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 THE INTERPRETATION OF INTERACTION IN CONTINGENCY TABLES

 By E. H. SIMPSON

 [Received May, 1951]

 SUMMARY

 THE definition of second order interaction in a (2 x 2 x 2) table given by Bartlett
 is accepted, but it is shown by an example that the vanishing of this second order
 interaction does not necessarily justify the mechanical procedure of forming the
 three component 2 x 2 tables and testing each of these for significance by standard
 methods.*

 1. In a 2 x 2 x 2 contingency table in which each entry is classified according to its possession
 or not of each of three attributes, there may exist not only associations or interactions of these
 attributes in pairs, but also a second order interaction of all three taken together. Bartlett (1935)
 has outlined a test for the presence of such a second order interaction, and Norton (1945) has
 discussed the numerical processes involved in carrying it out. The purpose of this note is to
 examine more fully the meaning of the test and its interpretation in practical examples.

 2. Suppose a 2 x 2 x 2 table is made up by classifying entries according to their possession

 of the attributes A or A, B or B, C or C, where as usual A denotes "not-A" and so on, and let
 a, b, . . . h be the probabilities that an entry will fall in one of the eight classes so formed, thus:

 TABLE 1

 CB CB CB CB

 A a c e g

 A . . b d f h

 Obviously a + b + c + d + e +f + g + h = 1.

 The extension to this case of the hypothesis of independence which is commonly applied to
 the 2 x 2 table, namely that the probability of the class AB is the product of the probabilities of
 the classes A and B, gives us equations of the form

 a = (a + c + e + g)(a + b + e +f)(a + b + c + d).

 This is the statement of the hypothesis of complete independence of the three attributes, and any
 given experimental data could be tested on it by calculating the theoretical cell contents from the
 totals of A, of B and of C in the total sample and formiilg a x2 which would have 4 degrees of
 freedom.

 * This paper should be read in conjunction with the following paper by H. 0. Lancaster. Bartlett's
 condition for a zero second order interaction is (in Simpson's notation)

 Lancaster defines the second order interaction so as to make x2 additive. In general his x2 component
 for interaction is different from Bartlett's, but he shows that they are asymptotically the same. On
 Lancaster's definition the condition for zero second order interaction is

 a(q q' q") - b(p q' p") - c(q p' q") + d(p p' q") - e(q q' p") + f(p q' p") + g(q p' p") - h(p p' p")
 where

 p = (a + c + e + g)/N, p' = (a + b + e +f)/N, p" = (a + b + c + d)/N.

 This satisfies the condition of symmetry mentioned by Simpson.-ED.
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 3. The four degrees of freedomn of X2 suggest that there are four ways in which the cell probabili-
 ties can depart from complete independence, and it is reasonable to associate with them the three
 first order interactions, A with B, B with C, C with A, and something which we shall call the
 second order interaction. So far it is open to us to define as we like the boundary between first
 order and second order interaction, since no definition of the latter is forced upon us by what
 has gone before. Common sense suggests some statement such as this:

 "Granting that there is an association between the attributes A and B, we shall say
 that there is no second order interaction between A and B on the one hand and C on the
 other if the degree of association between A and B is the same in the class C as it is in the

 class C."

 This is a rather more general statement than that given by Norton (1939). Two difficulties

 immediately present themselves:

 (i) We now require to measure the degree of association of two attributes in a 2 x 2
 table. Various measures have been suggested (see for instance Kendall (1945),
 chapter 13), and it is reasonable to expect the use of different measures in the simple
 table to lead to different definitions of second order interaction in the more complex
 one.

 (ii) The above statement is not symmetrical in all three attributes. We could similarly
 define the absence of second order interaction between B-and-C and A, and between
 C-and-A and B. Should the three sets of conditions be identical?

 If on consideration of (ii) we decide that our definition of "no second order-interaction" should
 be symmetrical with respect to the three attributes, and this is a logically attractive condition,
 then the choice of measures under (i) will be considerably restricted. For if in Table 1 we choose
 some function 4(a, b, c, d) to measure the association of A and B in the class C, the function must
 be such that the equation

 4(a, b, c, d) = 4(e, f, g, h)

 implies and is implied by the equations

 4(a, c, e, g) 4= (b, d,f, h) -and 4(a, b, e,f) 4= (c, d, g, h).

