means that there is

a heightened density of triangles (cycles of length three or closed triplets) in the

network [8]; while sparseness means that there are much smaller number of edges

than the maximum possible number of links within the same network [9].

Although many real networks have been claimed to be scale-free, some sta-

tistical and theoretical research have argued against its ubiquity [10, 11, 12, 13].

The reasons behind this controversy are non-rigorous methods for power-law fit-

ting since it may be confused with log-normal, exponential or truncated power-law

distributions, furthermore reliance on insufficient domain specific datasets and the

ambiguity regarding the notion of scale-free property [12].

Analysis of variety of real networks showed that there are other essential fre-

quently emerging properties such as self-similarity and fractality, for example pro-

tein interaction networks are typically fractal [14]. The latter one is in the focus

of this thesis and in a nutshell it means that there is a power-law relation be-

tween the minimum number of boxes needed to cover the entire network and the

size of the boxes. In this work we will investigate the origins of fractality and
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its connection to other graph metrics. My BSc thesis [15] is also devoted to frac-

tal networks, specifically to the relationship of fractality and assortativity, and I

showed through a network model, that hubs can be connected in fractal networks

i.e. they can show assortative mixing behaviour, which is in contrast to the ex-

isting results and claims [14, 16, 17], furthermore there are a few works which

support my observation [18, 19, 20].

Modelling real-networks is of great interest, since it may help to understand the

underlying mechanisms and principles governing the evolution of networks. More-

over, such models are mathematically tractable and allow for rigorous analysis.

Throughout the years several network models have been proposed to gain better

understanding of real-world networks, the [21] paper gives an extensive overview of

such network models, however without attempting to be comprehensive the most

influential models are for example the scale-free Barabási–Albert model [22], the

small-world Watts–Strogatz model [2], Newman and Park’s Community Structure

model [4] and Geographical or Spatial models [23], each of them was motivated by

some of the aforementioned observed characteristics of real-networks.

In order to characterize the topology and capture the structure of networks, nu-

merous graph metrics have been introduced, the Network Science book of Barabási

Albert and the Characterization of complex networks: A survey of measurements

article of L.F. Costa et al give a comprehensive overview of the graph metrics

and measurements [9, 23]. Naturally, there is significant redundancy among these

measures, unfortunately, it is still unclear which non-redundant selection of mea-

surements describes every aspects of networks. There is a great deal of effort to

study the correlation between these metrics together with identify a non-redundant

subset of them [24, 25, 26], as well as to construct such models, which better ex-

plain real networks according to these measures and the distribution of node-level

features.

The main purpose of Section 2 is to understand the fractality with the help of

mathematical network models. To this end we investigate several network models

based on simulations implemented in Wolfram Mathematica. Not only do we

study network models from the literature, but also introduce new models based

on our discoveries regarding fractality. We analyze how the fractality of the model

generated graphs affects other graphs metrics such as the mean graph distances
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and assortativity. We also relieve the the contradiction of two articles [14] and [18],

which both presented fractal models to support their conflicting observations and

statements. Furthermore we highlight a group of real-world fractal networks that

are rather uninvestigated, and propose a novel model which mimics the properties

of these networks and mixes it with other aforementioned common characteristics

such as small-world and scale-free properties.

Furthermore, we thoroughly investigate the box-covering algorithm and its

alternatives, and by our own implemented program codes, we show that how these

different algorithms perform on different graphs considering both efficiency and

running time. We also highlight that, due to the NP-hard nature of the box-

covering algorithms, unfortunately there is a trade-off between the accuracy and

running time, meaning that we cannot simultaneously minimize the running time

and gain optimal results, but we present recent promising research results that

uses novel techniques to estimate the fractal dimension of networks.

As the title of this work suggests, our approach is mostly empirical, i.e. data-

based, thus we will use both descriptive statistics and statistical learning tech-

niques in order to analyze the relationship of the metrics and their effect on frac-

tality. However, we also associate our empirical observations to theoretical models

of the literature an we introduce new models based on our findings

Machine learning is an interdisciplinary field combining the methods of statis-

tics, computer science and information technology, evolved from pattern recogni-

tion and computational learning theory in artificial intelligence, which uses sta-

tistical techniques to study and construct algorithms usually to learn from and

to make predictions on data [27]. Machine learning tasks are typically divided

into two main categories; supervised learning and unsupervised learning. The

prediction problem belongs to the so-called supervised learning task (see Section

3.3), on the other hand unsupervised learning involves problems such as clustering,

anomaly detection, dimension reduction and feature selection.

The concept of Data science (formerly Data mining) does not have a generally

accepted definition but it can be described as a generic term for data under-

standing, data visualization, data preparation (i.e. cleansing and transforming),

machine learning and modelling, result validation and deploying. The applications

of data science are present in all aspects of our everyday life, furthermore there
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are more and more applications in scientific research from different disciplines such

as high energy physics1, astrophysics2, healthcare and biology3. To bring exam-

ples from everyday life, all the search engines use machine learning algorithms to

deliver the best result for our searched query. Once we searched for something on-

line, the next few days every digital commercial will be related to it, this is called

targeted advertising. One of the most sophisticated application of data science is

the recommendation system, which suggests us similar products, songs4, videos5

and TV shows6, based on our past behaviour and taste. Without attempting to be

exhaustive machine learning algorithms are applied in face and speech recognition,

fraud and risk detection, and seeing into the near-future days, self-driving cars and

human-like robots also apply data science techniques.

There is an emerging discipline of data science, called Educational Data Min-

ing7 (EDM), that uses and develops data science methods to answer educational

research questions such as identifying the key factors of dropout, understand the

study behaviours of students or recommend appropriate courses and training ses-

sions. Relying on the database of Budapest University of Technology and Eco-

nomics, the author and the first supervisor of the present paper, employed and

evaluated several machine learning models to identify students at-risk, to predict

student dropout and to determine the affecting factors of the students’ perfor-

mance, for more details see [28].

The purpose of Section 3 is to study the relationship of numerous network

metrics and how the network characteristics effect fractality on different network

domains using both models and real networks. To this end we use statistical

methods such as explanatory analysis, correlation analysis, and machine learning

techniques e.g. predictive analytics. This study relies on a large dataset, con-

taining rich set of information of 584 real networks from different domains. The

1See https://sites.google.com/site/trackmlparticle/
2See https://ieeexplore.ieee.org/document/6382200/
3See https://www.techemergence.com/machine-learning-medical-diagnostics-4-cur

rent-applications/
4See https://medium.com/s/story/spotifys-discover-weekly-how-machine-learnin

g-finds-your-new-music-19a41ab76efe
5See https://dl.acm.org/citation.cfm?id=1864770
6See https://medium.com/netflix-techblog/tagged/data-science
7See http://educationaldatamining.org/
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real networks for the dataset are from online network data-bases, such as Network

Repository [29], Index of Complex Networks (ICON) [30], NeuroData’s Graph

Data-base [31], The Koblenz Network Collection [32] and Interaction Web Data-

base (IWDB) [33]. After evaluating the statistical and machine learning analyzes,

we compare the results obtained on real and model networks to test the descrip-

tive/explanatory ability of the models. Furthermore, we aspired to find the mutual

and different behaviors of real and model networks.

The most closely related work is that of Garcia-Robledo et al. [26] who followed

a data-driven approach to study the correlation of different properties of evolv-

ing Internet networks, furthermore, applied clustering techniques (k-means and

Ward’s method) to find and validate a non-redundant set of metrics. Bounova and

de Weck gave a great overview of network topology metrics and their normalization

and used correlation and principal component analysis on a dataset consisting of

both random graph models and 200-300 real networks [24]. Jamakovic and Uhlig

investigated the correlation of metrics and visual comparison of distribution node-

level features using 13 real networks [25]. Filkov et al. similarly used both models

and a collection of 113 real networks to find a set of metrics, which enables com-

prehensive comparison between any two networks [34]. Grando and Lamb trained

machine learning algorithms on a huge dataset derived from network models to

estimate centrality measures [35].

In this paper, we focus on a more general and comprehensive research of real

networks i.e. we collected brain networks, food webs, social networks (collabo-

ration, Facebook friendship and retweet networks), protein interaction networks,

and synthetic networks such as the collection of DIMACS [36] and sparse matri-

ces from SuiteSparse [37]. Furthermore, our goal is to find the attributes, which

affects the fractality of the networks, and then construct a new fractal network

model, inspired by the newly found properties and relationships. To the best of

our knowledge, this is the first work that uses Machine Learning techniques in

order to estimate the fractal dimension of networks.
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1.1 Definitions and notations

In this subsection we introduce the most important definitions and fix the notations

used throughout this paper. Since networks can be modeled by graphs, the notions

of network theory root in graph theory. Note that in this work the graph and

network words are interchangeable, but usually when we talk about networks, we

focus on the real, physical properties, on the other hand in the case of graphs, the

bare mathematical characteristics are under consideration. Regarding to the fact

that network theory is a fresh field in the intersection of graph theory and computer

science, and researched by scientists from different disciplines, the definitions are

not always mathematically rigorous. Here we rely on [9, 38] and [14].

Definition 1. (Graph) A simple (undirected) graph is an ordered pair G =

(V,E), where V is the set of vertices or nodes, together with a set E of edges

or links, which are two-element subsets of V . The size of the graph is the number

of its nodes, and it is usually denoted by n.

Note that there are directed and weighted graphs as well, and the following def-

initions can be generalized or modified to those cases, what’s more real networks

often modelled with directed and weighted graphs, but in this work we only con-

sider the simplified versions of those networks, hence here we only state definitions

for simple graphs.

Definition 2. (Path) A path is a sequence of edges which connect a sequence of

vertices i.e. the target of the previous edge is the source of the next edge. Formally:

a path is a sequence of vertices P = (v1, v1, . . . , vn) ∈ V × . . . × V such that vi is

adjacent to vi+1 for 1 ≤ i ≤ n. Such a path P is called a path of length n− 1 from

v1 to vn i.e. the number of its links. A path is geodesic or shortest path if its

endpoints cannot be connected by shorter paths.

Definition 3. (Distance) The distance d(u, v) between the vertices u and v is

the length (number of edges) of the shortest path connecting them. Note that the

vertex set (of an undirected graph) and the distance function d form a metric space,

if and only if the graph is connected.
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Definition 4. (Vertex eccentricity) The vertex eccentricity ε(v) of a vertex v

(in a connected graph G) is the maximum graph distance between v and any other

vertex u of G.

Definition 5. (Radius) The radius r of a graph is the minimum eccentricity of

any vertex, i.e.

r = min
v∈V

ε(v)

Definition 6. (Diameter) The diameter Diam(G) of a graph G is the maximum

eccentricity of any vertex in the graph, i.e.

Diam(G) = max
v∈V (G)

ε(v).

In other words the diameter of a graph is the length of the greatest shortest path.

Definition 7. (k-neighbourhood) The k-neighbourhood Γkv of the vertex v is the

set of vertices u whose distance from v is not greater than k.

Definition 8. (Proportionality) Given two variables x and y, we say that y is

directly proportional to y if there is always a constant ratio between them, i.e. if

there is a non-zero constant c such that y = c · x. The c constant is called the

coefficient of proportionality or proportionality constant. In this paper we denote

this relation by y ∝ x or by x ∼ y.

Definition 9. (Small-world property) A network is said to be small-world,

if the ”typical” distance L (i.e. the average length of short paths) between any

two nodes grows proportionally to the logarithm of the size of the network i.e.

L ∝ log |V |. Note that scale-free networks are ultra-small worlds [39], i.e. due to

hubs, the shortest paths become significantly smaller and scale as L ∝ log log |V |

In graph theory and network analysis, indicators of centrality identify the most

important and influential nodes within a graph. There are numerous centrality

metrics, though here we only focus on the most frequently used ones, since these

metrics are usually highly-correlated.
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Definition 10. (Betweenness centrality) The betweenness centrality of a node

v is given by the expression:

g(v) =
∑
s 6=v 6=t

σst(v)

σst
,

where σst is the total number of shortest paths from node s to node t and σst(v) is

the number of those paths that pass through v.

Definition 11. (Edge betweenness centrality) The edge betweenness central-

ity of an edge is the number of shortest paths between pairs of vertices that run

along it. In other words this is analogous to the previously defined σst, but here we

consider an edge instead of a node.

Definition 12. (Eigenvector centrality) For a (connected undirected) graph,

the vector of eigenvector centralities c satisfies the eigenvector equation A · c =

λ1c , where λ1 is the largest eigenvalue of the graph’s adjacency matrix A. In

other words, for a connected undirected graph, the vector of eigenvector centralities

is given by the (suitably normalized) eigenvector of corresponding to its largest

eigenvalue Note that eigenvector centrality is a normalized special case of Katz

centrality with α = 1/λ1 and β = 0. A related centrality is PageRank centrality.

Definition 13. (Degree distribution) The degree d(v) of a vertex v in a graph

is its number of incident edges. The degree distribution P is the probability distri-

bution of these degrees over the whole network, i.e. P (k) is the probability that the

degree of a randomly chosen vertex is equal to k.

The correlations between degrees in a graph are frequently measured by the the

joint probability distribution P (k1, k2): the probability that a node with degree k1

is connected to another node of degree k2 [40].

Definition 14. (Scale-free property) A scale-free network is a connected graph

with the property that the P (k) degree distribution follows power-law distribution,

i.e.

P (k) ∼ k−γ,

where γ ≥ 1 and typically falls in the range 2 < γ < 3 [41].
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Definition 15. (Connected graph) A connected graph is one in which each pair

of vertices forms the endpoints of a path, i.e. there is a path from any point to any

other point in the graph. A graph that is not connected is said to be disconnected.

Definition 16. (Vertex and edge connectivity) The vertex connectivity of a

graph is the minimum number of nodes whose deletion disconnects it. Similarly,

edge connectivity is the minimum number of edges whose deletion from a graph

disconnects it.

Definition 17. (Link efficiency) The link efficiency measures how tightly con-

nected the graph is in relation to its number of edges. Let L denote the average

of all shortest paths length. For a simple unweighted graph G, the link efficiency

E(G) of G is given by:

E(G) = 1− L

|E|

Definition 18. (Graph density) Graph density D is the ratio of the number of

edges divided by the number of edges of a complete graph with the same number of

vertices, i.e:

D =
|E|

1
2
|V |(|V | − 1)

.

A dense graph is a graph in which the number of edges is close to the maximal

number of edges, i.e D is close to 1. The opposite, a graph with only a few edges,

is a sparse graph, when D is close to 0.

Definition 19. (Variance) The variance of a random variable X is the expected

value of the squared deviation from the mean of X, µ = E[X]:

Var(X) = σ2
X = E

[
(X − µ)2

]
= E[X2]− µ2.

The standard deviation σX of X is the square root of the variance of X.

Definition 20. (Covariance) The covariance between two jointly distributed

real-valued random variables X and Y (with finite second moments) is defined

as the expected product of their deviations from their individual expected values:

Cov(X, Y ) = E
[(
X − E [X]

) (
Y − E [Y ]

)]
= E[XY ]− E[X]E[Y ].
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Definition 21. (Pearson’s correlation coefficient) The population correla-

tion coefficient ρX,Y between two random variables X and Y with expected values

µX and µY and standard deviations σX and σY is defined as

ρX,Y = Corr(X, Y ) =
Cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY

Definition 22. (Assortativity coefficient) The assortativity coefficient is the

Pearson correlation coefficient of degree between pairs of linked nodes [40]. The

assortativity coefficient is given by

r =

∑
jk jk(ejk − qjqk)

σ2
q

,

where the term qk is the distribution of the remaining degree and j and k indicates

the remaining degrees, this captures the number of edges leaving the node, other

than the one that connects the pair, i.e. the degree of the node minus one. Further-

more, ejk refers to the joint probability distribution of the remaining degrees of the

two vertices, thus ejk is symmetric on an undirected graph, and follows the sum rule∑
jk ejk = 1, and

∑
j ejk = qk, i.e. qk is the marginal distribution of ejk. Finally,

σ2
q denotes the variance of the qk distribution, i.e. σ2

q =
∑

k k
2qk −

(∑
k kqk

)2

Definition 23. (R degree correlation ratio) For a given G graph, the R(k1, k2)

degree correlation ratio is defined as follows:

R(k1, k2) =
P (k1, k2)

Pr(k1, k2)
,

where P (k1, k2) and Pr(k1, k2) are joint degree distributions of G (see Definition

13), and of a random graph, obtained by randomly (uniformly) swapping the links

of G without modifying the original degree distribution respectively, i.e. Pr(k1, k2)

is the joint degree distribution of the so-called Configuration model [42], which has

the same distribution as G.

