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Preliminaries

DENSE SPARSE
Füredi-Komlós, Combinatorica Percolated Gn(p), p = c

n
(1981): E(aij) = µ > 0 (i ̸= j) (n → ∞) Erdős-Rényi

B, Wiley (2013): E(aij) = cab Percolated SBM: E(aij) = cab
n

(i ∈ Va, j ∈ Vb), 1 ≤ a, b ≤ k (i ∈ Va, j ∈ Vb), 1 ≤ a, b ≤ k

λi (A) is aligned with λi (EA), λi (B) is aligned with λi (EA),
i = 1, . . . , k (F-K: k = 1) i = 1, . . . , k non-backtracking

Perturbation: Wigner-type matrix deformed Wigner matrix
Subspace perturbation: Davis-Kahan Bauer–Fike
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Non-Backtracking (Hashimoto) matrix of simple
graphs

G = (V ,E ) simple graph, |V | = n, |E | = m;
the entries of the non-backtracking matrix B = (bef ) are indexed
by the oriented edges (bidirected edges of E ), |E→| = 2m:

bef = δe→f δf ̸=e−1 , bi→j , s→l = δjs(1− δil),

where e = {i → j} and f = {s → l} are oriented edges, and e → f
with e = (e1, e2) and f = (f1, f2) means that e2 = f1;
e−1 = {j → i}.
Historically, it is BT that is called non-backtracking matrix.
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Relation to line-graphs

Proposition

If B =

(
B11 B12

B21 B22

)
, where the two (row/column) blocks

correspond to the edges and their inverses (in the same order), then

B∗
11 = B22, B∗

22 = B11, B∗
12 = B12, B∗

21 = B21.

Further, B11 + B12 + B21 + B22 is equal to the m ×m adjacency
matrix of the line-graph of G.

In Lovász, Combinatorial Exercises: if the line-graphs of two simple
graphs, provided they both have node-degrees at least 4, are
isomorphic, then they are isomorphic too. However, if the degree
condition does not hold, it can happen that two not isomorphic
graphs have isomorphic line-graphs. For example, a triangle and a
star on 4 vertices. But two graphs are isomorphic ⇐⇒ their
non-backtracking matrices are the same (after relabeling).
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Transpose (∗), involution, and swapping

Though B is not a normal matrix, even not always diagonalizable
(the algebraic and geometric multiplicity of some of its eigenvalues
may not be the same), it exhibits some symmetry: b∗ef = be−1 f −1 .

With the notation x̆e := xe−1 for the coordinates of x, x̆ ∈ R2m: if
x = (x∗1, x

∗
2)

∗, then x̆ = (x∗2, x
∗
1)

∗ (swapping).
Let V denote the following involution on R2m (V = V∗ = VT ,

V2 = I): V =

(
O Im
Im O

)
. Then Vx = x̆ and Vx̆ = x;

B∗ = BT = VBV, BV and VB are symmetric (PT-invariance).

Consequently: if x is a right eigenvector of B with a real
eigenvalue, then x̆ is a left eigenvector of B (and right eigenvector
of BT ) with the same eigenvalue.
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Eigenvalues of B (Ihara formula)

B is a Frobenius-type matrix, its largest absolute value eigenvalue
λ(B) is positive real, and it can also have some other

”
structural”

real eigenvalues. Since the characteristic polynomial of B has real
coefficients, its complex eigenvalues occur in conjugate pairs in the
bulk of its spectrum.
Ihara formula: B has m − n eigenvalues equal to 1 and m − n
eigenvalues equal to −1, whereas its further eigenvalues are those
of the 2n × 2n matrix

K =

(
O DA − In
−In A

)
,

where A is the adjacency- and DA is the degree-matrix of the
graph (diagonal, contains the degrees=row-sums of A).