 This condition of symmetry is not satisfied, for instance, by the root mean square contingency
 defined by

 ad - bc

 {(a + b)(a + c)(b + d)(c + d)}j

 But it is satisfied by 4 bc/ad,,which was used in rather similar circumstances by Fisher (1935),
 page 50, and by any simple function of bc/ad such as the coefficient of association

 Q = (1 - bc/ad) . (1 + bc/ad)
 or the coefficient of colligation

 Y = (1 - Vbc/ad) (1 + Vbc/ad).

 If we use either bc/ad, Q or Y as our measure, the definition of absence of second order interaction
 becomes

 adfg = bceh,

 which is the form of the hypothesis stated by Bartlett (1935).
 4. In order to obtain a clearer notion of the assumptions underlying this Bartlett test let us

 take an example in which, as is often the case, B and C are treatments applied to a patient of some

 kind, A is the classification "alive" and A the classification "dead". To describe the fatality in
 each of the treatment classes we shall use, not the conventional fatality rate, but the ratio of deaths
 to survivals. The effect of a treatment is to multiply this ratio by some factor which will be less
 than unity if the treatment is beneficial. Referring back to Table 1, the ratio in the untreated

 class BC is h/g, that in the class treated by B alone is f/e and. that in the class treated by C alone
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 is dlc, and so the factors associated with -B and C are fg/eh and dg/ch respectively. The combina-
 tion of treatments BC has a factor bg/ah, and the condition for no second order interaction,
 adfg bceh, is seen at once to be the same as

 bg _ fg dg
 ali eh ch'

 that is, the factor for treatment BC is the product of the factors for B and C alone. In other
 words, the effect of treatment B is to multiply the dead/alive ratio by the same factor whatever
 other treatments may have been used; and similarly for treatment C.

 5. Returning to our contingency table, it is of interest to notice the consequences of thinking
 in terms of fatality rates instead of the dead/alive ratio. In an example quoted by Norton (1939)
 -the classes C and C are male and female animals, B is a treatment, and A is "alive". Norton
 then states that to test for second order interaction we find the difference in death rates between
 "controls" (untreated) and "experimentals" (treated) and compare the values of the difference in
 the male and female categories. In the notation of Table 1 this gives as the condition for the
 absence of second order interaction

 b d f h

 a + b c+d e+f g-+h
 or

 bc-ad fg-eh

 (a + b)(c + d) (e +f)(g + h)

 This is equivaleift to taking as a measure of association in a 2 x 2 table

 bc - ad

 (a + b)(c + d)'

 which does not satisfy the symmetry condition.
 6. Let us now consider the interpretation to be placed on the three first order interactions in

 the two cases when second order interaction does or does not exist.
 7. If second order interaction does exist, the course of action is clear but dull. No two clas-

 sifications can be said to be independent, for if, say, A and B are independent in C, then by hypo-

 thesis they cannot be independent in C. In general it is impossible to summarize the relationship
 of any two classifications without reference to the third, and the only course is to set out the six

 possible 2 x< 2 tables and enumerate the relationsips of A and B in C, of A and B in C, and so on.
 8. If, however, there is no second order interaction, there is considerable scope for paradox

 and error. The dangers of amalgamating 2 x 2 tables are well known and are referred to, for
 example, on page 317 of Kendall (1945), vol. I. Kendall's example illustrates that if A and B
 are associated positively in C and negatively in C they may appear as independent in the whole
 population; but a more curious case than this can be constructed. Consider the following
 artificial example.

 9. An investigator wished to examine whether in a pack of cards the proportion of court
 cards (King, Queen, Knave) was associated with colour. It happened that the pack which he
 examined was one with which Baby had been playing, and some of the cards were dirty. He
 included. the classification "dirty" -in his scheme in case it was relevant, and obtained the following
 probabilities:

 TABLE 2

 Dirty Clean

 Court Plain Court Plain

 Red . . . 4/52 8/52 2/52 12/52
 Black . . . 3/52 5/52 3/52 15/52

 It will be observed that Baby preferred red cards to black and court cards to plain, but showed
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 no second order interaction on Bartlett's definition. The investigator deduced a positive associa-
 tion between redness and plainness both among the dirty cards and among the clean, yet it is
 the combined table

 TABLE 3

 Court Plain

 Red . . . 6/52 20/52

 Black . . . 6/52 20/52

 which provides what we would call the sensible answer, namely, that there is no such association.
 10. Suppose we now change the names of the classes in Table 2 thus:

 TABLE 4

 Male Female

 Untreated Treated Untreated Treated

 Alive . . 4/52 8/52 2/52 12/52

 Dead . . . 3/52 5/52 3/52 15/52

 The probabilities are exactly the same as in Table 2, and there is again the same degree of positive
 association in each of the 2 x 2 tables. This time we say that there is a positive association
 between treatment and survival both among males and among females; but if we combine the
 tables we again find that there is no association between treatment and survival in the combined
 population. What is the "sensible" interpretation here? The treatment can hardly be rejected
 as valueless to the race when it is beneficial when applied to males and to females.