Definition 24. (Global clustering coefficient) The global clustering coeffi-

cient C of the graph G is the fraction of paths of length two (triplets) in G that

are closed over all paths of length two (closed triplets) in G.
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Definition 25. (Local clustering coefficient) The local clustering coefficient

of the vertex v is the fraction of pairs of neighbors of v that are connected over all

pairs of neighbors of v. Formally:

Cloc(v) =
|{(s, t) edges : s, t ∈ Γ1

v and (s, t) ∈ E|}
d(v)(d(v)− 1)

1.1.1 Probability theory definitions

The following definitions and theorems are necessary for the proofs of Theorem 7

and 8. We assume that the reader is familiar with the basic concepts of probability

and measure theory, here we follow Williams’ book [43].

Definition 26. (Filtered space) A filtered space is (ω,F , {Fn},P), where (ω,F ,P)

is a probability space and {Fn}∞n=0 is a filtration. This means:

F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ F

is an increasing sequence of sub σ-algebras of F .

When we say simply ”process” in this work, we mean discrete time stochastic

process, i.e. a sequence of random variables.

Definition 27. (Adapted process) We say that the process M = {Mn}∞n=0 is

adapted to the filtration {Fn} if ∀n ∈ NMn ∈ Fn, i.e. Mn is an Fn-measurable

function.

Definition 28. (Martingale) Let M = {Mn}∞n=0 be an adaptive process to the

filtration {Fn}. We say that M is a martingale if

(i) E(|Mn|) < +∞, ∀n

(ii) E(Mn | Fn−1) = Mn−1 almost surely for n ≥ 1

Furthermore, we say that M is supermartingale if we substitute (ii) with

E(Mn | Fn−1) ≤Mn−1,

12



almost surely as n ≥ 1, and finally M is submartingale is we substitute (ii) with

E(Mn | Fn−1) ≥Mn−1,

almost surely as n ≥ 1.

Definition 29. (Bounded martingale) Let M = (Mn) be a martingale. We

say that Mn ∈ Lk, i.e. Mn is bounded in Lk, for some k ≥ 1 if

sup
n

E(|Mn|k) < +∞ (1)

Theorem 1. (Doob’s Forward Convergence Theorem) Let X = (Xn) be

an L1 bounded supermartingale. Then

X∞ = lim
n→∞

Xn

exists amd X∞ <∞ almost surely.

Theorem 2. (Doob–Meyer decomposition) Given a filtered probability space

(ω,F , {Fn},P). Let X = (Xn) be an adapted process with Xn ∈ L1 for all n. Then

X has a Doob–Meyer (sometimes called Doob decomposition):

X = X0 +M + A, (2)

where M = (Mn) is a martingale with M0 = 0, A = (An) is previsible (that is

An ∈ Fn−1), with A0 = 0. (An is called compensator of Xn). The decomposition

is unique mod zero, i.e. if X = X − 0 + M̃ + Ã is another decomposition, then

P(Mn = M̃n, An = Ãn,∀n) = 1.

Theorem 3. X is a submartingale if and only if A in its Doob decomposition is

an increasing process, that is

P(An ≤ An+1) = 1. (3)
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Definition 30. (Moment generating function) The moment generation func-

tion of a random variable X is defined as

MX(t) = E
(
etX
)
, t ∈ R,

wherever this expectation exists.

Definition 31. (Factorial moment) For a natural number r, the rth factorial

moment of a random variable X is

E
(
(X)r

)
= E

(
X(X − 1)(X − 2) . . . (X − r + 1)

)
,

where

(x)r = x(x− 1)(x− 2) . . . (x− r + 1) =
x!

(x− r)!

Theorem 4. (Markov’s inequality) If X is a nonnegative random variable,

and a > 0, then

P(X ≥) ≤ E(X)

a
(4)

This is useful for getting exponential upper-bounds as follows

P(X ≥ a) = P(etX ≥ eta) ≤ E(etX)

eta
. (5)

Eq. (5) is usually referred to as exponential Chebysev or exponential Markov in-

equality.

14



2 Fractal networks

In this section, we give an overview of the concept of fractal networks largely

relying on [44], furthermore, without attempting to be comprehensive, we give an

survey of the most related works about fractal networks.

Since the 20th century fractal structures have been in the focus of research,

and became one of the most influential results of mathematics, due to the fact

that fractal phenomena and structures are present in several disciplines such as

physics [45], chemistry [46], cosmology [47], and even in stock market movements

[48]. Furthermore, due to the spectacle of fractals, they can even be found in a

field of algorithmic art, called fractal art [49]. The concept of fractality and self-

similarity has been introduced by Benoit Mandelbrot [50], furthermore, the concept

of fractality was generalized to natural phenomena such as shapes of leaves [51],

coastlines [52], snowflakes [53] and clouds [54].

In recent years, fractal networks have been studied intensively, and gained

great attention from researchers belonging to different fields. The first works date

back to the ’80-’90’s [55], although most of the research have been done in the

last few years. There has been a substantial amount of work done by C. Song, S.

Havlin, H. Makse, L. Gallos and H. Rozenfeld [14, 16, 56, 57, 58], which can be

considered as the foundation stones of the study of self-similar and fractal complex

networks. These works inspired and influenced several scientists, resulting in a

growing research interest in this field. In [16] they introduced the basic concepts

and relations, also presented some approaches to explore the origins of fractality,

furthermore, showed that many real-networks show fractal nature such as World-

Wide-Web, cellular (protein interaction) and actor collaboration networks. In [56]

they presented, compared and studied a number of box-covering algorithms in

detail.

As we have already mentioned in Section 1, in my BSc thesis, we studied two

conflicting papers; in the first one [14] the aforecited authors claimed that the key

principle that gives rise to fractal architecture of networks is a strong repulsion

between hubs, furthermore introduced the Dynamical Growth model (DG model)

which supports their observation (see 2.4.3); in the other one L. Kuang et al. [18]

showed that that hubs can be connected in fractal networks by modifying the
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DG model, called Hub Attraction dynamical growth model (HADG model, see

2.4.4), although their log-log plot of NB(lB) is bowed downwards which can reflect

a log-normal distribution, instead of a power-law [59]. In [15] we introduced a

second variant of the DG model, called Repulsion Based DG model (see 2.4.5),

which strength lies in the fact that it constructs fractal graph with any parameter

setting, while the repulsion behavior varies between group of nodes with similar

degrees i.e. it shows that in fractal networks hubs can be connected until it does

not reduces the average distances significantly.

In recent works S.R. de la Torre, J. Kalda et al. [60] analyzed fractal and

multifractal properties of Estonia’s payment network, which is the first study that

analyzes multifractality of a complex network of payments. In [61] Z.J. Zeng, C.

Xie et al. investigated the fractal property of stock market network using edge-

covering technique which is an alternative of the box-covering method introduced

in [62]. C. Yuan et al. [63] extensively investigated the properties of wireless

networks (2G and 3G), and among other results they showed that these networks

are scale-free, small-world and fractal. Similarly, S. Deng et al. [64] estimated

the fractal dimension of metro network of large cities and Y. Deng et al. in [65]

compared different box-covering algorithms by evaluating them on fractal real

networks.

2.1 Box-covering algorithm

In fractal geometry, the box-covering algorithm is one possible way to estimate

the fractal dimension of a fractal. Let the fractal be a set S in the n-dimensional

Euclidean space Rn or more generally in a metric space (M,d). Now, imagine that

the S fractal is lying on an evenly spaced n-dimensional grid, and the hypercubes

of this grid are called boxes. To calculate the fractal dimension of S, we have to

apply the box-covering or box-counting algorithm, i.e. count the minimum number

of boxes that are required to cover the entire set S. The dimension is calculated

by observing how this number changes as we make the grid finer and finer i.e.

how this number scales with the size of the boxes [66]. The Figure 1 illustrates

the process of box-covering algorithm on a fern leaf. Note that in the 1960’s

Mandelbrot calculated the fractal-dimension of different coastlines in [52], which
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Figure 1: Estimating the box-counting dimension of a fern leaf generated with
iterated function systems [67]

.

paper became one of the most influential work in the history of fractal geometry.

Suppose that Nε is the minimum number of boxes of size ε needed to cover the

set. Then the S fractal’s box-counting dimension is defined as follows:

dimbox(S) = lim
ε→ 0

logNε(S)

− log ε

The box-counting dimension was originally introduced by Hemann Minkowski and

Georges Bouligand, thus it is also known as Minkowski–Bouligand dimension.

Estimating the fractal dimension of a network is analogous to the geometric

case, owing to the fact that the box-counting algorithm can be easily generalized to

networks, because as we mentioned in Definition 3, the vertex set of an undirected

graph and the graph distance function form a metric space, and the box-covering

algorithm is well-defined in a metric-space. The method works as follows [56]: For

a given network G, we partition the nodes into boxes of size lB. A box is a subgraph

of G with diameter smaller than lB, i.e. a set of nodes, where all distances between

any two nodes within the box is less than lB. The minimum number of boxes of size

lB required to cover the entire network G is denoted by NB(lB). Clearly, if lB = 1,

then NB(1) equals to the number of vertices, i.e. the size of the network, while

provided that lB is greater than the diameter of the network, then obviously only

one box is needed. Thus, in order to identify the fractal dimension of a network G,
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we only have to apply the box-covering algorithm Diam(G) times, starting with

lB = 1, and then increasing the size of the boxes up to the diameter of G.

In accordance with geometric fractals, the box-covering dimension dB can be

defined by:

NB(lB) ∼ l−dBB , (6)

whether this dB exists and finite, we say that a networks fractal, otherwise it

is non-fractal. Thus, in fractal networks the minimum number of boxes scales

as a power law with the size of the boxes. Hence, the relationship between the

logarithm of NB and the logarithm of lB is linear i.e. if a network is fractal, then

the log-log plot of the NB(lB) function is a straight line, with slope dB, otherwise

the network is non-fractal. Rearranging the formula (6), the fractal dimension can

be expressed as:

dB(G) ∼ logNG
B (lB)

− log lB
, (7)

where lB > 1.

The box-covering problem is an optimization problem, with an input pair

(G, lB), and the task is to find a box-covering, which uses the fewest boxes. Unfor-

tunately, this problem belongs to the family of NP-hard problems, since it can be

mapped on to the vertex coloring problem [56], which is one of the most famous

NP-hard problems of graph theory. This means that an algorithm that could give

the exact optimal number of boxes in relatively short amount of time does not

exist. The polynomial-time reduction is detailed in [44].

Theorem 5. The box-covering is an NP-hard problem.

However, there are several approximating algorithms, the most frequently used

one is the Compact Box Burning (CBB) algorithm, and in this work we also im-

plemented and use thus algorithm. For more detailed information please refer to

[56, 15]. Although, it is an approximating algorithm, it is still time-consuming,

hence M. Kitsak, S. Havlin et al. introduced a lower-approximating, simplified

version of the CBB algorithm, which has a trade-off between accuracy and time

consumption i.e. the estimated NB of the simplified CBB algorithm is always less

then the true minimum number of boxes that are needed to cover the whole net-

work, although we parallelized and implemented this algorithm, and after running
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some experiments, we observed that it does not influence the scaling parameter.

However, the estimation of this algorithm can be improved by computing NB(lB)

many times for a given lB, and then select the maximum of all computation.

2.1.1 Alternatives to box-covering algorithm

Other novel approaches have been proposed to approximate fractal dimension.

For example Daijun W. et al [68] used the information dimension introduced by

Rényi [69] to capture the fractal property of complex networks, they applied their

method to both large and small real-world networks, and in some cases this new

measurement gives significantly better results than the traditional box-covering

algorithm, because the obtained datapoints are less noisy, and the bias of the

fitted distribution is smaller.

Another promising method, proposed by Haixin Z. et al. [70], uses fuzzy set

theory to approximate the dB fractal dimension, furthermore, the complexity of

the algorithm is reduced significantly, i.e. it is efficient and less time consuming

than the original CBB algorithm. The main idea behind the fuzzy method, is that

for a given box, the membership to the box of an arbitrary node is not a true or

false (i.e. member or not member variable), but a real number between 0 and 1

which depends on the size of the box and the graph distance between the chosen

node and the center of the box. Then an lB-sized box’s covering capability is the

sum of these fuzzy numbers, which is proportional to the presumable number of

nodes inside an lB-sized box. More precisely, notice that the Equtation (7) can be

rewritten as:

dB ∼
log
(
NB(lB)−1

)
log (lB)

, (8)

where NB(lB)−1 is the reciprocal of NB(lB), and the clever idea of the authors of

[70] was that it can be viewed as the covering ability (CA) of the boxes, i.e. the

expected ratio of the size of the network that an lB-sized box can cover. That is to

say, the less boxes are needed to cover the network, the more percentage of nodes

of the network can be covered by a box, and similarly the more boxes are needed,

the less amount of nodes could be covered by a single box. Thus the ultimate goal

of this process is to identify the covering ability of the boxes, and it is calculated

as follows:
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Identical balls of radius lB are constructed around every vi, 1 ≤ i ≤ N vertex of

the graph G = (V,E). Then the covering ability of such a ball around the node v

is given by:

Nv(lB)−1 =
1

N − 1

∑
vi 6=v

d(vi,v)≤lB

exp

(
−d(vi, v)2

l2B

)
= (9)

=
1

N − 1

∑
vi 6=v

δvi,v(lB)Avi,v(lB), (10)

where

δvi,v(lB) =

1, d(vi, v) ≤ lB

0, otherwise
(11)

is the selecting function, that represents whether the node vi could be covered by

the v centered ball, and

Avi,v(lB) = exp

(
−d(vi, v)2

l2B

)
(12)

is the fuzzy membership function, with value ranges from 0 to 1, motivated by

the fact that in real life situations boundaries between sets or classes are often

overlapping or blurred.

Thus the “expected” covering ability of a ball of radius lB is calculated by the

following equation:

NB(lB)−1 =
1

N

∑
vj∈V

Nvj(lB)−1 = (13)

=
1

N(N − 1)

∑
vi,vj∈V
i 6=j

δvi,vj(lB)Avi,vj(lB) (14)

The following script is our implementation of this algorithm. Note that, in order

to gain faster running time, we modified their algorithm at some places. For ex-

ample, in their algorithm, the shortest path between node vi and vj are calculated

multiple times, but here we start our algorithm with calculating the matrix of
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graph distances, and later in the cycles, we just have to read the values out from

this matrix. Instead of the nested for cycles, we used the Wolfram Language’s

ParallelTable and Table function, owing to the fact that the outer cycle is par-

allelizable. Further improvements are obtained by allowing the distance d(vi, dj)

to be 0 in the sum in Eq. (9), and that is why we subtract 1 from the total. More-

over Wolfram Mathematica calculates everything symbolically by default, and the

N function gives the numerical value of the expression in its argument, which also

accelerates the algorithm, and without this simple function the running time of

the algorithm would scale exponentially with the diameter of the input graph.

fuzzy [G ] := Module [{distanceMatrix , Nn, invNb , L} ,

distanceMatrix = GraphDistanceMatrix [G] ;

Nn = VertexCount [G] ;

L = Ceiling [GraphDiameter [G] / 2 ] ;

invNb =

ParallelTable [

Total [Table [

N[ Total [Exp[− ( Select [ distanceMatrix [ [ i ] ] , # <= lb &]) ˆ2 /

lbˆ2 ] ] − 1 ] , { i , 1 , Nn} ] ] , { lb , 1 , L} ] ;

invNb/(Nn∗(Nn − 1) ) ]

Listing 1: Our parallelized implementation of the fuzzy algorithm from [70].