K always has at least one additional eigenvalue 1, the geometric
multiplicity of which is equal to the number of the connected
components of G and λmax(B) = λmax(K) ≤ λmax(A).
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Real eigenvalues and eigenvectors of B (beyond the
Ihara formula)

Two auxiliary matrices are introduced: the 2m × n matrix End has
entries endei = 1 if i is the end-node of the (directed) edge e and
0, otherwise; the 2m × n matrix Start has entries startei = 1 if i is
the start-node of the (directed) edge e and 0, otherwise. Then for
any vector u ∈ Rn and for any edge e = {i → j} the following
holds:

(Endu)(e) = uj and (Start u)(e) = ui .

Consequently, Endu is the 2m-dimensional inflated version of the
n-dimensional vector u, where the coordinate uj of u is repeated as
many times, as many edges have end-node j ; likewise, in the
2m-dimensional inflated vector Start u, the coordinate ui of u is
repeated as many times, as many edges have start-node i .
As each edge is considered in both possible directions, these
multiplicities are the node-degrees dj and di , respectively.
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Deflation

End∗ End = Start∗ Start = diag(d1, . . . , dn) = DA

For any vector x ∈ R2m, define

xouti :=
∑
j : j∼i

xi→j and x ini :=
∑
j : j∼i

xj→i (i = 1, . . . , n).

These become the coordinates of the n-dimensional (column)
vectors xin and xout . Trivially,

xout = Start∗x and xin = End∗x (i = 1, . . . , n).
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Calculation

(B∗x)outi =
∑

e: e1=i

(B∗x)e =
∑

e: e1=i

∑
f→e, f ̸=e−1

xf

=
∑

e: e1=i

[
∑
f→e

xf − xe−1 ]

=
∑

f : f2=i

xf
∑

e: e1=i

1−
∑

e: e1=i

xe−1

= x ini di −
∑

e: e−1
2 =i

xe−1 = dix
in
i − x ini = (di − 1)x ini
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Calculation

(B∗x)ini =
∑

e: e2=i

(B∗x)e =
∑

e: e2=i

∑
f→e, f ̸=e−1

xf

=
n∑

j=1

aji
∑

f : f2=j , f1 ̸=i

xf

=
n∑

j=1

aji
∑

f : f2=j

xf −
n∑

j=1

ajixi→j

=
n∑

j=1

aijx
in
j −

∑
j : j∼i

xi→j = (Axin)i − xouti ,

where we used that the (0-1) adjacency matrix A of the graph is
symmetric with entries aij = aji = δi∼j .
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Summarizing, if x is a (right) eigenvector of B∗ with (real)
eigenvalue µ, i.e., B∗x = µx, then (B∗x)out = (µx)out = µxout and
(B∗x)in = (µx)in = µxin. Therefore,

µ

(
xout

xin

)
=

(
(B∗x)out

(B∗x)in

)
=

(
O DA − In
−In A

)(
xout

xin

)
,

so

µ

(
xout

xin

)
=

(
(DA − In)xin

Axin − xout

)
= K

(
xout

xin

)
.
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In particular, if x is a right eigenvector of B∗ with a real eigenvalue
µ ̸= 0, then the 2n-dimensional vector comprised of parts xout and
xin is a right eigenvector of K with the same eigenvalue. Indeed,

µ

(
xout

xin

)
=

(
(B∗x)out

(B∗x)in

)
= K

(
xout

xin

)
.

According to the previous remarks, the vector x is a left
eigenvector, and x̆ is a right eigenvector of B with the same (real)
eigenvalue. For both of them the two segments, xout and xin of the
right eigenvector of K are responsible.
In view of the relation xout = 1

µ(DA − In)xin, it suffices to consider

only xin ∈ Rn for further clustering purposes.
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The sparse stochastic block model SBMk