 11. It is sometimes said-for example in Norton (1939) and on page 203 of Snedecor (1946)-
 that provided there is no second order interaction it is permissible to add a 2 x 2 x 2 table in

 each of the three possible ways and to test for independence in the,resulting three 2 x 2 tables.
 The example just given shows that this is false. What can be said is that, assuming there is no
 second order interaction, the degree of association in the combined table (measured by )) will
 be the same as that in the separate tables C and C if and only if the classification C which is being

 submerged is independent either of A in both,B and B or of B in both A and A. For suppose
 that in Table 1 there is no second order interaction, so that bc/ad = fg/eh, and that the two 2 x 2

 tables in C and C respectively are combined in the ratio 1: X. If the resulting table is to show the
 same degree of association between A and B we must have

 (b?+f)(c?+ g) bc fg
 (a + Be) (d + Xh) a d = eh'

 which reduces to
 (af -be)(ag - ce)h/a = 0.

 Thus (trivial cases apart) no linear combination of the tables will preserve the value of the associa-
 tion unless either af = be or ag = ce, which represent respectively the conditions that C and A

 are independent in B (and consequently also in B though not necessarily in the whole population)
 and that C and B are independent in A. Kendall's statement that, if A and B are independent
 in both C and C they are not independent in the population as a whole unless C is independent
 of A or B or both is a special case of this rule.

 12. I am indebted to Professor M. S. Bartlett for having suggested, some years ago now, that
 this subject needed further consideration.

 References

 BARTLETT, M. S. (1 935), J. R. Statist. Soc. Suppl., 2, 248.
 FISHER. R. A. (1935), J. R. Statist. Soc., 98, 39.
 KENDALL, M. G. (1945), The Advanced Theory of Statistics, vrol. I. Griffin.
 NORTON, H. W. (1939), Brit. Med. Journ., 2; 467.

 - (1945), J. Amer. Statist. Ass., 40, 251.
 SNEDECOR, G. W. (1946), Statistical Methods. Iowa State College- Press.

This content downloaded from 152.66.83.10 on Mon, 25 Jun 2018 07:20:12 UTC
All use subject to http://about.jstor.org/terms


	Contents
	p. 238
	p. 239
	p. 240
	p. 241

	Issue Table of Contents
	Journal of the Royal Statistical Society. Series B (Methodological), Vol. 13, No. 2 (1951) pp. 151-312
	Volume Information [pp. ]
	Some Problems in the Theory of Queues [pp. 151-185]
	The Theory of Position Finding [pp. 186-207]
	A Review of the Literature of Systematic Sampling [pp. 208-215]
	On Two-Stage Sampling [pp. 216-218]
	On Certain Probability Distributions Arising from Points on a Line [pp. 219-232]
	The Estimation of Standard Error From Successive Finite Differences [pp. 233-237]
	The Interpretation of Interaction in Contingency Tables [pp. 238-241]
	䍯浰汥砠䍯湴楮来湣礠呡扬敳⁔牥慴敤⁢礠瑨攠偡牴楴楯渠潦 으獵瀾㈼⽳異㸠孰瀮′㐲ⴲ㐹�
	The Variance of Least-Square Estimates Under Linear Restraints [pp. 250-255]
	Change-Over Trials [pp. 256-271]
	A General Technique for the Analysis of Experiments with Incorrectly Treated Plots [pp. 272-283]
	Subjective Judgment in Statistical Analysis: An Experimental Study [pp. 284-297]
	The Expression of the Complementary Outputs of Two Products in Terms of a Common Unit of Production Effort [pp. 298-302]
	Inversions and Rank Correlation Coefficients [pp. 303-309]
	Note on Durbin and Stuart's Formula for E(r<sub>s</sub>) [pp. 310]