In Section 2.3 we compare these algorithms both by their running time and the

by accuracy of the obtained dB fractal dimension, and the results are detailed in

Tables 1 and 2.

2.2 Fitting power-laws in empirical data

The problem of identification of fractal networks in practice, relies on the correct

detection of power law distribution in the NB(lB) empirical data. Unfortunately,

the characterization of power laws is complicated, since the tail of the distribution

is usually unreliable due to the large fluctuations, furthermore the identification

of the range, where the power law relation holds is difficult [10]. Another serious

problem is that scientists often leave out of consideration the fact that power laws

can be easily confused with other distributions. In several influential articles the

validation of power law distributions is carried out visually by comparing log-log

plots, or calculating errors of least-square fitting, which are woefully inadequate

methods, that produce inaccurate estimates of fractal dimension dB. A. Clauset,
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M.E.J. Newman et al. presented in [10] a statistical framework, that combines

maximum-likelihood fitting and likelihood ratios, for discerning and quantifying

power law behaviour in empirical data. Their software implementation is also

available online8 in different programming languages.

Generally, power-law distributions are of two basic forms: continuous and dis-

crete distribution. Let x denote the quantity, whose distribution we are interested

in. With a slight abuse of notation, the continuous power law distribution can be

described by f(x) probability density function as follows [10]:

f(x) dx = P(x ≤ X ≤ x+ dx) = Cx−α dx, (15)

and in the discrete case:

p(x) = P(X = x) = Cx−α, (16)

where C is a normalization constant and X is the observed value. Since, these

densities diverge as x→ 0, thus the power-law relation cannot hold for small values

of x. As a solution Newman et al. introduced the 0 < xmin lower bound to the

power law behaviour, i.e. for which every x ≥ xmin the equation (15) or (16) holds.

Then, provided α > 1 and solving∫
R
f(x) dx =

∫ ∞
xmin

Cx−α dx = 1 (17)

for C, we obtain that

f(x|α) = f(x) =
α− 1

xmin

(
x

xmin

)−α
, (18)

i.e. X follows Pareto distribution. Similarly, in the discrete case, after calculating

the normalizing constant we find that

p(x) =
x−α

ζ(α, xmin)
, (19)

8See http://tuvalu.santafe.edu/~aaronc/powerlaws/.
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where

ζ(α, xmin) =
∞∑
n=0

1

(n+ xmin)α
(20)

is the Hurwitz zeta function, i.e. X follows Zipf’s law or Zipfian distribution.

Unfortunately, the estimation of the scaling parameter α is often done by per-

forming a least-squares linear regression on the logarithm of the data points, and

then extracting the slope of the gained line. It can not be overemphasized that

this procedure leads to significant errors, even under relatively common conditions

[10]. We will see, that estimating α correctly requires the value of the lower bound

xmin of the power-law behaviour of the data. For now, let us assume, that the value

of xmin is known. The method of maximum likelihood provably gives an accurate

estimation of the scaling parameter [71]. Given that our data are drawn from the

continuous distribution described in (18), the maximum likelihood estimation of α

can be easily calculated as follows: Let x = (x1, x2, . . . , xn) denote the data vector

containing the n observation for which xi ≥ xmin. The likelihood function L of the

data x is given by

L(α,x) =
n∏
i=1

f(xi|α) =
n∏
i=1

α− 1

xmin

(
xi
xmin

)−α
(21)

The goal of the maximum likelihood parameter estimation is to maximize L func-

tion in α, since the data are the most likely to have been generated by the α̂ that

maximizes L, i.e. α̂ = arg maxα>1 L(α,x) if a maximum exists. Since it is more

convenient to work with sums instead of products, commonly we maximize the

logarithm of the likelihood function called log-likelihood function, which has its

maximum in the same place, denoted by `. Thus

`(α,x) = lnL(α,x) = ln
n∏
i=1

α− 1

xmin

(
xi
xmin

)−α
=

=
n∑
i=1

ln

(
α− 1

xmin

(
xi
xmin

)−α)
=

= n ln(α− 1)− n ln(xmin)− α
n∑
i=1

ln

(
xi
xmin

)
.

(22)
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Now, we can easily obtain the maximum likelihood estimate (MLE) for the scaling

parameter α by solving ∂`
∂α

= 0 for α:

∂`(α,x)

∂α
= n

1

α− 1
−

n∑
i=1

ln

(
xi
xmin

)
= 0 (23)

From the second equation of (23) we have

1

α− 1
=

1

n

n∑
i=1

ln

(
xi
xmin

)
(24)

α− 1 =

 1

n

n∑
i=1

ln

(
xi
xmin

)−1

(25)

α̂ = 1 + n

 n∑
i=1

ln

(
xi
xmin

)−1

. (26)

Note that, this estimator is asymptotically normal [72] and consistent [73], since

the obtained formula (26) is equivalent to the Hill estimator [74] for which these

properties are proven.

The MLE for the discrete case is not as straightforward as in the continu-

ous case. Following a similar argument to the continuous variable case the log-

likelihood function is as follows:

`(α,x) = ln
n∏
i=1

x−αi
ζ(α, xmin)

= −n ln ζ(α, xmin)− α
n∑
i=1

lnxi (27)

Again, we can obtain the ML estimate α̂, by solving ∂`
∂α

= 0 for α:

−n
ζ(α, xmin)

∂

∂α
ζ(α, xmin)−

n∑
i=1

lnxi = 0 (28)

Hence, one can find α̂ as a solution of:

ζ ′α̂(α̂, xmin)

ζ(α̂, xmin)
= − 1

n

n∑
i=1

lnxi, (29)
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where the prime denotes differentiation with respect to the first argument i.e.

ζ ′α = ∂ζ
∂α

. Despite the fact that an exact closed-form solution to α̂ does not exist,

in [10] they have proposed an approximating solution, by treating the sample from

discrete type power law distribution as if they were drawn from the continuous one

and then rounded to the closest integer. The details of the derivation are given in

[10], the result is below:

α̂ ≈ 1 + n

 n∑
i=1

ln

(
xi

xmin − 1
2

)−1

. (30)

Up to now, we supposed that lower bound parameter xmin is known and notice

that the estimation of the scaling parameter α is valid only if xmin is accurate. Thus

if we want an accurate estimation of α first we need an accurate estimation of xmin.

For example, if we choose the value of xmin too small, then we will get a biased

estimation of α, due to the fact that we are trying to fit power law distribution

to presumably non-power-law data. On the other hand, if the value of xmin is too

large, then we are probably throwing away valid data points, which increases both

the bias because of the smaller sample size and the statistical error on the scaling

parameter α. Figure 2 well-illustrates the problem of choosing too low or too large

lower-bound parameter.

A possible approach for estimating xmin, proposed by Clauset et al. [75], uses

a simple idea: we choose the value of x̂min, that makes the empirical distribution

of the observed data and the best-fit power law model as similar as possible above

x̂min, i.e. for example which minimizes the Kolmogorov–Smirnov (KS) statistic

[76], i.e. the maximum distance between the two cumulative distribution functions

(CDF), but there are numerous measures for quantifying the distance between

probability distributions. Note that this technique will not give too large or too

low value for x̂min, since if x̂min is higher than the true value xmin, then reduced

size of the dataset results imperfect empirical distribution and thus poorer match

because of statistical fluctuation. Conversely, if x̂min is smaller than the true value

xmin, then the empirical and the fitted distribution will be fundamentally different

from each other. The method of the estimation of x̂min is as follows:

Using the previous notations, let x = (x1, . . . , xn) be the measured data, fur-
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thermore, let Sxmin
(x) denote the empirical CDF for the observations with value

at least xmin, and Fxmin
(x) is the CDF of the power-law model that best fits the

data in the region x ≥ xmin, i.e.

Sxmin
(x) =

1

nxmin

n∑
i=1

1[xi ≤ x], (31)

moreover

Fxmin
(x) =

∫ x

xmin

α̂− 1

xmin

(
y

xmin

)−α̂
dy = 1−

(
x

xmin

)1−α̂

, (32)

where nxmin
normalization constant is the number of data points for which xi ≥

xmin, and α̂ > 1 is the maximum likelihood estimate of α given xmin, defined in

(26). Now, the Kolmogorov–Smirnov statistic Dxmin
for Sxmin

(x) and Fxmin
(x) is

defined as:

Dxmin
= max

x≥xmin

∣∣Sxmin
(x)− Fxmin

(x)
∣∣ . (33)

The estimate x̂min is then the value of xmin that minimizes Dxmin
, i.e.

x̂min = arg min
xmin

Dxmin
= arg min

xmin

max
x≥xmin

∣∣Sxmin
(x)− Fxmin

(x)
∣∣ . (34)

Note that commonly, x̂min is either estimated visually by plotting α̂ as a function

of x̂min and choosing a point beyond the value of α̂ appears comparatively stable,

or beyond which the PDF or CDF of the distribution becomes roughly straight

on a log-log scale [10]. For example Figure 2 suggests that the true value of

xmin is 50, since beyond this point the function α̂(xmin) behaves stably. After

the identification of the distribution parameters, one can validate the obtained

distribution with goodness-of-fit test, which is a hypothesis test for determining

whether the observed data are drawn from the fitted distribution or not. The

output of the goodness-of-fit test is a p-value, which quantifies the plausibility of

the hypothesis. In our setting the H0 null hypothesis states that the data follow

non-power-law distribution and the alternative H1 hypothesis is the case when the

data are drawn from power-law distribution.
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Figure 2: Visual estimation of xmin. The points are the mean of the estimated
scaling parameter α̂ for 100 samples drawn from distribution (32), with parameters
xmin = 50 and α = 3.

2.3 Measurement of fractality

To the best of our knowledge, there is no literature specialized in the power-law

fitting of empirical NB(lB) data, in spite of the fact, that it is an even more

difficult problem, since for a given graph the number of data points is equal to

the diameter of the graph. Hence the small-world, specially the ultra-small-world

property of real networks results insufficiently small number of data points for

reliable hypothesis testing, that is why the commonly used validating technique

is the visual comparison. However one could use much larger networks, but that

requires powerful computing capability, especially for the box-covering algorithm

due to the problem’s NP-hard nature (besides impressive computing capacity, huge

memory size and maybe even other techniques that are used for handling Big Data

are needed). Furthermore, it is easy to see, that when the box size lB is large, i.e.

when it is close to the diameter of the graph, the NB minimum number of boxes

required to cover the network does not follow power law. What is more, in some real

networks the presence of fractality is a local property and not global, i.e. power-

law holds only for lB,min ≤ lB ≤ lB,max, and NB(lB) follows other distribution,

typically exponential, for lB ≥ lB,max, thus the size of the relevant data set for

power-law fitting is even smaller than the already relatively small sample size. For

example this phenomena is well illustrated in the NB vs lB plot of Figure 3 and
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Figure 4. Furthermore, the goodness-of-fit test is inapplicable, since such small

sample size will not result reliable or useful p-values.

Due to the earlier mentioned inconveniences regarding the power-law validation

of NB, in this work we are more interested in the extent of fractality of the graphs,

rather than the accurate, exact fractal dimensions of the networks. To this end,

the previously mentioned parameter estimation techniques are applicable, since

as Song et al. defined the concept of fractality, we distinguish the fractal and

non-fractal networks by how fast the decay of the function NB. However, these

parameter estimation techniques may not always return the true fractal dimension

of the networks [10], they can measure rate of the decay, thus they can differentiate

a fractal and a non-fractal network from each other. In Section 3.1, we will recap

the techniques of measuring in more details, when we introduce how we estimated

the fractality of real networks.

Owing to the fact that in real-world networks, the pure properties are rare

[12], and motivated by the observation of the distribution of NB of many real-

world networks, here we suggest a more precise description or characterization of

fractal networks.

In [57] H.D. Rozenfeld et al. suggest that scale-free networks9 be categorized

into three groups:

(i) pure fractal,

(ii) pure small-world,

(iii) mixture between fractal and small-world.

A pure fractal satisfies the fractal scaling equation (6) for all lB. From Definition

9 a pure small world network satisfies N ∼ eL, where N is the size of the net-

work and L is the average distances within the network. This property implies

that Eq. (6) never holds, instead NB(lB) follows exponential decay with lB, i.e.

NB(lB) ∼ e−delB . Such networks are also called transfractal, moreover there is a

Hierarchical graph-sequence model, introduced by K. Simon and J. Komjáthy [77],

9Regarding the fact that the related definitions and concepts are not mathematically precise,
this vague categorization of Rozenfeld et al. can be applied on both scale-free and non-scale-free
networks as well.
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which exponential de decay rate (or also referred to as transfractal dimension or

modified box dimension) is calculated analytically in [78].

In the case of a mixture between fractal and small-world the fractal scaling

Eq. (6) is only satisfied up to a lB,max cut-off value of lB, beyond which the

fractality breaks down and the small-world property emerges [57] i.e. the small-

world property appears in the plot of NB(lB) as an exponential cut-off for large

lB, but NB follows power-law when lB � D, that is why they call it locally fractal

but globally small world. Thus the key component to appropriately identify a

fractal or somewhat fractal network is the exponentially truncated power-law or

power-law with exponential cut-off.

Hence, our suggestion is, that the identification of the networks in terms of

fractal and small-world property should not only be done by determining the dB

fractal dimension parameter, but besides dB other two parameters should be in-

volved. Following the idea of categorization of Rozenfeld et al. we suggest to

expand the concept of fractal network with a three-parameter-identification tech-

nique as follows:

Let us consider a G graph with diameter D, such that the NB(lB) is of the form:

Nb(lB) ∼

l
−dB
B , for 1 ≤ lB ≤ lB,max

exp(−lB · de) for lB,max < lB ≤ D,
(35)

then, if G is a mixture between fractal and small-world, then G can be described

by the triplet (dB,
lB,max

D
, de), where 1 < dB < ∞ is the fractal dimension, 1 <

lB,max < D is the cut-off value of fractality, and de 6= 0 is the exponential decay

rate. On the pure endpoints of this spectrum if G is pure fractal, then lB,max = D

and de = 0, on the other hand if G is pure small-world then lB,max = 1 and

dB =∞. Note that the formation and transition of a mixture graph can be easily

understand with our simple model detailed later in Section 2.4.6.

2.3.1 Evaluating covering algorithms

As we have already mentioned in Section 2.1.1, we parallelized and implemented

the fuzzy algorithm and while it is indeed much faster than the already mentioned

CBB algorithm and the obtained data is noiseless, the authors of [70] proposed
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linear regression to the logarithm of the data points to calculate the fractal dimen-

sion, but when we tested this approach on a two-dimensional grid graph we did

not get significantly more accurate results than by the traditional method.

The previously detailed ML estimation of scaling parameter, and the Wolfram

Mathematica’s built-in parameter estimator function gives slightly better results in

case of NB datapoints obtained by the fuzzy algorithm, although with the optimal

xmin parameter the traditional method outperforms the fuzzy method, furthermore

the latter one turned out to be extremely sensitive to the xmin parameter, which is

because for small values of lB it behaves ”normally” but when the lB is large, i.e.

when the covering capability of a box is close to the size of the network, the NB(lB)

starts to bow down, thus in this case usage of xmax is more appropriate instead

of xmin, thus the performance of the linear regression can be slightly improved by

taking out of consideration the tail of NB. The concrete results of the different

estimators are detailed in Table 1. Thus, this fuzzy method can only be used

to quantify the extent of the fractality of a network, without obtaining the exact

fractal dimension, but the speed of the algorithm is impressively faster than the

CBB algorithm. Table 2 compares the different algorithms with each other in

running time.