The k × k probability matrix P of the random graph Gn ∈ SBMk

has entries pab = cab
n , where the k × k symmetric affinity matrix

C = (cab) stays constant as n → ∞. An edge between i < j comes
into existence, independently of the others, with probability pab if
i ∈ Va and j ∈ Vb, where (V1, . . . ,Vk) is a partition of the
node-set V into k disjoint clusters; aji := aij . It can be extended to
the i = j case when self-loops are allowed, or else, the diagonal
entries of the adjacency matrix are zeros.
Ā: the n × n inflated matrix of the k × k P: āij = pab if i ∈ Va

and b ∈ Vb. When loops are allowed, then E(aij) = āij for all
1 ≤ i , j ≤ n. In the loopless case, the expected adjacency matrix
EA differs from Ā with respect to the the main diagonal, but the
diagonal entries are negligeable.
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Special cases

Sometimes cab = cin is the within-cluster (a = b) and cab = cout is
the between-cluster (a ̸= b) affinity. The network is called
assortative if cin > cout , and disassortative if cin < cout . Of course,
remarkable difference is needed between the two, to recognize the
clusters.
The cluster sizes are n1, . . . , nk (

∑k
i=1 ni = n), so the k × k

diagonal matrix R := diag(r1, . . . , rk), where ra =
na
n is the relative

size of cluster a (a = 1, . . . , k), is also a model parameter
(
∑k

a=1 ra = 1). It is nearly kept fixed as n → ∞.
The model SBMk is called symmetric if r1 = · · · = rk = 1

k and all
diagonal entries of the affinity matrix are equal to cin, whereas the
off-diagonal ones to cout .

Budapest 2025



Average degrees

The average degree of a real world graph on m edges and n nodes
is 2m

n . The expected average degree of the random graph
Gn ∈ SBMk is

c =
1

n

k∑
a=1

k∑
b=1

nanbpab =
1

n2

k∑
a=1

k∑
b=1

nanbcab =
k∑

a=1

raca,

where ca =
∑k

b=1 rbcab is the average degree of cluster a. It is
valid only if self-loops are allowed. Otherwise, ca and c should be
decreased with a term of order 1

n , but it will not make too much
difference in the subsequent calculations.
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Kesten–Stigum threshold

In Bordenave, C., Lelarge, M., Massoulié, L., Non-backtracking
spectrum of random graphs: Community detection and non-regular
Ramanujan graphs, Ann. Probab. (2018), the case when ca = c
for all a is considered. (This is the hardest case, as otherwise the
clusters could be distinguished by sorting the node-degrees.) In
this case 1

c Ā is a stochastic matrix, and so, the spectral radius of
Ā is c.
In the symmetric case, c = cin+(k−1)cout

k and the separation of the
clusters only depends on the cin, cout relation. If cin is

”
close” to

cout , then the groups cannot be distinguished. The detectability
Kesten–Stigum threshold in the symmetric case is

|cin − cout | > k
√
c ⇐⇒ µ2 = · · · = µk >

√
c,

where µ2 = · · · = µk is the second largest (real) eigenvalue of B.
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BP in the general sparse SBMk model

Given the observed graph on n nodes,

ψa
i ∝ P(i is in the cluster a), a = 1, . . . , k

defines the marginal membership (state) distribution of node i .
We assume that our neighbors are independent of each other,
when conditioned on our own state. This can be modeled by
having each node j send a message to i , which is an estimate of j ’s
marginal if i were not there. Therefore, the conditional probability

ψa
j→i := P(j is in cluster a when i is not present)

can be computed through neighbors of j that are different from i :

ψa
j→i = C ij

a ra
∏

l∼j , l ̸=i

k∑
b=1

ψb
l→j pab, a = 1, . . . , k,

where C ij
a is a normalizing factor.
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The above BP (message-passing) system of equations (2mk
non-linear equations with the same number of unknowns) can be
solved by initializing messages randomly, then repeatedly updating
them. This procedure usually converges quickly and the resulting
fixed point gives a good estimate of the marginals:

ψa
i ∝ ra

∏
j∼i

k∑
b=1

ψb
j→i pab,

where the constant of proportionality is chosen according to∑k
a=1 ψ

a
i = 1. However, the system of equations contains the

model parameters, so it can be solved only if the model parameters
are known. For a given graph (n and k fixed), the parameters ra’s
and cab’s can be estimated by the EM algorithm, see
Bolla, M., Spectral clustering and biclustering, Wiley (2013).
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Calculations

In Moore, C., The computer science and physics of community
detection: Landscapes, phase transitions, and hardness, Bull.
EATCS (2017), the symmetric case is treated, when BP has a
trivial fixed point ψa

j→i =
1
k , for a = 1, . . . , k. If it gets stuck there,

then BP does no better than chance. It happens when this trivial
fixed point of this discrete dynamical system is asymptotically
stable.
In the generic case, we have an unstable fixed point via
linearization:

ψa
j→i := ra + εaj→i .

We substitute it in the original BP system and expand it to first
order in ε (vector of 2mk coordinates εaj→i ’s):
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εaj→i = ψa
j→i − ra = ra

C ij
a

∏
l∼j , l ̸=i

[
k∑

b=1

ψb
l→j pab

]
− 1


= ra

C ij
a

∏
l∼j , l ̸=i

[
k∑

b=1

(rb + εbl→j) pab

]
− 1


= ra

C ij
a

∏
l∼j , l ̸=i

[
k∑

b=1

rbpab +
k∑

b=1

εbl→j pab

]
− 1


= ra

C ij
a

∏
l∼j , l ̸=i

[
ca
n

+
k∑

b=1

εbl→j

cab
n

]
− 1


= ra

C ij
a (

1

n
)sj−1

 k∑
b=1

∑
l∼j , l ̸=i

εbl→j cab c
sj−2
a + c

sj−1
a

− 1

+ O(ε2).
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Here sj denotes the number of neighbors of j and sj − 1 is the
number of its neighbors that are different from i (this number is
frequently 0 or 1, as we have a sparse graph). If sj < 2 happens,
then the corresponding entry of the non-backtracking matrix is 0.
To specify the normalizing factor C ij

a , we substitute zeros for ε’s
that provide the trivial solution. This approximately yields

C ij
a

(
1

n

)sj−1

c
sj−1
a − 1 = 0,

so

C ij
a =

(
n

ca

)sj−1

.
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Substituting this into the original equation, we get

εaj→i = ra


(

n

ca

)sj−1(1

n

)sj−1

c
sj−2
a

 k∑
b=1

∑
l∼j ,l ̸=i

εbl→j cab + ca

− 1


+ O(ε2) = ra

 1

ca

 k∑
b=1

∑
l∼j ,l ̸=i

εbl→j cab + ca

− 1

+ O(ε2).
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The linear dynamical system approximating the above system of
difference equations is

ε = (B⊗ T)ε,

where T = GRC is the transmission matrix with
G = diag( 1

c1
, . . . , 1

ck
).

The fixed point 0 of

ε(t+1) = (B⊗ T)ε(t)

is unstable, if the spectral radius of the big block matrix B⊗ T is
grater than 1.

Note that T is a stochastic matrix, so its largest eigenvalue is 1,
and the others are less than 1 and positive in the assortative case.
In this way, we have proved the following.
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Theorem

With arbitrary, but fixed positive integer k and k × k parameter
matrices R = diag(r1, . . . , rk) (cluster proportions) and C
(symmetric affinity matrix), the linear approximation of the BP
system is ε = (B⊗ T)ε, where ε is a 2mk-dimensional vector and
the 2mk × 2mk matrix of the linear system is B⊗ T. Here B is
the non-backtracking matrix of the graph and T = GRC is the
transmission matrix with G = diag( 1

c1
, . . . , 1

ck
), where

ca =
∑k

b=1 rbcab is the average degree of cluster a, for
a = 1, . . . , k. The trivial 0 solution of the BP equation is unstable
if there are eigenvalues of B⊗T (products of eigenvalues of B and
T) that are greater than 1.
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Sufficient condition for the percolation threshold

If c1 = · · · = ck = c, then for

λ(B⊗ (cT)) = λ(B)λ(RC) > c

it suffices that λ(B) >
√
c, as the eigenvalues of B and RC are

aligned, see
Bordenave, C., Lelarge, M., Massoulié, L., Non-backtracking
spectrum of random graphs: Community detection and non-regular
Ramanujan graphs, Ann. Prob. (2018).
They allow