Note that, if we only consider the first three values of the estimated
(
NB (lB)

)−1

values, then the fuzzy algorithm with the linear regression gives dk = 1.98, that

is a better estimation of the theoretical value of the dimension than the one that

we obtain by using more datapoints, which is because as the size of the boxes

increases, the size of the overlapping areas increases as well. Hence it gives more

accurate results if these fuzzy sets are not overlapping. On the other hand, as we

have already mentioned, the datapoints of the fuzzy algorithm are noiseless, thus

the most accurate results with this method can be achieved, if we only consider

the first few points. This is also reduces the running time of the algorithm.

2.4 Fractal networks and models

In the fundamental work [16], Song et al. showed that several real-world networks

from different domains (social, biological, technological) have fractal structure,

such as a part of the WWW composed of 325,729 web pages, that are connected
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Table 1: The performance of the different parameter estimators. The table con-
tains the estimated dB of a two-dimensional grid graph with 50× 50 vertices, i.e.
the true value of dB equals to 2.

Method Linear Regression
Wolfram Math.’s
builtin estimator

MLE
MLE

(optimal xmin)
CBB 1.62 1.58 1.43 2
Fuzzy 1.69 1.69 1.5 1.84

Table 2: Performance of the different box covering algorithms. The table contains
the number of seconds in real time that have elapsed during the computation. The
columns correspond to different graphs on which the algorithms were run.

Number of nodes and diameter

Algorithm
N = 2500
D = 98

N = 3126
D = 11

N = 626
D = 161

Original CBB 30.6 8.77 5.17
Simplified CBB 10.3 1.89 0.98
Parallelized Fuzzy algorithm 5.6 1.57 0.61
Parallelized Simplified CBB 0.21 0.39 0.07

if there exists a URL link from one site to another, a collaboration network of

392,340 actors, where actors linked if they were cast together in at least one movie,

and even the network of protein–protein interaction actions found in Escherichia

coli (also known as E. coli) and Homo sapiens, where two proteins are linked,

if there is a physical binding between them. In more recent works C. Yuan et

al. [63] extensively investigated and showed the fractal behaviour of wireless cellular

networks (2G and 3G) of two cities, where the nodes are base stations, that are

connected if the Pearson correlation of the measured traffic (during a few days) is

greater than a circumspectly chosen threshold. Furthermore, S Deng et al. [64]

measured the fractal dimension of numerous metro network of large cities. We

also calculated the NB of the metro network of London, the results are shown in

Figure 3.

Despite the fact that several real-world networks show fractal behaviour, the

aforementioned common scale-free network models (see Section 1) fail to exhibit

fractal scaling, or rather it is not typical since only the nearly deterministic Watts–

10http://reference.wolfram.com/language/example/LondonUnderground.html
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Figure 3: Fractality of London’s metro network. The subfigure 3a is the graph
of the metro map of London. The figure 3b shows the log-log plot of NB vs lB,
calculated on the metro graph. The graph is from the Wolfram Data Repository10.
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Figure 4: The fractal, mixture and non-fractal states of the well-known Watts–
Strogatz and Barabási–Albert models. The subfigure 4a WS model’s transition
from pure fractal to pure small-world as the p rewiring parameter increases, and
the subfigure 4b suggests that the BA model with k = 1 parameter generates a
mixture graph, but clearly the small-world property dominates.
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Strogatz (WS) model [2] (more precisely when the edge rewiring probability pa-

rameter of the model is equal to or extremely close to zero) generates a trivial

fractal graph, and the Barabási–Albert (BA) model with k = 1 new edges added

in each step, generates a rather mixture fractal tree. The fractality of WS and the

BA model is illustrated in Figure 4, furthermore, it also shows that the proposed

three-parameter-identification is indeed relevant. By trivial fractal graph we mean

those graphs, for which the fractal scaling relation (6) trivially holds, for example

it is easy to see that a simple path graph, cycle graph and n-dimensional grid

or lattice or gridlike graphs are trivial fractal graphs and their fractal dimension

dB equals to the dimension of the Euclidean space in which these graphs can be

embedded.

Typical examples for gridlike real-world networks are the infrastructure net-

works such as road, metro, water supply, electrical grid and wireless cellular net-

works of large cities [79, 64, 63] and the 3D structure model of blood vessels and

trabecular bones [80]. For example Fig. 5 shows the fractality of the road network

of Minnesota, where the subfigure 5a represents the graph of the road network,

and the subfigure 5b is the log-log plot of the NB vs lB of this graph and of a grid

graph. Similarly, Fig. 3 shows the fractality of the metro network of London. The

Fig. 5b suggests that the road network’s fractal dimension approximately equals

to the fractal dimension of the planar grid, which is equal to two. Furthermore,

this log-log plot also well-illustrates main problems of empirical power law distri-

butions, such as the large fluctuation of the tail distribution, and the misbehaviour

of the distribution for small lB.

In the following subsections we investigate several mathematical network mod-

els and their fractality. First we investigate the well-known Barabási–Albert and

Watts–Strogatz models, which fractality, to the best of our knowledge, have never

been investigated. Then we detail models, which were directly introduced in order

to mimic fractal networks, and to understand the origins of fractality.

2.4.1 Watts–Strogatz model

Tha Watts–Strogatz model (WS), proposed by Duncan J. Watts and Steven Stro-

gatz [2], was motivated by the small-world and highly clustered property of the
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Figure 5: Fractality of Minnesota’s road network. The subfigure 5a represents the
graph of the road network of Minnesota, USA. The subfigure 5b is the log-log plot
of NB vs. lB of the road network of Minnesota (blue), and of a two-dimensional
grid graph of nearly the same size (orange). The graph is from [37].

real-world networks. The algorithm of the model is as follows:

1. Initialization: We start with a regular lattice ring (also called as circulant

graph) of N nodes, i.e. a cycle, where every node is connected with its 2K

nearest neighbours. Formally, if the nodes are labelled v1, v2, . . . , vN , then

the there is a link between vi and vj if and only if

|i− j| mod (N −K) ≤ K.

2. Rewiring the edges: Each edge is rewired identically with probability p

by changing one of the endpoints of the edge, making sure that no self-loop

or multiple edge is created. Formally for every 1 ≤ i ≤ N , every (vi, vj) edge

is replaced by (vi, vk), with probability p, such that k 6= i and k 6= j, and k

is chosen uniformly from the set of allowed values.

The WS model illustrates that the pure fractality and pure small-world prop-

erties cannot be present simultaneously, but for small p values the model generates

mixtures between small-world and fractal.
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2.4.2 Barabási–Albert model

The Barabási–Albert (BA) model, introduced by Albert-László Barabási and Réka

Albert [22], was inspired by the scale-free property of real networks. The novel

concept of the model is the growth and the preferential attachment mechanism.

Growth means, that in contrast to the Erdős–Rényi and Watts–Strogatz random

graphs, the number of nodes in the BA network increases over time. The pref-

erential attachment mechanism (also referred to as ”the rich get richer” or ”Yule

process”) means that the newcomer nodes are more likely to connect to nodes with

higher degree, i.e. the more connected a node is, the more likely it receives new

links. This phenomena is well discernible in social networks, where a newcomer

to a community is more likely to be acquainted with one of the more ”visible” or

socially active persons. However, originally the idea of the preferential attachment

was motivated by the network of the World Wide Web, i.e. the authors of [22]

assumed that pages connects preferentially to well-known sites, rather than pages

that barely anyone knows. The algorithm of the model is as follows:

1. Initial condition: The model starts with a small network of m0 nodes.

2. Growth: At each iteration step, a newcomer node v is connected to u1, . . . , um,

m ≤ m0 existing nodes, with probability that is proportional to the degree

of the ui nodes, i.e. the pi probability, that v is connected to the node ui is

pi =
deg(ui)∑
j deg(vj)

,

where the sum is made over all already existing vj nodes, which is eventually

twice the current number of edges of the network.

Note that this definition of the Barabási–Albert model is rather heuristic and

mathematically non-rigorous, for example at t = 0 there are no degrees, hence

the probabilities are ill-defined, but Bollobás et al. [81] with the help of graph

sequences, introduced a mathematically precise version of the model.

This model has been thoroughly investigated, and while for m > 2 it generates

non-fractal networks which is consistent with the fact that the WWW is non-

fractal as well, it is unclear whether for m ≤ 2 the generated graphs are mixtures
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of fractal and non-fractal.

In the following theorems first we will investigate the BA model’s the degree

distribution and its maximal degree heuristically, then we will give a rigorous proof

of the scaling of the maximal degree by [82].

Theorem 6. [83] The Barabási–Albert model generates scale-free graphs, and the

γ exponent in the degree distribution equals to 3, i.e. P (k) ∼ k−3.

Proof. Let us label the nodes of the network by their arrival time, i.e. vertex vi

arrived at time i, furthermore let di(t) be the degree of the node vi at time t. Since

the nodes are added one at a time, and the newcomer nodes gain m neighbours, at

time t the number of nodes and the number of edges are t+m0 and mt respectively.

When a new vertex is added to the network at time t, the probability that it is

connected to the old node vi (i < t) is m times the degree of vi divided by the sum

of the degrees i.e

P(At time t the newcomer links to vi) = m
di(t)

2 ·m · t
=
di(t)

2t
(36)

Heuristically, if we assume that t and di(t) is continuous, then the probability in

(36) can be interpreted as the rate of change of the degree of vi in time [83], i.e.

d

dt
di(t) =

di(t)

2t
. (37)

By solving the simple differential equation in (37), we obtain:

di(t) = c · (2t)
1
2 (38)

furthermore, we know that di(i), the degree of vi at time i is equal to m, hence

the boundary condition to (37) is di(i) = m, thus c = m(2i)−
1
2 . Substituting it in

Eq. (38) we obtain:

di(t) = m

(
t

i

) 1
2

1[t ≥ i]. (39)

This can be used in order to calculate γ analytically. Given that 0 < i ≤ t, the
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cumulative distribution of di(t) is

P
(
di (t) ≤ k

)
= P

m(t
i

) 1
2

≤ k

 = P

(
t

i
≤
(
k

m

)2
)

(40)

= P

(
i >

t ·m2

k2

)
(41)

Notice that at time t the arrival time of a node vi is distributed uniformly on

the interval [0,m0 + t], i.e. it has uniform distribution with density 1
m0+t

. Thus,

substituting this into Eq. (41), we conclude that

P

(
i >

t ·m2

k2

)
= 1− P

(
i ≤ t ·m2

k2

)
= 1− t ·m2

k2
· 1

m0 + t
(42)

Hence, the probability density function can be obtained by

P (k) =
d

dk
P
(
di (t) ≤ k

)
= 2

m2t

m0 + t
· 1

k3
, (43)

since the node vi was arbitrary, thus we have that P (k) ∼ k−3

Note that this proof is heavily relies on the heuristic argument in Eq. 37, but with

the help of the famous Azuma–Hoefding inequality Bollobás et al. showed in [81]

how to calculate the scaling parameter γ rigorously on the precisely defined BA

model.

In order to prove the scaling of the maximum degree precisely, we need to

consider a precise modification of the BA model: For the sake of simplicity, let

us start from two nodes connected by an edge. Then at every step a new vertex

is added to the graph, and it is connected to the old nodes, with probabilities

proportional to the degree of the other vertices, and independently of each other,

i.e. the number of new edges in a step is not a fixed parameter but a random

variable.

Similarly to the proof of Theorem 6, let us number the vertices according to

the order of their creation, hence the vertex set of the model after n iteration is

{0, 1, . . . , n}. Let Xn,k denote the number of vertices of degree k and Yn,k be the
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number of vertices of degree at least k, after n steps. Since, after n steps we have

n+ 1 nodes, we have that Xn,0 +Xn,1 +Xn,2 + . . . = n+ 1. Notice that Xn,k and

Yn,k are connected through the Sn sum of degrees as follows:

Sn =
∑
k≥1

kXn,k =
∑
k≥1

Yn,k, (44)

since in both summations we counted the nodes of degree k exactly k times. At

the nth step the probability that an old vertex of degree k is connected to the

newcomer node is defined as λk/Sn−1, where the proportionality coefficient λ is

less than 2.

Furthermore, let Fn denote the σ-field, generated by the first n steps of the

model, moreover let ∆n,k be the number of new edges into the set of old vertices

of degree k at the iteration step n. With ∆n,k we can formulate the total number

of new edges at time n as:

∆n =
∑
k≥1

∆n,k. (45)

Notice, that ∆n+1,k conditioned to Fn has binomial distribution with param-

eters Xn,k and λ k
Sn

, since during the iteration step of n + 1, an edge is drawn to

an old vertex of degree k according to a Bernoulli distributed random variable,

with probability parameter λ k
Sn

. Furthermore, the edge additions are independent

from each other, thus the ∆n+1,k new edges to the set of old k-degree nodes consist

of Xn,k trials of Bernoulli distributed events, which is by definition has Binomial

distribution with parameters Xn,k and λ k
Sn

. Hence we have that

E(∆n+1 | Fn) = E

∑
k≥1

∆n+1,k

∣∣∣∣∣∣ Fn
 =

∑
k≥1

E
(
∆n+1,k

∣∣ Fn) = (46)

=
∑
k≥1

E

(
Bin

(
Xn,k, λ

k

Sn

))
=
∑
k≥1

Xn,kλ
k

Sn
= (47)

= λ
1

Sn

∑
k≥1

kXn,k = λ
1

Sn
Sn = λ, (48)

i.e. the expected number of new edges at each step is λ.
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Before we prove a strong law of large numbers for the maximum degree, we

have to understand the asymptotics of Sn.

Theorem 7. [82]

Sn = 2λn+ o
(
n

1
2

+ε
)
, ∀ε > 0.

Proof. With ∆1 = 1 let us define ζn =
∑n

j=1

(
∆j − λ

)
= Sn

2
−nλ, since the sum of

degrees agrees with the half of the number of edges. Notice that ζn is a martingale

with respect to Fn since

E(ζn+1 − ζn | Fn) = E(∆n+1 − λ | Fn) = λ− λ = 0, (49)

what is more, (ζn,Fn) is a square integrable martingale, since the variance of ζn is

equal to
∑n

j=1

∑
k≥1 Var(∆j,k) and then the exact variance can be easily calculated

using the law of total variance. By the convexity of the square function, ζ2
n is a

submartingale, so the process An in its Doob–Meyer decomposition is increasing.

An is also called the predictable quadratic variation of (ζ2
n) and usually denoted

with angle brackets as 〈ζ2
n〉. By the Doob–Meyer decomposition we have that

An =
n∑
j=2

Var(∆j|Fj−1) =
n−1∑
j=2

∑
k≥1

Var

Bin(Xj,k, λ
k

Sj

) = (50)

=
n−1∑
j=2

∑
k≥1

Xj,k
kλ

Sj

(
1− kλ

Sj

)
≤ nλ. (51)

From [84], we know that ζn = o

(
A

1
2

+ε
n

)
almost everywhere on the event

An →∞, i.e. we obtained that Sn
2
− nλ = o

(
n

1
2

+ε
)

, which completes the proof.

Now we can move on to the proof of the maximum degree.

Theorem 8. Let Mn = max{k : Xn,k > 0} denote the maximum degree of the

(modified) BA model after n iteration steps. Then we have

[82] lim
n→∞

Mn√
n

= µ (52)

almost surely, where the limit µ differs from zero with positive probability.
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Proof. Let Wn,j denote the degree of vertex j after the nth step (recall that j is

its creation time), with initial values Wn,j = 0 for n < j, W1,0 = W1,1 = 1 and

Wj,j = ∆j. Then Mn can be rewritten as

Mn = max{Wn,j : j ≥ 0}.

(Note that non-rigorous counterpart of Wn,j is dj(n) from Eq. (39).)

Now let us introduce cn,k normalizing terms as follows:

cn,k =
n−1∏
i=1

Si
Si + kλ

, n ≥ 1, k ≥ 1. (53)

For n→∞, with probability 1, we have that

cn,k = exp

−kλ n−1∑
i=1

1

Si
+
k2λ2

2

n−1∑
i=1

1 + o(1)

S2
i

 (54)

since

ln(cn,k) =
n−1∑
i=1

ln

(
Si

Si + kλ

)
=

n−1∑
i=1

ln

(
1

1 + kλ
Si

)
= (55)

= −
n−1∑
i=1

ln

(
1 +

kλ

Si

)
= −

n−1∑
i=1

(
kλ

Si
− 1

2

(
kλ

Si

)2

+ . . .

)
= (56)

= −kλ
n−1∑
i=1

1

Si
+
k2λ2

2

n−1∑
i=1

1 + o(1)

S2
i

, (57)

where in Eq. (56) we used the Taylor series expansion of ln(1 + x) at 0. From

Theorem 7 we know that 1
Si

= 1
2λi

(1 + o(i−
1
2

+ε)), substituting this into Eq. (57),

and using the fact that

lim
n→∞

n∑
i=1

1

i
− ln(n) = γ,

we obtain that for n→∞, ln(cn,k) differs from −k
2

ln(n) only by a term converging
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with probability 1. Thus, we have that

cn,k ∼ γkn
− 1

2 , (58)

with an appropriate positive random variable γk.

Furthermore, we clearly know that

E
(
Wn+1,j

∣∣ Fn) = Wn,j + λ
Wn,j

Sn
= Wn,j

Sn + λ

Sn
. (59)

Let us define Z1
n,j as

Z1
n,j = cn,1Wn,j.

From Eq. (59) for n ≥ max{j, 1} we have that (Z1
n,j,Fn) is either a positive

martingale (can be easily checked by definition) or constant zero, hence it converges

almost surely to some ζj. To estimate the moments of ζj, consider

Zk
n,j = cn,k

(
Wn,j + k − 1

k

)
. (60)

Since in a step the degree of the node j is either increases by one or remains

the same, Wn+1,j − Wn,j is equal to either 1 or 0, hence by using the binomial

coefficient’s recurrence relation, namely that
(
n+1
k

)
=
(
n
k

)
+
(
n
k−1

)
, we can write

that(
Wn+1,j + k − 1

k

)
= (61)

=

(
Wn,j + k − 1

k

)
+
(
Wn+1,j −Wn,j

)(Wn,j + k − 1

k − 1

)
= (62)

=

(
Wn,j + k − 1

k

)(
1 +

(
Wn+1,j −Wn,j

) k

Wn,j

)
, (63)
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since(
Wn,j + k − 1

k − 1

)
=

(Wn,j + k − 1) · (Wn,j + k − 2) · . . . · (Wn,j + 1)

(k − 1) · (k − 2) · . . . · 1
= (64)

=
k

Wn,j

(Wn,j + k − 1) · . . . · (Wn,j + 1) ·Wn,j

k · (k − 1) · (k − 2) · . . . · 1
= (65)

=
k

Wn,j

(
Wn,j + k − 1

k

)
. (66)

By taking conditional expectation of Eq. (63) with respect to Fn we obtain that

E

((
Wn+1,j + k − 1

k − 1

) ∣∣∣∣∣ Fn
)

= (67)

=

(
Wn,j + k − 1

k

)(
1 +

k

Wn,j

P
(
Wn+1,j −Wn,j = 1

)
+ 0

)
= (68)

=

(
Wn,j + k − 1

k

)(
1 +

k

Wn,j

λ
Wn,j

Sn

)
= (69)

=

(
Wn,j + k − 1

k

)(
1 +

λk

Sn

)
, (70)

hence, for n ≥ max{j, 1}, (
Zk
n,j,Fn

)
is also a convergent martingale. Notice that since

(
cn,1
)k ≤ cn,k, we can majorize(

Z1
n,j

)k
by k!Zk

n,j.

Now, cn,1Mn = max{Z1
n,j : 0 ≤ j ≤ n}, is a maximum of an increasing number

of nonnegative martingales, which is a submartingale. The rest of the proof can be

completed by showing that this submartingale is bounded in Lk, for some k ≥ 1.
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Let us start from the estimation

E(cn,1Mn)k = E

(
max

{(
Z1
n,j

)k
: 0 ≤ j ≤ n

})
≤ (71)

≤ E
(

max
{
k!Zk

n,j : 0 ≤ j ≤ n
})
≤ k!

n∑
j=0

E
(
Zk
n,j

)
= (72)

= k!E(Zk
1,0) + k!

n∑
j=1

E(Zk
j,j) = k! + k!

n∑
j=1

E

(
cj,k

(
Wj,j + k − 1

k

))
= (73)

= k! + k!
n∑
j=1

E

(
cj,k

(
∆j + k − 1

k

)
.

)
(74)

By the law of total expectation (tower-rule) we have that

E

(
cj,k

(
∆j + k − 1

k

))
= E

E(cj,k(∆j + k − 1

k

) ∣∣∣∣∣ Fj−1

) = (75)

= E

cj,k E((∆j + k − 1

k

) ∣∣∣∣∣ Fj−1

) . (76)

Now, notice, that independently of j,

E

((
∆j + k − 1

k

) ∣∣∣∣∣ Fj−1

)
≤ E

((
π + k − 1

k

))
, (77)

where π denotes a Poisson(λ) random variable. Eq. (77) holds, since by definition

∆j =
∑j−1

k=0 ∆j,k, furthermore, we can write that(
∆j + k − 1

k

)
=

∑
l0+...+lj=k

(
∆j,0

l0

)
· . . . ·

(
∆j,j−1

lj−1

)(
k − 1

lj

)
. (78)

Notice that the binomial coefficients on the right-hand side are conditionally

independent by the fact that we draw the edges independently. We have al-

ready seen that the conditional distribution of each ∆j,i is binomial. Let ξ be

a Binomial(n, p), and η a Poisson(np) random variable. Then using the factorial
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moments of these distributions we have that

E

((
ξ

l

))
= E

(
ξ(ξ − 1) . . . (ξ − l + 1)

l!

)
=

1

l!

(
n

l

)
pll! = (79)

=
n(n− 1) . . . (n− l − 1)

l!
pl ≤ (np)l

l!
=

E(η)l

l!
= (80)

= E
(
η(η − 1) . . . (η − l + 1)

l!

)
= E

((
η

l

))
. (81)

Hence, if we replace every random variables ∆i,j on the right-hand side of Eq.

(78), by conditionally independent Poisson variables, the conditional expectation

cannot decrease, hence the statement of Eq. (77) follows.

Remembering that we only have to prove the Lk-boundedness of the submartin-

gale cn,1Mn, by the previous arguments and Eq. (71) and (75), it is enough to show

that
∞∑
j=1

E
(
cj,k
)
< +∞. (82)

From Eq. (58) it is clear, that if k > 2 then
∑∞

j=1 cj,k converges, but the integra-

bility does not follow immediately.

Let k = 8 and N = max{n : Sn > 4λn}. Then for j > N , we have

cj,8 =

j−1∏
i=1

(
1− 8λ

Si + 8λ

)
≤

j−1∏
i=N+1

(
1− 8λ

4λ+ 8λ

)
= (83)

=

j−1∏
i=N+1

(
1− 2

n+ 2

)
=

(N + 1)(N + 2)

j(j + 1)
, (84)

but notice that this obviously holds even for j ≤ N . Thus, for the boundedness of∑∞
j=1 E(cj,8) it is sufficient to prove that E

(
N2
)
< +∞.

By the usual large deviation arguments, i.e. with the help of the exponential

version of the Chebyshev’s inequality, we have

P(N = n) ≤ P(Sn > 4λn) = P
(

2Sn/2 > 22λn
)
≤

E
(

2Sn/2
)

4λn
. (85)
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The reason why we divided Sn by 2 is because Sn equals to twice the number of

edges, hence 1
2
Sn =

∑n
i=1 ∆i. By looking at the result of Eq. (85), notice that in

order to finish the proof, we have to estimate the moment generating function of

Sn. With ∆1 = 1, we can write

E
(

2Sn/2
)

= E
(
E
(

2Sn/2
∣∣∣ Fn−1

))
= E

(
2

1
2
Sn−1 E

(
2∆n

∣∣∣ Fn−1

))
= (86)

= E
(

2
1
2
Sn−1 E

(
2
∑n−1
j=1 ∆n,j

∣∣∣ Fn−1

))
= (87)

= E

2
1
2
Sn−1

n−1∏
j=1

E
(

2∆n,j

∣∣∣ Fn−1

) = (88)

= E

2
1
2
Sn−1

n−1∏
j=1

E

(
e
Bin

(
Xn−1,j ,

λj
Sn−1

)
ln(2)

) = (89)

= E

2
1
2
Sn−1

n−1∏
j=1

(
λj

Sn−1

eln(2) + 1− λj

Sn−1

)Xn−1,j

 = (90)

= E

2
1
2
Sn−1

n−1∏
j=1

(
λj

Sn−1

)Xn−1,j

 ≤ (91)

≤ E

2
1
2
Sn−1 exp

n−1∑
j=1

λjXn−1,j

Sn−1


 = (92)

= E

2
1
2
Sn−1 exp

 λ

Sn−1

n−1∑
j=1

jXn−1,j


 = (93)

= eλE
(

2
1
2
Sn−1

)
, (94)

where in Eq. (89) we used again the fact that the conditional distribution of

∆n,j with respect to Fn−1 is binomial, furthermore in Eq. (90) we applied the

well-known moment generating function of the binomial distribution at t = ln(2).

Therefore, we obtained that E
(

2Sn/2
)
≤ eλE

(
2

1
2
Sn−1

)
≤ . . . ≤ eλn, which
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combined with Eq (85), implies that

P(N = n) ≤
(
e

4

)λn
.

Hence, we obtained that, indeed E
(
N2
)
< +∞, which completes the proof.

2.4.3 Dynamical growth model

The dynamical growth (DG) model also called Song–Havlin–Makse model (SHM),

was introduced by Song, Havlin and Makse in [14], which was motivated by the

difference of the distribution of the R(k1, k2) degree correlation ratio (see Defi-

nition 23) between fractal and non-fractal real-world networks. They found that

the famous fractal network of E. coli, R(k1, k2) shows an anti-correlation of the

degrees, i.e. the high degree nodes are mostly connected to low degree nodes (dis-

assortativity), i.e. there is a ”repulsion” between the hubs of the network. On the

other hand they also investigated the network of Internet at the router level, which

is known to be non-fractal, in which there is a high correlation between degrees,

thus their conjecture was disassortativity between the degree of the nodes leads to

fractal, and assortativity between the degrees leads to non-fractal network. Thus

their dynamical growth model uses these principles, when a new node connects

to the already existing ones, in order to create a fractal, non-fractal or a mixture

between fractal and non-fractal [14]. The algorithm of the model is as follows:

1. Initial condition: In generation t = 0, we start from a simple structure of

a few nodes e.g. two nodes connected via a link.

2. Growth: At each iteration step, the next generation t+ 1 is obtained recur-

sively connecting m ·degt(v) new vertices (offsprings) to the already existing

v nodes, where m is a predefined parameter, and degt(v) is the degree of the

node v at time t. Let us denote the offsprings of v by (v(i))i=1,...,m degt(v).

3. Rewiring of the edges: In addition, we identically rewire every old (u, v)

edge with probability p, more precisely as a stochastic combination of Mode

I (with probability p) and Mode II (with probability (1− p))
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i) Mode I: We keep the old edge (u, v),

ii) Mode II: We delete (u, v), and add x ≤ m new (u(i), v(i))i=1,...,x links

connecting pairs of the offsprings of the nodes u and v.

Figure 6 illustrates the growing mechanism of one iteration step of the model with

parameters m = 3, p = 1 and both x = 1 and x = 2. Note that in the case of

x = 1, the rewiring can be interpreted as the replacement of the (u, v), between a

randomly chosen offspring pair. In this model, the key parameter is the p rewiring

parameter, because S. Havlin et al. showed that when p = 0 the model generates

non-fractal graph, with assortative mixing, on the other hand, when p = 1 the

model leads to fractal graph, with disassortative structure according to the R

degree correlation ratio. Furthermore, there is a continuous transition between

the the two deterministic states, where the mixture property emerges. Note, that

in our experiments, the model generates disassortative graphs for all values of p

according to the ρ assortativity coefficient, and varying the rewiring parameter

does not change significantly the assortativity [15].

Figure 6: The evolution of the Song–Havlin–Makse model, with parameters m = 3,
p = 1 and x = 1, 2. The figure is from [57]

2.4.4 Hub attraction dynamical growth model

We have already mentioned that Song et al. showed that the collaboration network

of actors is fractal [16]. On the other hand, due to the social domain of the

network, there is a high probability, that high degree actors are connected, i.e. that
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they have collaborated in at least one movie, which in the language of network

theory means that in this network there is a great chance, that the hubs are

connected, which contradicts the aforementioned repulsion-between-hubs principle.

Thus, motivated by this observation L. Kuang et al. modified the DG model, such

that with the new mechanism the model can generate fractal networks, with strong

hub attraction [18]. Hence, the hub attraction dynamical growth (HADG) model

is based on the previously described DG model from 2.4.3, with the following

modification applied: firstly, the rewiring probability of the model is flexible, i.e.

it depends on the degree of the endpoints of the links. The other modification, is

what they call within-box link-growth method, which means that after the egde

rewiring, the model adds additional edges between the newly added offsprings, in

order to increase the clustering coefficient of the network. The within-box link

growth method was motivated by the fact that real-world networks are usually

highly clustered, especially social networks [4], yet the SHM networks are either

trees, or contains only long cycles, i.e. its global clustering coefficient is zero. The

evolution of the HADG model is defined as follows [18]:

1. Initial condition and growth: The start and the growth of the model is

exactly the same as in the DG model (see step 1 and step 2).

2. Flexible edge rewiring: We rewire the (u, v) edge with probability a if
degt(u)
degmax

t
> T and degt(v)

degmax
t

> T , and rewire it with probability b otherwise.

Formally the p(u,v) edge rewiring probability of the (u, v) edge at time t+ 1

is given by:

p(u,v) =

a, ifdegt(u)
degmax

t
> T and degt(v)

degmax
t

> T

b, otherwise,
(95)

where degmax
t is the maximum degree in the network at time t and a, b, T ∈

[0, 1] are predefined parameters. Thus, if de define a < b, then hubs will have

higher probability to be connected than non-hubs.

3. Within-box link-growth: At step t + 1, for each old v nodes, we add

degt(v) edges between the newly generated offsprings of v.
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Note that the last step does not effect the fractal and scale-free property of the

model [18]. The conclusion of the article [18] is that there are fractal networks,

with assortative behaviour, i.e. where the most connected nodes can be connected,

and with this model, with appropriate parameter settings, we can generate such

graphs. Figure 7b shows the results of the box-counting algorithm on this model,

with parameters a = 0.1, 0.65, 1, the other two parameters were chosen to be fixed

values of b = 0.1 and T = 0.4.

2.4.5 Repulsion based fractal model

Although Kuang et al. highlighted the existence of fractal networks with hub-

connection and showed that the repulsion-between-hubs principle of Song et al.

cannot be the exceptional origin of fractality, they did not explained nor investi-

gated that then which other rules give rise to fractal structure of the networks. In

my Bachelor thesis[15], we introduced a new model, called repulsion based fractal

(RBF) model, which resolves the contradiction between the arguments of the two

articles. Here we also attempt to show that the apparent contradiction is due

to the famous Third Variable Problem. While, in the SHM model the extent of

fractality indeed correlates with the magnitude of disassortativity, we assume that

this relationship is not causal, and there is a third variable in the background,

which affects both fractality and degree correlation. The growing mechanism of

the repulsion based fractal model is as follows:

1. Initial condition and growth: The start and the growth of the model is

exactly the same as in the DG and the HADG model (see step 1 and step

2).