”
small”fluctuations of the cluster membership

proportions that causes the same order of fluctuations in the
average degrees of the clusters. For the membership proportion of

cluster a, denoted by r
(n)
a , the assumption

max
a∈{1,...,k}

|r (n)a − ra| = O(n−γ)

is made with some γ ∈ (0, 1].
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This assumption implies that in the c1 = · · · = ck = c case,

maxa∈{1,...,k} |c
(n)
a − c| = O(n−γ).

They prove that if maxa c
(n)
a = c + O(n−γ) with some γ ∈ (0, 1],

and the relative proportions of the clusters converge, then w.h.p.

µi = νi + o(1) (i = 1, . . . k0) and µi <
√
c + o(1) (i > k0),

where µi ’s and νi ’s (i = 1, . . . , k0) are the structural eigenvalues of
B and RC, respectively, whereas k0 ≤ k is the positive integer for
which ν2i ≥ ν1 (i = 1, . . . k0) and ν

2
k0+1 < ν1 holds.

In particular, in the SBM1 (Erdős–Rényi) model, µ1 = c + o(1)
and µ2 ≤

√
c + o(1).
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Even if the average degrees of the clusters are not the same, in the
next (Inflation–Deflation) slide we will show that the non-zero
eigenvalues of Ā are the same as those of RC, so they are in the
neighborhood of the leading eigenvalues of B within a factor
between u and v , where

u = min
a

c

c
(n)
a

and v = max
a

c

c
(n)
a

.

However, the leading eigenvalues of Ā and A are farther apart,
seemingly contradicting to the laws of large numbers.
Also see the theory of deformed Wigner matrices: Capitaine, M.,
Donati-Martin, C., Féral, D., The largest eigenvalues of finite rank
deformation of large Wigner matrices,. . . , Ann. Prob. (2009).
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Inflation–deflation

Proposition

The matrix Ā has rank k and its non-zero eigenvalues (ν’s) with
unit norm eigenvectors (u’s) satisfy Āu = νu, where u is the
inflated vector of ũ = (u(1), . . . , u(k))∗ with block-sizes n1, . . . , nk .
With the notation R = 1

ndiag(n1, . . . , nk) = diag(r1, . . . , rk), the
deflated equation is equivalent to

R
1
2CR

1
2 v = νv,

where v =
√
nR

1
2 ũ. Further, if u1, . . .uk is the set of orthonormal

eigenvectors of Ā, then vi =
√
nR

1
2 ũi (i = 1, . . . , k) is the set of

orthonormal eigenvectors of R
1
2CR

1
2 . Also, R

1
2 vi =

√
nRũi are

right eigenvectors of RC and R− 1
2 vi =

√
nũi are left eigenvectors

of RC with the same eigenvalues νi , for i = 1, . . . , k.
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Deformed Wigner matrices

The (random) adjacency matrix A of (the random graph) Gn

coming from the SBMk model is A = Ā+ E, where E is an
appropriate (random) error matrix and all the matrices are n × n
symmetric. We can achieve that the matrix A contains 1’s in the
(a, b)-th block with probability pab, and 0’s otherwise. Indeed, for
indices 1 ≤ a ≤ b ≤ k and i ∈ Va, j ∈ Vb let

eji = eij :=

{
1− pab with probability pab
−pab with probability 1− pab

where eji (entries of E) be independent random variables. This E is
not a Wigner noise as it does not have a nested structure.
However, it is approximately 1√

n
×Wigner noise, and a

”
semicircle

law” is also valid with radious of constant order:
2σ = 2maxa,b

√
pab(1− pab) ≤ 1.