2. Dynamic edge rewiring: The edge rewiring probability of the (u, v) edge

depends on the average of the degrees of u and v, i.e. the pY(u,,v) dynamic

edge rewiring probability at time t+ 1 can be calculated by:

pY(u,,v) = 1−
∣∣∣∣Y − degt(u) + degt(v)

2 degmax
t

∣∣∣∣ , (96)

where 0 ≤ Y ≤ 1 is a predefined parameter, and degmax
t is the maximum degree

in the graph at time t. With the Y parameter, we assign high edge rewiring
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Figure 7: The log-log plot of the result of the box-counting on the repulsion based
and the hub attraction DG model. Figure 7a shows repulsion based model with
different Y parameters, and 7b shows the hub attraction model with different a
parameters, while b = 0.1 and T = 0.4.

probability to those edges, which endpoints’ average degree is close to Y · degmax
t ,

for example if Y = 0, with high probability we rewire those edges, which connect

nodes with relative small degrees, on the other hand in case of Y = 1, with high

probability we rewire the edges, that are linked between nodes with large degrees,

i.e. between hubs. The speciality of this model, is that it gives rise to fractal

graphs for all Y ∈ [0, 1]. For example Figure 7a shows the distribution of NB(lB)

on a log-log scale of this model with Y = 0, 0.5, 1 parameter settings.

Our conjecture is that the mentioned third variable is the “repulsion”, which

naturally increases the mean graph distances, and we have seen that the less small-

world a graph is the more fractal it is. On the other hand repulsion of course

effects the degree correlations, since if the repulsion is between hubs, i.e. in the

model Y = 1, then hubs are only connected with nodes of small degree, thus the

degrees are anti-correlated, while when the repulsion is between the small degree

nodes, that means that the hubs are connected, and there are long paths consist of

relative small degree nodes, hence there is significantly larger correlation between

the degrees.
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2.4.6 Mixture model

The following model was motivated by our observation, that fractal real-world

networks often show assortative mixing patterns, which is in contrast to the re-

sults of [14], namely that fractal networks are often disassortative. As we have

already mentioned, the gridlike networks such as metro or road networks (Figure

3 and 5) are fractal, while the degrees of these networks are highly correlated.

Our novel model embraces both preferential attachment mechanism and the ”geo-

metric” nature structure, that emerges in the infrastructure related networks [79],

furthermore in blood vessels and trabecular bones [80], that can be embedded in

two- and three-dimensional Euclidean spaces respectively. The model is defined

as follows:

1. Initial condition: We start with a k-dimensional Gn1,...,nk grid graph with

n1 × . . .× nk vertices, where k and n1 . . . , nk are predefined parameters.

2. Edge rewiring: Then similarly to the WS model, with probability p every

(vi, vj) edge is replaced by (vi, vk), but the vk node is not chosen uniformly,

but according to the preferential attachment mechanism. We only rewire

those edges, which were originally present in the grid graph, i.e. one edge is

only rewired once.

Thus, varying the p parameter from 0 to 1, the model initially generates fractal,

non-small-world, assortative graphs, which then transform into non-fractal, small-

world, disassortative networks, this phenomena is well-illustrated on Figure 8.

However, if we define the probabilities as in the original preferential attachment

model, then this procedure does not lead to scale-free notworks, but if we modify

the probabilities, such that we increase the attraction of the nodes that degree

is greater than half of the maximal degree, then it results to emergence of larger

hubs, and our conjecture is that degree distribution starts to scale as a power-law.

To the modification we used the well-known sigmoid function.

Let denote the pvj probability that the vk endpoint is replaced to vj is propor-

tional to

pvj =
1

1 + exp

(
−a
(

deg(vj)

degmax − 1
2

)) ,
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Figure 8: The transition of fractality, assortativity and diameter of the mixture
model. Figure 8a shows the NB of the model with different p parameters, and
Figure 8b shows the change of ρ assortativity and diameter as a function of p.

where a is a positive constant, which defines the sharpness of the ”S”-shaped curve,

i.e. for a → ∞ this function converges to the Heaviside step function shifted to

the right by 1
2
.

Figure 8 shows that the model indeed at p = 0 is pure fractal indeed, which

transforms into a mixture of fractal and small-world. Note that, while the lB,max

decreases the fractal dimension does not vary, this suggests that the local fractal

structure does not change. As we anticipated, Figure 8b shows that as p increases,

the assortativity and the diameter of the model decreases drastically, since as we

rewire the edges, we create shortcuts, furthermore the assortativity changes, since

hubs emerge which are connected with numerous nodes of relative small degree.

The subfigure 9a of Figure 9 shows the log-log plot of the empirical degree

distribution of the sigmoid-modified mixture model with rewiring probability of

p = 1 and as a reference Figure 9b shows the log-log plot of the degree distribution

of a similar sized graph generated by the Barabási–Albert model with m = 2

parameter setting. The plot suggests that the mixture model becomes scale-free

as p→ 1, however the analytical proof of this conjecture requires more research of

this model.
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Figure 9: The log-log plot of the degree distribution of the modified mixture model
and the scale-free Barabási–Albert model.

3 Data-driven analysis of network metrics

In this section we present a data-driven analysis of real-world complex networks.

Machine learning techniques provide powerful tools to discover patterns in data,

hence it can be applied in network analysis as well in order to effectively find

the common and different aspects of real networks from different domains. To this

end we collected 584 networks from five different domains (brain, cheminformatics,

social, food and miscellaneous), and then we calculated a rich set of graph metrics

of these graphs. The chosen graph measurements are detailed in Subsection 3.1.

To the best of our knowledge, we have gathered the largest dataset, which besides

the basic descriptive properties contains several sophisticated graph metrics of real

networks, furthermore this is the only dataset which contains information about

the fractality of the networks. Here we set multiple goals with this dataset.

Firstly, we attempt to determine the most influential metrics, by which the

domains of the networks can be identified. To this end, we will use two different

approach: in Subsection 3.2 we use exploratory data analysis, mainly data visu-

alizations of the different metrics, and study their relations and distributions on

the different domains. In Subsection 3.3.2 we will teach different machine learn-

ing models to be able to distinguish the different domains by the graph metrics,

this task in the language of data science is called classification. Note that there

is a recent brief study [85], where similar methods have been used, but their re-
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sults are arguable, since they also used the size of the graphs and the number of

edges as explanatory variables which could identify the different domains alone.

Furthermore, they did not normalized the attributes such as the number of total

triangles, which has significantly different possible range of values in small and in

large graph. The importance of the normalization is discussed in the subsequent

subsection.

Another important problem, that whilst there are numerous graph metrics in-

troduced in the last few decades, but it is still unclear that, whether there exists

a complete non-redundant set of graph metrics that can fully describe the net-

works. The importance of this question reflects in the fact that there are several

approaches, trying to find this set of attributes, and data-driven techniques seem

to be the solution; for example in [26] Garcia-Robledo et al. gathered data about

the network of the Internet, and followed data-driven approach to study the cor-

relation of the graph metrics, and to find a complete non-redundant set. Similarly

in [34] Filkov et al. gathered data from 113 real-world networks in order to find a

set of metrics which enables comprehensive comparison between any two networks.

Hence, in order to study this problem we again propose two different approaches,

firstly in Section 3.2.1 we investigate the correlation of the graph metrics and then

we will assemble a set of uncorrelated i.e. non-redundant variables. Furthermore,

in Subsection 3.3.1 we will use machine learning techniques, namely feature se-

lection algorithms, which primary goal is to select the relevant features for use in

machine learning model training.

As we have already mentioned that our dataset is unique not just by its size

but also by the involved fractality related measurements such as the estimated

Zipf, Pareto and ML power-law fractal scaling parameters. Hence in the following

subsections we will also apply the previously described data analysis techniques

to explore the relationship of fractal related metrics with every other graph at-

tributes, and compare the observations to the existing results of [14]. For example

in Subsection 3.3.3 we will use regression techniques to estimate the fractal scaling

parameters, and in Subsection 3.2.1 we will discuss the correlation of fractality

with other graph metrics considering both real-world networks and models.
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3.1 Dataset

In this section we introduce our gathered dataset, describe its real-world networks

and detail the studied graph measurements. In the following subsection we intro-

duce the background of our networks, and the necessary data-preparations, then

in Subsection 3.1.2 we detail the chosen graph measurements.

3.1.1 Networks

As we have already mentioned, five different domains are studied, namely brain

networks (mainly human neural networks), social networks (mostly Facebook friend-

ship and Twitter retweet networks), food webs i.e. consumer-resource networks

(graph representation of what-eats-what in an ecological community), cheminfor-

matics networks (protein-protein interactions), and there is a fifth category of

miscellaneous networks, which half is from the collection of DIMACS [36] and the

other half is from the misc group from Network Repository [29], which contains

a few real-world networks such as power-grid and flight networks, but there are

a great deal of ”synthetic” networks such as networks of optimization problems11

from SuiteSparse [37] as well. The gathered dataset is balanced, meaning that

the number of graphs from the different domains are proportional, namely there

are 106 food, 100 brain, 100 misc, 99 cheminformatics, 61 DIMACS and 84 social

networks.

The graphs were collected one by one from several different online databases

[29, 30, 31, 32, 33], thus unfortunately the format of the graphs was not uniform,

for example in some cases the graphs were given in weighted edge-list form, but

sometimes in adjacency matrix, incidence matrix, or in the case of food networks

in a third type of matrix representation was used. After importing these graphs

in Wolfram Mathematica, we realized that some of the graphs are disconnected or

directed, hence we took the largest connected component of each graph, converted

to undirected, and removed the self-loops.

11For example see https://sparse.tamu.edu/MathWorks/QRpivot
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Figure 10: The number of edges and nodes of the gathered graphs on logarithmic
scale. The different colors indicate different network domains. The figure was
created in Tableau.

3.1.2 Metrics

After we succesfully imported every network, we calculated 32 different graph

measurements listed in Table 3, and exported the results into a single dataset,

which consists of 550 rows and each row corresponds to a graph, and the columns

contain the different measurements, plus the name and domain of the graphs. The

most important data preparation task of the obtained dataset is the normalization

of the measures, since most of the metrics have different meaning considering

different sized networks, specially the distance related attributes, for example a

diameter of 10 can have different implications for a network of size 50 or 5000. As

we have already mentioned in the introduction of Section 3, unfortunately there

are studies where the authors did not take into consideration the normalization of

the size-dependent measurements, which is only excusable, when the size of the

studied networks are proportional to each other, but for example the food webs

and protein-protein interaction networks are usually consists of a few dozens of
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nodes, while the social networks topically involve thousands of participants.

Figure 10 shows the number of nodes and edges of the collected networks on

a logarithmically scaled scatter plot. The figure also well illustrates that without

the miscellaneous group, the rest of the domains could be easily partitioned by

the number of edges and nodes, thus we excluded these variables from the set

of explanatory attributes. Note that in the figure, while Facebook and Twitter

networks have roughly the same size, the retweet graphs are significantly sparser.

The scattered green (social) points between the two social media networks are the

collaboration networks. For example one of our largest graph is the ca-HepPh is

the well studied [86, 87] High Energy Physics - Phenomenology (HEP-PH) col-

laboration network, which represents scientific collaboration between authors who

have papers submitted to HEP-PH category.

In the normalization process, we followed [24] where a great deal of metrics

and their normalization constant are detailed, and for the variables that were not

applied in [24] we proposed natural normalizing constants. We detail the used

metrics and their normalization in Table 3, and we remind that the definitions of

the metrics can be found in Section 1. Note that we did not include the average

of the degrees, since in the case of undirected graphs, the normalized (by |V | − 1)

mean vertex degree coincides with the graph density:

1
|V |
∑

vi∈V (G) deg(vi)

|V − 1|
=

2|E|
|V | (|V | − 1)

.

The MeanDegreeConnectivity function of the Wolfram language computes the

so-called 〈knn〉 neighbour connectivity, which gives a list of the k-mean degree

connectivity for the graph for succesive k = 0, 1, . . . , degmax, where the k-mean

degree connectivity is the average of the mean neighbor degrees of vertices of degree

k. Thus, if this function is increasing in k then the network is assortative, and

alternatively if the function is decreasing that means that the high degree nodes

tend to connect to nodes of lower degrees, i.e. the graph is disassortative. The slope

of these datapoints are denoted with the variable slopeOfMeanDegreeConnectivity.

Note that we have to interpret the meaning of the variables (ParetoParame-

ter, ZipfParameter, MaximumLikelihoodParameter) of the estimated parameters

of the fitted Pareto, Zipf and power-law distributions differently as their name
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would suggest. We fitted these distributions to the previously calculated NB(lB)

datapoints of all of the networks, which means that we fitted power-law functions

to non-power-law distributed data as well, and as a result of this in case of non-

power-law data points the value of the estimated scaling parameters are lower (i.e.

closer to one) than the estimated parameters of the power-law distributed data

points. That is because if we consider the formula (26) of the maximum likelihood

estimate of the scaling parameter, then if the xi data points decay exponentially

i.e. if instead of x−αi we have e−xi decay, then substituting this into the equa-

tion (26) or (30), then due to the cancellation of logarithm of exponentials, the

summands are proportional to xi, whilst in power-law case the summands are pro-

portional to lnxi, hence after taking the reciprocal of the sum, for non-power-law

distributed data points we obtain lower value of estimated scaling parameters,

since lnx� x. This argument also applies to the parameters which were obtained

by the Wolfram Mathematica’s built-in parameter estimator, since these parame-

ters were also achieved by maximum likelihood method. Thus, for a given network

these attributes indicates how fast is the decay of the NB(lB) is, the more close

they are to 1 the faster NB decays.
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Table 3: The graph metrics and their descriptions and normalization constants.

Variable Description Normalized by
Name Unique name of the graph —
Category Domain of the network —
|V | Number of nodes —
|E| Number of edges —
minDeg Smallest degree in the graph Maximum possible degree: |V | − 1
maxDeg Largest degree in the graph Maximum possible degree: |V | − 1

Scalefreeness
The absolute correlation
of logP (k) and log k

—

scalingOfDegreeDistribution
Scaling parameter of the logarithm
of the degree distribution, obtained
by linear regression procedure

—

scaelingOfMeanNeighbourDegrees
Scaling parameter of the logarithm of the
mean neighbour degree distribution,
obtained by linear regression method

—

slopeOfMeanDegreeConnectivity Slope of the 〈knn〉 function —
correlationOfMeanDegreeConnectivity Correlation of 〈knn〉 and k —
Diameter Diameter of the graph Longest possible path: |V | − 1
Radius Radius of the graph Longest possible path: |V | − 1
MeanGraphDistance Mean of the graph distances Longest possible path: |V | − 1

VertexConnectivity
Percentage of the vertex
connectivity

—

EdgeConnectivity
Percentage of the edge
connectivity

—

GraphLinkEfficiency The link efficiency of the graph —
GraphDensity The graph density —
maxBetweennessCentrality Maximum of the betweenness centralities Number of node pairs |V | (|V | − 1)/2
minBetweennessCentrality Minimum of the betweenness centralities Number of node pairs |V | (|V | − 1)/2
avgBetweennessCentrality Mean of the betweenness centralities Number of node pairs |V | (|V | − 1)/2
minEigenvectorCentrality Minimum of the eigenvector centralities —

maxEigenvectorCentrality
Maximum of the eigenvector
centralities

—

maxEdgeBetweennessCentrality
Maximum of the edge
betweenness centralities

Number of node pairs |V | (|V | − 1)/2

minEdgeBetweennessCentrality
Minimum of the edge
betweenness centralities

Number of node pairs |V | (|V | − 1)/2

Assortativity ρ assortativity coefficient —
GlobalClusteringCoefficient Global clustering coefficient —

avgLocalClusteringCoefficient
Mean of the local clustering
coefficients

—

VarLocalClusteringCoefficient
Unbiased sample variance of
the local clustering coefficients

Squared mean local clustering coefficient

VarMeanNeighborDegree
Unbiased sample variance of
the average neighbour degrees

Squared mean neighbor degree

VarVertexDegree
Unbiased sample variance of
the degrees of the nodes

Squared average degree

ParetoParameter
Estimated scaling parameter
of the fitted Pareto distribution

—

ZipfParameter
Estimated scaling parameter
of the fitted Zipf distribution

—

MaximumLikelihoodParameter
MLE of the scaling parameter,
obtained by the formula (30)

—
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Figure 11: Scatter plots of the different attribute pairs of the networks. The
different colors denote different domains. The figure was created in Tableau.

3.2 Exploratory data analysis

In this section we provide a brief exploratory analysis of the obtained dataset in

order to give insights to the main characteristics of the domains of the networks.

Figure 11 shows scatter plots of some of the determinative graph metrics. In the

first row, the plots show the average local clustering coefficient and the normal-

ized mean graph distance against the estimated scaling parameter of the Pareto

distribution12 of the previously calculated NB(lB) datapoints. The bottom row

represents the normed variance of the degrees on logarithmic scale and the the

12More precisely the scaling parameter minus one, since by the original definition of the Pareto
distribution, for value x the probability density is proportional to x−α−1.

60



normalized average betweenness centrality versus the ρ assortativity coefficient.

Considering the assortativity coefficient, the plots suggest that the food webs are

typically disassortative, while the brain networks are assortative and the chem-

informatics networks are symmetrically scattered meaning that they can be both

assortative, disassortative and uncorrelated as well.

Note that even if two different graphs come from the same domain, they can dif-

fer significantly, for example while all of the blue points represent brain networks,

the human neural networks are the assortative ones and the few disassortative

points correspond to animal brain networks. More thorough study of this observa-

tion requires more neural graphs of the different animal species, however there are

a few efforts that are related to our work, for example in the highly cited paper of

Bullmore and Sporns [88] studied the graph properties of the human neural net-

works obtained by fMRI and electrophysiological techniqes, in addition L. Deuker

et al. studied assortativity, clustering, density and shortest paths related metrics

of the human brain functional networks derived from magnetoencephalography

[89]. Similarly on the other three plots, the blue points which are in a cluster are

the human neural networks, and all the “outlier” blue points, are originated from

animals.

Similarly, in spite of the fact that both Facebook and Twitter networks are

social, they differ in many characteristics, for example the variance of the degrees

in retweet networks are in many orders of magnitudes larger, and the average local

clustering coefficient is near zero in Twitter graph, while considering Facebook

networks this coefficient is around 2.5.

The second plot suggests that there is a strong correlation between the scaling

parameter and the normalized mean graph distance. We remind that we mentioned

that these scaling parameters show that how quick the decay of the NB(lB) is, and

the higher the value of the parameter is, the more fractal the graph is. Thus, in ac-

cordance with the three-parameter-identification method introduced in Eq. (35),

the second subfigure in Figure 11 suggests that, the social networks are rather on

the non-fractal and small-world endpoint of the spectrum except a few collabo-

ration network, the famous Karate club 13 and the social network of bottlenose

dolphins [90]. Similarly, the brain networks are rather on non-fractal endpoint of

13See https://en.wikipedia.org/wiki/Zachary%27s_karate_club
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the spectrum except the few animal neural networks. On the other hand, the food

networks behave in a diverse range, they can be found on the whole spectrum,

but mostly on the intermediate section, to what we referred to as mixture between

fractal and small-world, i.e. in these networks the fractal scaling holds for small

lB’s and for large values of lB the small-world property dominates. Finaly, the

networks of cheminformatics represent the rather fractal and non-small-world part

of the palette, which is consistent with the observation of Song et al. in [14].

Note that the miscellaneous group of networks are filtered from the plots, since

they were too scattered due to the various origin domains. However, considering

the whole set of the networks, some correlations cancel out each other for example

the assortativity and the average betweenness centrality, but if we focus on a

single domain, we can observe, that there are domain-specific correlations, namely

in food webs these attributes are correlated. Similarly, this is the case in social

networks with the assortativity and the variance of degrees. We will discuss the

domain dependent correlations in more detail later in the paragraph 3.2.1.1.

3.2.1 Correlation analysis

In this subsection we reveal the correlations between the different graph metrics,

furthermore examine if these relationships are universal or are there any domain-

dependent relations. The majority of the measurements can be categorized by the

related graph properties as follows:

1. Centrality related variables: AvgBetweennessCentrality, MaxEdgeBe-

tweennessCentrality, MaxEigenvectorCentrality etc.

2. Shortest paths related variables: Diameter, Radius, LinkEfficiency,

MeanGraphDistance etc.

3. Density related variables: GraphDensity, maxDeg, minDeg, vertex and

edge connectivity etc.

4. Clustering coefficients: Assortativity, Global and local clustering coeffi-

cient, MeanDegreeConnectivity etc.
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Figure 13 shows that there are high correlations among the variables inside these

groups as one would anticipate with good reason, furthermore, as Table 13 sug-

gests, there are also non-trivial correlations among these groups. For example the

shortest path related variables such as the diameter and mean graph distances are

heavily correlated with the betweenness centralities. This is consistent with the

study [24], which argued that it can be analytically shown that the normalized

average betweenness centrality is linearly proportional to the normalized average

path length. What is more, these two groups of the centralities and graph dis-

tances are also highly correlated with the NB(lB) scaling parameters such as Zipf,

Pareto and MLE, which is also well illustrated in the top-right sub-figure of Fig.

11.

Note that in [14] Song et al. argue that fractal networks are more robust than

non-fractals, i.e. they are more resistant to targeted attacks. This is consistent

with the fact that EdgeConnectivityPercentage variable is highly correlated with

the fractal scaling parameters, however it is interesting that the VertexConnec-

tivityPercentage is rather correlated with the density related attributes, but it is

still moderately correlated with the fractal related MLE parameter. Further sur-

prising phenomena is that the maximum degree and the maximum betweenness

centrality are more connected to the clustering related measures specially to the

assortativity, then to their own groups.

The normalized minimum betweenness centrality feature turned out to be the

most uncorrelated variable, that is because this measurement is usually zero in in-

homogeneous networks. Although the computation of the Scalefreeness parameter

is rather based on heuristic arguments, its most correlated companion is the scaling

parameter of the degree distribution, which indicates that it indeed denotes the

scale-freeness of the networks.

Figure 12 shows the community plot of a weighted adjacency graph as an alter-

native visualization of the considerably correlated measurements with the absolute

coefficients greater than 0.43. The community structure of the graph was obtained

via the modularity-based clustering method, introduced by Newman et al. in [91].

The graph illustrates well that the centrality and the distance related metrics are

so correlated, that they have been merged into a single clique denoted with the red

nodes. The other two communities marked by purple and yellow, are the density-
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Figure 12: Weighted community graph of the measurements, whose absolute cor-
relation is greater than 0.43. The figure was created in Wolfram Mathematica with
the help of CommunityGraphPlot function.

robustness related (vertex- and edge connectivity, graph density) and node-level

features (assortativity, clustering coefficients and degree distribution) respectively.

Note that the graph also shows that while the density and distance metrics are in

different groups, they are connected through multiple variables, which is in con-

trast of the observation of [24], where the authors find that density and distance

metrics form two orthogonal groups of highly correlated metrics, but there are

other existing results that support our results [26].

The graph representation of the strong correlation also helps to select a non-

redundant set of the metrics, since all we have to do is to chose one highly connected

metric from each community. The completeness of the chosen non-redundant set

can be evaluated by machine learning models, by setting the explanatory variables

to be the selected non-redundant set. For more details, and results see Subsection

3.3.2.

Note that when we crated the correlation tables, we excluded the graphs of

the DIMACS collection, because these graphs were very distinct from all of the
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other domains, and behaved oppositely as the real-world networks in almost every

attribute, hence these graphs significantly distorted the correlation of the graph

metrics.
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Figure 13: The temperature map of the correlation table of the graph metrics. The shades of the color red
indicates positive, and the shades of the color blue indicates negative correlation. The more vivid the tone is,
the stronger the relationship is. The variables are ordered, such that the highly correlated variables are close to
each other. The figure was created in Wolfram Mathematica.
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Figure 14: The correlation differences from the correlation Table 13. In the first
row, the first table corresponds to the cheminformatics, the second to the food
networks. In the second row the first correlation map belongs to the brain, the
second belongs to the social networks.

3.2.1.1 Domain specific correlations

However real-world networks indeed share some common characteristics, there

are unique properties as well. As the author of [24] pointed out, we have to be

cautious when we investigate networks from different fields together. We have

already seen that normalization is a crucial step that cannot be omitted before

comparing different networks, but networks do not only differ in their sizes but

there are more latent disparities concealed in the structure of the graphs, such
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as the relationships of the metrics. Due to the domain-specific properties there

are even some contradictory observations regarding the relationship of density and

distance related metrics in [24] and [26].

In this paragraph we attempt to reveal these latent unique traits of the differ-

ent network domains. Figure 14 illustrates the domain-specific correlations, more

precisely, the figure consist of the cheminformatics, food, brain and social net-

works correlation matrix difference from the overall correlation matrix represented

in Figure 13, i.e. we calculated the correlations of the variables using only the

rows of the database that corresponds to a single domain, then from each domain-

specific correlation matrix we subtracted the “average” correlation matrix (Figure

13), which was calculated using all rows of the database.

The cheminformatics domain is the most separate domain, which is also dis-

cernible on the scatter plots of Figure 11. On the top-left part of the correlation dif-

ference figure the vivid blue colors indicate that in the protein-protein interaction

networks the correlation between the centrality measures (except the minimum

eigenvector centrality) and the fractality related parameters are not as strong as

in the other domains, moreover the fractality measures are rather correlated with

the density-robustness related metrics. Since, these networks seem to have fractal

structure, this supports the connection of robustness and fractality mentioned in

[14].

The top-right temperature map corresponds to the food networks, and here

the blue shades represents the negative correlation of the assortativity and the

betweenness centrality related measures. Hence this is a food web specific phe-

nomena and it was also illustrated in the fourth plot of Figure 11. Note that the

food webs are from the only domain where the assortativity and the fractality have

moderate anti-correlation, hence the conjecture of Havlin et al. that disassorta-

tivity leads to fractal structure indeed holds under certain circumstances, but it

does not apply generally to every network. Furthermore, there is a slightly higher

connection between the density and the clustering related measurements.

In the brain networks (left-bottom), the degree distribution related variables

are relatively highly correlated with the density related variables. Overall, the

social networks behave normally, i.e. the values of correlations within this domain

agrees with the correlations obtained from the whole dataset. On the other hand,
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the the correlation between fractal related measurements and other metrics differ

significantly from what we observed in other domains. This phenomenon is due to

the fact that most of the social networks are non-fractal and the measure of their

fractality is rather concentrated around a value as it can be seen in Figure 11.

Note that some of these correlation differences are corrupted by a very few

number of outliers, but before drawing conclusions, we inspected these correlation

differences on scatter plots, and we only highlighted those cases, which were not

distorted by outliers. In addition, the reason behind these unique correlation dif-

ferences requires further investigations and deeper understating of the underlying

domains.

3.3 Statistical learning

Supervised learning is a machine learning task, where we approximate (or learn)

a function that maps an input to an output based on the input-output pairs of

the provided dataset [92]. The output is usually called as label, and the label is

chosen according to the aspired goal. Here we apply machine learning algorithms

to achieve multiple goals, one of them is to study whether the collected graph

metrics are able to identify the different domains. In this case we will set the label

to be the names of the domains. However, in Subsection 3.3.3 we will estimate

graph metrics such as the scaling parameter of the NB(lB) function, thus here we

will set the label to be value of these parameters.

The difference between supervised and unsupervised learning is that in case of

the latter one we do not have labels, hence in an unsupervised learning task we try

to deduce a function that describes the hidden structure of the data, for example

cluster analysis and density estimation. In supervised learning we partition our

data to training set and test set. The models learn the connections between the

attributes on the training set, and then we evaluate the accuracy of the models on

the test set, i.e. perform predictions and compare the results to the true values

of the labels. Naturally, we say that the better the model performs, the more

close its prediction to the real value, the concept of closeness depends on the type

(categorical of quantitative) of the label. Note that when the label is a categorical

variable, such as the domains, we refer to it as classification and when the label
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is quantitative variable we call it regression task.

Countless machine learning algorithms have been introduced over the last

decades, and most of them can be applied to both classification and regression

tasks. Here we will only apply the most frequently used models, namely Decision

Tree (DT), Naive Bayes (NB), Generalized Linear Model (GLM), Random Forest

(RF), Gradient Boosted Trees (GBT) and Deep Learning (DL). Note that even

though some of the models rely on deep and beautiful mathematics, for reasons

of space, here we cannot go into detail, but for a great overview and thorough

understanding of this topic we recommend the book of Elements of Statistical

Learning [93]. In this work for data preparation, modelling and evaluating we

used RapidMiner, a visual workflow designer data science tool.

Roughly speaking, the goal of every supervised learning model can be written

as follows: Let X denote the N ×d input matrix, which consists of N observations

of d attributes. The observations of the jth attribute is denoted by X·,j, and the

ith observation vector is denoted by Xi,·. The label or target variable is typically

denoted by Y = (y1, . . . , yN). Then in a function-fitting paradigm we say that

the model attempts to learn an f function by the examples, for which f(X) ≈ Y ,

where the “≈” can be interpreted in many ways, but the goal is that in some

way minimmize the difference between f(X) and Y . The most usual objective

function is the mean squares of the deviations, since the square function can be

easily handled due to its convexity and differentiability. The approximations that

minimizes this objective are called Least Squares estimators. Note that the f(X)

notation is sliglthly ill, and more precisely we should write f(Xi,·) ≈ yi, ∀i, since

the the input of f and f̂ is a vector, and the output is a scalar.

The learning algorithms’ estimated f function is usually denoted by f̂ , and

these algorithims have the ability to modify its input-output relationship f̂ in re-

sponse to differences of yi−f̂(Xi,·) between the original and the estimated outputs.

This process is known as learning by examples, and upon the completion of the

learning process, the hope is that the estimated and the real outputs will be close

enough to be useful for all sets of inputs [93], and that the models’ estimated

function helps us to understand the underlying data and its origin.
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Table 4: Most important and relevant metrics according to different techniques

Method Selected variables

Forward selection

maxEdgeBetweennessCentrality, Diameter,
VertexConnectivityPercentage, MaxDegree,
MeanGraphDistance, avgBetweennessCentrality
Scalefreeness

Backward elimination
All variables except the VarVertexDegree
scalingOfDegreeDistribution, ParetoParameter
and minBetweennessCentrality

Evolutionary optimization

maxEigenvectorCentrality, Radius, Assortativity
maxEdgeBetweennessCentrality, minDegree,
maxDegree, GlobalClusteringCoefficient,
maxBetweennnessCentrality, ZipfParameter
avgBetweennessCentrality, EdgeConnectivityP,
GraphDensity, Scalefreeness,CorrOfMDC

Correlation
(Global importance)

ParetoParameter, maxEigenvectorCentrality,
MeanGraphDistance, MLEParameter, Diameter,
avgBetweennessCentrality, GraphLinkEfficiency

Correlation graph
GraphDensity, Assortativity MeanGraphDistance,
GlobalClusteringCoefficient

3.3.1 Feature selection

In this subsection we will perform different feature selection methods. We apply

both machine learning algorithms, and correlation-based techniques, namely we

will examine the correlation of the variables with the response variable, furthermore

we will employ the results of Subsection 3.2.1, especially the graph representation

of the correlation temperature map.