Now Ā is the finite rank (k) perturbation, and if
λmax(Ā) ∼ λmax(B) > 1, then the spectrum of A is out of the
semicircle.
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Finding the clusters

Proposition(Based on Theorem 1 of Stephan, L., Massoulié,
Non-backtracking spectra of inhomogeneous random graphs,
Mathematical Statistics and Learning (2022). )
Let EA be the expected adjacency matrix of a random simple
graph. Assume that k = rank (EA) = no(1), the graph is sparse
enough, and the eigenvectors corresponding to the non-zero
eigenvalues of the matrix EA are sufficiently delocalized. Let k0
denote the number of eigenvalues of EA whose absolute value is
larger than

√
ρ, where ρ is the spectral radius of EA: these are

ν1 ≥ · · · ≥ νk0 with corresponding eigenvectors u1, . . . ,uk0 (they
form an orthonormal system as EA is a real symmetric matrix).
Then for i ≤ k0 ≤ k, the ith largest eigenvalue µi of B is
asymptotically (as n → ∞) equals to νi and all the other
eigenvalues of B are constrained to the circle (in the complex
plane) of center 0 and radius

√
ρ.
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Proposition continued (eigenvectors of B)

Further, if i ≤ k0 is such that νi is a sufficiently isolated eigenvalue
of EA, then the standardized eigenvector of B corresponding to µi
has inner product close to 1 with the standardized inflated version
of ui , namely, with End ui

∥End ui∥ .
Let x be a unit-norm eigenvector of B, corresponding to the
eigenvalue µ that is close to the eigenvalue ν of the expected
adjacency matrix, with corresponding eigenvector u ∈ Rn. If our
graph is from the SBMk model, then (without knowing its
parameters) we know that u is a step-vector with at most k
different coordinates. Then by the above Proposition,〈

x,
Endu

∥Endu∥

〉
≥

√
1− ε ≥ 1− 1

2
ε,

where ε can be arbitrarily
”
small”with increasing n.
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Continued

∥∥∥∥x− Endu

∥Endu∥

∥∥∥∥2 ≤ 2− 2(1− 1

2
ε) = ε

and by xin = End∗x and End∗End = DA,∥∥∥∥End∗x− End∗
Endu

∥Endu∥

∥∥∥∥2 = ∥∥∥∥xin −DA
u

∥Endu∥

∥∥∥∥2 .
Consequently,∥∥∥∥D−1

A xin − u

∥Endu∥

∥∥∥∥2 ≤ ∥D−1
A End∗∥2ε ≤ ε

as ∥D−1
A End∗∥2 ≤ maxi

1
di

= 1
mini di

≤ 1.
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Summarizing

Theorem

Assume that the expected adjacency matrix of the underlying
random graph on n nodes and m edges has rank k with k single
eigenvalues and corresponding unit-norm eigenvectors
u1, . . . ,uk ∈ Rn. Assume that the non-backtracking matrix B of
the random graph has k structural eigenvalues (aligned with those
of the expected adjacency matrix) with eigenvectors
x1, . . . , xk ∈ R2m such that〈

xj ,
Enduj
∥Enduj∥

〉
≥

√
1− ε, j = 1, . . . , k.

Then for the transformed vectors D−1
A xinj ∈ Rn, the relation∑k

j=1

∥∥∥D−1
A xinj − uj

∥End uj∥

∥∥∥2 ≤ kε holds.
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Consequences

Corollary: If uj ’s are step-vectors on k steps (e.g., if our graph
comes from the SBMk model), then the k-variance of the node
representatives (objective function of the k-means algorithm)

(
1

di
x in1i , . . . ,

1

di
x inki ), i = 1, . . . , n

is estimated from above with kε too.

Remark: In case of a simple graph, the n-dimensional vectors xinj
(j = 1, . . . , k) are the first segments of the right eigenvectors of
the matrix K. So, we have to perform the spectral decomposition
of a 2n× 2n matrix only instead of a 2m× 2m one, which fact has
further computational benefit (except for trees, n ≤ m, but usually
n is much smaller than m).
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Non-backtracking transition probability matrix and
Laplacian

If G is connected with dmin ≥ 2, then for all eigenvalues of B,
|µ| ≥ 1 holds. In particular, if dmin > 2, then the eigenvalues of B
with |µ| = 1 are ±1’s.