The ultimate goal of every feature selection (FS) algorithm, is to identify a

relevant subset of the explanatory variables for use in model construction and for

better understanding of the data. These techniques are used for multiple reasons,

for example a model that uses a few but relevant attributes is easier to interpret,

if we successfully narrowed down the subset of attributes, we can avoid the curse

of dimensionality [94], furthermore we can reduce the risk of overfitting. Here we

use three different FS algorithm; Forward Selection, Backward Elimination and

Evolutionary Optimization. These FS algorithms are detailed in [93], but briefly

71



they use simple machine learning models, here we used generalized linear model14,

and the forward selection starts with an empty set and then iteratively adds one

variable to the model (and the set) at a time. In each step every variable (which

is not in the already selected set) is tested for inclusion in the model, and then

that variable is selected which improved the most significantly the performance of

the model. Backward elimination is using analogous idea but it works backwards,

i.e. starts with every variable and eliminates the non-relevant ones.

The evolutionary FS algorithm is a Genetic algorithm which belongs to a larger

class of Evolutionary algorithms, which provide solutions to optimization problems

using techniques inspired by natural evolution, such as inheritance, mutation, se-

lection, and crossover. In the genetic FS algorithm selection mutation means

switching features on and off and crossover means interchanging used features,

furthermore selection is done by the specified selection scheme, here we used tour-

nament selection [95].

The correlation based variable importance calculations are independent from

the models. After keeping one variable from the highly correlated attributes,

we simply assign weights to the variables according to their correlation with the

target variable. Alternatively we can chose the most connected nodes from the

communities of the graph shown in Figure 12.

Table 4 shows the most relevant and important features selected by the three

feature selection algorithm, and the two correlation based technique. We set the

target variable to be the name of the domains. The table suggests that both

forward and backward selection algorithms reach their maximization relatively

early. We will evaluate the selected subsets with machine learning models in the

next Subsection 3.3.2.

3.3.2 Classification

In this subsection we examine whether is it possible to efficiently predict the do-

main of the networks using the graph measurements. As we have already men-

tioned before, for the predictions we will train several machine learning algorithms

on different training sets obtained by the different feature selection methods. Note

14See http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glm.html
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Table 5: Confusion matrix of a decision tree, using only the |V | and |E| attributes.

Accuracy: 79.59% True domain
Social Misc Food Chems Brain Precision

Social 13 2 86.67%
Misc 3 14 1 2 70.00%
Food 20 4 3 74.07%
Chems 1 16 94.12%

Predicted
domain

Brain 4 15 78.95%
Recall 76.47% 70.00% 95.24% 80.00% 75.00%

that we excluded the number of nodes and edges from the set of explanatory

variables, since these variables can determine effectively the origin domain of the

networks (see Table 5).

The performance of the models are calculated associated with the confusion

matrix. The confusion matrix in itself is not a performance metric, however almost

every performance metric is based on the values in this matrix. In our case we

have five different class, hence the confusion matrix is a 5× 5 table and the rows

correspond to the predicted values and the columns correspond to the real values

of the domains, and in the cell of the ith row and jth column we write the number

of cases when the actual class was the jth domain and the predicted class is the

ith domain. For example Table 5 shows the confusion matrix of the decision

tree classifier, which only used the number of edges and nodes as explanatory

variables. Whit this example we wanted to highlight the predictive power of these

two variables, and to illustrate why these variables should not be involved in the

set of explanatory variables.

The class precisions, class recalls and the total accuracy are also shown in Table

5. These are frequently used performance metrics, the accuracy is the ratio of the

number of hits (total of the diagonal) and the size of the test set. Note that the

accuracy is a good measure of the performance only if the target variable classes

in the data are nearly balanced, i.e. there are roughly equal number of graphs

from each domains. The class precisions are interpreted rowwise, i.e. it is the

number of accurate predictions divided by the total number of predictions of a

given class. The definition of class recall is analogous to the precision, but the

recall is interpreted columnwise i.e. the recall of a given C class is the number of
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Table 6: Performance of the machine learning models on the different sets created
by the FS methods detailed in Table 4

Feature selection method
Backward Forward Evolutionary Correlation Graph average

NB 69.4% 55.1% 69.4% 50.0% 72.4% 63.26%
GLM 77.6% 81.6% 90.8% 75.5% 68.4% 78.78%
DT 81.6% 84.7% 84.7% 71.4% 85.7% 81.62%
DL 88.8% 77.6% 88.8% 64.3% 67.3% 77.36%
RF 90.8% 83.7% 89.8% 82.7% 87.8% 86.96%
GBT 90.8% 87.8% 91.8% 89.8% 89.8% 90.00%
average 83.17% 78.42% 85.89% 72.28% 78.56%

hits of the class C divided by the total number of examples that true label is C.

Formally let M = (mij) denote the k×k confusion matrix of a k-class problem.

Then the recall and the precision of the ith class is defined as:

Recalli =
mii∑k
j=1 mij

,

and

Precisioni =
mii∑k
j=1mji

respectively, furthermore the accuracy of the classifier is defined as

Accuracy =

∑k
i=1mii∑k
j,l=1 mjl

.

For further performance metrics and their evaluations we refer to [96]. As both

Figure 10 and Table 5 suggest, the most difficultly identifiable class is the Miscel-

laneous, and the best performances were obtained on Cheminformatics and Food

network domains.

Table 6 shows the accuracy of several machine learning models that were

trained on different sets acquired from the 5 feature selection methods detailed

in the previous subsection and Table 4. The table suggest that the poorest perfor-

mances were obtained apparently on the correlation based method, on the other

hand the best accuracies are belong to the method of evolutionary optimization.
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Overall the most accurate model was the Gradient Boosted Tree with accuracy

of 91.8%, but the achievement of the Random Forest and the Generalized Linear

Model are also remarkable. The reason why the Deep Learning did not produce

high efficiency is because this model performs better on datasets of larger number

of rows. Thus we can conclude that the domains of the networks are unique enough

to be effectively identified by their normalized metrics.

Note that the training set was set to be the 70% of the original dataset, and

it was built by stratified sampling i.e. we built random subsets ensuring that the

class distribution in the subsets is the same as in the whole dataset. Furthermore,

some of the hyperparameters of the models were previously optimized via grid-

optimization, for example the number of trees and the depth of the trees in the

tree-based models.

3.3.2.1 Fractality classification

Furthermore, we solved a fractality related classification problem as well. We

divided the networks into two equal sets according to the ZipfParameter, and for

now lets call those networks fractal whose ZipfParameter is in the range of larger

scaling parameters. Figure 15a shows the histogram of the ZipfParameter, and

the different colors indicate these newly defined sets. We used the attributes that

were suggested by the evolutionary optimization FS algorithm, except the metrics

that are highly correlated with the ZipfParameter, namely the centrality and the

distance related measures. Then we set the label to be this newly defined binary

variable and predicted the binarized fractality. The performance of the models are

listed in Table 7 and their ROC curves are shown in Figure 16.

A ROC curve is an easily interpretable visual representation of the diagnostic

ability of a binary classifier, and most frequently it is used to compare the per-

formance of different models. In binary classification problems we usually refer to

the clasess as positive and negative. The ROC curve is created by plotting the

true positive rate (TPR) against the false positive rate (TPR) at various thresh-

old setting. The TPR is the binary version of the recall and it can be viewed as

the statistical power. The FPR is the Type I error i.e. it is the number of false

alarms i.e. false positives divided by the number of true negatives. The greater the
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Figure 15: Figure 15a shows the histogram of the ZipfParameter. The divisor point
is at 0.319. Figure 15b shows the decision tree of the binarized fractal classification
problem.

area under the ROC curve (AUC) is the more accurate the model is. Hence even

without the highly correlated metrics, we are able to succesfully predict the bina-

rized fractality of the networks. The decision tree, shown in Figure 15b, uses only

EdgeConnectivity, MaxBetweennessCentrality and the scalingOfDefreeDistribution

metrics to predict the class, and still achieves performance of 92.9% accuracy.

Accuracy AUC
NB 90.8% 0.987
GLM 92.9% 0.973
DT 92.9% 0.930
DL 93.9% 0.981
RF 93.9% 0.983
GBT 93.9% 0.992

Table 7: Accuracy and AUC of
the models in the the binary frac-
tality classification task

Figure 16: ROC curves of the models
regarding the binary fractality classifica-
tion

3.3.3 Regression

In this section we use regression analysis to estimate the value of the continuous

graph measures, such as the scaling parameters of the NB(lB) function, assorta-

tivity, centrality and distance related metrics. We apply similar procedures, used
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in the previous subsection, i.e. after selecting a target variable, we train the mod-

els both including and excluding the variables that are highly correlated with the

target variable. In other words, considering the correlation graph in Figure 12,

we delete the node of the label variable and all of its neighbours, and the remain-

ing nodes of variables make up the set of explanatory variables, for example if

the target variable is the ParetoParameter, then we exclude the whole community

marked by red.

Since, here we work with continuous variables, other metrics should be consid-

ered to measure performance. In this work we use the Root Mean Squared Error

(RMSE), the Mean Absolute Error (MAE) and the lenient version of the Mean

Absolute Percentage Error (MAPE), defined as follows: Let Y = (y1, . . . , yn) de-

note the vector of n observed values of the target variable, and Ŷ = (ŷ1, . . . , ŷn)

be the predictor’s estimation of Y. Then the Mean Squared Error (MSE) of the

predictor is computed as:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 , (97)

and the RMSE is defined as the square root of the MSE, i.e.

RMSE =
√
MSE =

 1

n

n∑
i=1

(yi − ŷi)2

 1
2

, (98)

i.e. RMSE is the `2 norm of the error vector Y − Ŷ, which is the distance of the

Y and Ŷ vectors in the `2
n metric space. The MAE is analogously defined as the

`1
n-distance of the vectors Y and Ŷ, i.e.

MAE =
1

n

n∑
i=1

|yi − ŷi| . (99)

The lenient version of the MAPE is related to the absolute error, namely the

absolute error is divided by the maximum of the actual value and the predicition.

Note that in the strict version of MAPE, the absolute error is divided by the
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minimum of those terms. Formally it is defined as

LMAPE =
100%

n

n∑
i=1

∣∣∣∣ yi − ŷi
max{yi, ŷi}

∣∣∣∣ . (100)

Note that in the original version of MAPE the denominator is the actual value yi,

and sometimes it is referred to as Mean Relative Error.

Table 8 and Table 9 shows the efficiency of the ordinary machine learning mod-

els according to the previously introduced performance metrics. Regarding Table

8, we can conclude that the fractality of the networks i.e. the estimated ParetoPa-

rameter is well identifiable even without using the highly correlated attributes.

On the other hand, in case of the Assortativity the estimation appears to be

a difficult task, since the best performance in LMAPE is 42.2%. This suggests

that assortativity behaves like an independent variable, i.e. even if most of the

graph metrics of two different networks are proportional to each other, it is not

impossible that one of them is assortative and the other is disassortative. This

is well illustrated in the bottom-left plot of Figure 11, where we have seen that

protein-protein interaction networks can be both assortative and disassortative,

furthermore we have have also shown fractal models in Subsection 2.4 that differ

in assortativity.

In Table 9, the labels were set to be the variables Diameter and AvgBetween-

nessCentrality, and the obtained performance metrics suggest that the level of

difficulty of these tasks are equivalent. Overall the best two models were again the

Gradient Boosted Tree and the Random Forest, however the simple Decision Tree

also achieved remarkable efficiency, specially in Table 10, where the cells contain

the LMAPE performance of the predictors, that could use the highly correlated

variables as well. The results detailed in Table 10 are also consistent with the dif-

ficulty of assortativity identification, since even if its correlated companions were

included in the training set, the best performance of LMAPE equals to 27.8%.
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Table 8: Performance of the regressions of the ParetoParameter and the Assorta-
tivity metrics

Label ParetoParameter Assortativity
RMSE MAE LMAPE RMSE MAE LMAPE

DT 0.061 0.043 10.4% 0.218 0.155 47.6%
DL 0.058 0.040 10.0% 0.182 0.130 52.1%
GLM 0.053 0.042 10.8% 0.227 0.162 58.8%
RF 0.049 0.034 8.8% 0.186 0.124 48.7%
GBT 0.047 0.033 8.5% 0.177 0.113 42.2%

Table 9: Performance of the regressions of the normed Diameter and the AvgBe-
tweennessCentrality metrics

Label Diameter AvgBetweennessCentrality
RMSE MAE LMAPE RMSE MAE LMAPE

DT 0.025 0.015 32.6% 0.009 0.005 32.3%
DL 0.034 0.024 43.5% 0.010 0.007 47.8%
GLM 0.033 0.023 50.4% 0.011 0.008 57.9%
RF 0.026 0.015 32.4% 0.007 0.004 30.0%
GBT 0.028 0.016 34.3% 0.009 0.006 40.6%

Table 10: LMAPE of the regressions of the ParetoParameter, Diameter, Assorta-
tivity and the AvgBetweennessCentrality mesasures by involving the highly corre-
lating variables in the set of explanatory variables.

Pareto Assort. Diam. AvgB.C.
DT 0.5% 35.9% 11.3% 10.9%
DL 2.9% 32.5% 48.0% 60.2%
GLM 3.9% 40.3% 37.8% 40.2%
RF 3.0% 31.7% 16.0% 17.0%
GBT 0.4% 27.8% 7.8% 24.0%
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4 Summary and conclusion

The purpose of this work was to explore and understand the fractality moreover

the common and unique structure of complex networks from different domains. We

conducted a comprehensive literature review, but also highlighted the contingent

deficiency of mathematical rigour of related papers, proposed new methods, and

pointed out the possible pitfalls of the wildly used techniques.

After giving a general introduction of network theory and data science, we

detailed the most important concepts of the topic, we acquired an extensive un-

derstanding of fractal behavior of complex networks. We presented graph related

box-covering algorithm, adopted from fractal theory, by which the fractality of the

networks is defined. Besides the frequently used compact box burning box-covering

algorithm, we presented, implemented and compared other novel alternative algo-

rithms by both their running time and efficiency.

The problem of accurate identification of fractal dimension of networks, relies

on the correct detection and fitting of power law distribution in the empirical data,

obtained by the box-covering algorithm. We pointed out, that in several articles

the validation of power-law distributions are carried out non-rigorously, hence

we uncovered a statistical framework that utilize maximum-likelihood fitting for

discerning and quantifying power law behavior in data, and later in this work we

applied multiple variants of this proposed technique.

Motivated by our observations, and by the contrariety of the pure small-world

and pure fractal properties, we proposed an extended, mathematically more rig-

orous definition of fractal networks, allowing a network to be locally fractal but

globally small-world, and we showed several real-world and model generated ex-

amples that embrace this phenomena.

Throughout this paper, we followed two main distinct approaches, firstly we

attempted to understand the fractality through well-studied mathematical network

models from the literature and our newly proposed models. We investigated how

the graph metrics vary as the models transit from non-fractal to fractal and vice

versa. We also detailed a strong law of large numbers for the maximum degree of

a modified version of the Barabási–Albert model.

For the second approach, we gathered a unique dataset, containing graph met-
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rics of numerous real-world networks, and we followed data-driven analysis tech-

niques for a rather general purpose. We did not only focus on the fractal property

of the networks, but investigated a rich set of metrics that describe every aspects

of the networks. We applied both traditional statistics and machine learning meth-

ods to find out how the values of the graph metrics are distributed on real-world

networks, how the metrics are correlated with each other, how the correlations

vary on different network domains. Furthermore, efficiently solved classification

and regression tasks, such as identify the network domains, or the fractality by

the metrics, and estimate an appointed graph measurement value using different

selections of the remaining metrics.

There are several theoretical, empirical and technical open questions in this

topic, such as analytically investigate the relationship of fractality and other graph

metrics, and understand why fractal, non-fractal and mixture between fractal and

non-fractal network are present in nature, and in different network domains. There

are several possible future directions for the further research such as analytical

investigation of the proposed novel network models, introducing new statistical

algorithms for measuring fractality, and employing other data-driven techniques

such as ANOVA and PCA analysis for better understanding of the networks. Fi-

nally, with data science techniques, we aim to tune the parameters of the models,

such that they describe the real-world networks as accurately as possible.
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quence of a scale-free random graph process,” Random Structures & Algo-

rithms, vol. 18, no. 3, pp. 279–290, 2001.
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