If G is a connected graph that is not a cycle and dmin ≥ 2, then B
is irreducible. Therefore, the Frobenius theorem is applicable to B,
and under the above conditions, it has a single positive real
eigenvalue among its maximum absolute value ones with
corresponding eigenvector of all positive real coordinates. It is also
the spectral radius ρ(B) of B.
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Notation

The non-backtracking graph G corresponding to the simple graph
G is a special directed graph, with 2m × 2m adjacency matrix B,
obeying the PT-invariance. The row-sums of B are put in the
2m × 2m diagonal matrix Drow .
The diagonal entries of the row-sums of BT , or equivalently, those
of the column-sums of B are contained in the diagonal matrix
Dcol ; by the PT-invariance, Dcol = VDrowV; so diag(Drow ) and
diag(Dcol) are swappings of each other.
The diagonal entry of Drow , corresponding to the oriented edge
[i , j ] is dj − 1. Since it has multiplicity dj , the number of edges in
the non-backtracking graph is

∑n
j=1 dj(dj − 1) =

∑n
j=1 d

2
j − 2m.
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Non-backtracking random walk

The non-backtracking random walk on the original graph is not
Markovian (has the memory that there is no way back in the next
step), but it is Markovian on the graph of the directed edges with
transition probability matrix T := D−1

rowB. It means that the
probability of going from the oriented edge e to the oriented edge
f is Prob (e → f ) = 1

de
bef .

It is 0 if f = e−1 or if the end-node of e is not the start-node of f ;
otherwise, it is 1

de
, where de is the diagonal entry of Drow ,

corresponding to the oriented edge e = [i , j ], i.e., it is dj − 1.
This random walk on the oriented edges is already Markovian, as
going back is prohibited on the non-backtracking graph (a
forbidden transition corresponds to a 0 entry of B, so it has 0
probability).
The non-backtracking Laplacian generates the random walk:
L = I2m − T . Its eigenvalues are 1 minus the eigenvalues of T
with the same eigenvectors.
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Spectral properties of L and T

It is known that 0 is an eigenvalue of B if and only if G contains
nodes of degree one (for example, if it is a tree). Therefore, if
dmin ≥ 2, then 1 cannot be an eigenvalue of L, and the spectral
gap of the eigenvalues of L from 1 is investigated in Jost et al.,
Discrete Math. 2023, and it is bounded from below by 1

dmax−1 and
proved that this bound is sharp (attained at regular and certain
circle graphs).

The parity time symmetry for T is also true: T V and VT are
symmetric; further, T ∗ = T T = VT V. Because the diagonal
entries of Drow are the numbers di − 1, to have the inverse we
assume that di ≥ 2 in the original graph, and to preserve the
number of connected components in G and G we assume that G is
not the cycle graph.
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continued

In Bauer it is proved that the eigenvalues of L are contained in the
complex disc of center 1 and radius 1. In particular, its real
eigenvalues are in the [0,2] interval. Analogously, the eigenvalues
of T are in the complex disc of center 0 and radius 1; the real ones
are in the [−1, 1] interval. The number 2 is an eigenvalue of L, or
equivalently -1 is an eigenvalue of T if and only if the underlying
simple graph is bipartite. Furthermore, 0 is always an eigenvalue of
L, and its multiplicity is equal to the number of the connected
components of G, which is the same as the number of the
connected components of G , whenever none of them is the cycle
graph.
Observe that L rather resembles the normalized Laplacian that is
in the simple graph case LD = In −D−1/2AD−1/2, where A is the
adjacency and D is the diagonal degree matrix, and it has the
same eigenvalues as In −D−1A. In the present, unsymmetric
situation there are complex eigenvalues too and we distinguish
between right and left eigenvectors as follows.
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Right and left eigenvectors in general

Let A be n × n with possible complex entries, but diagonalizable
and irreducible. u is right eigenvector of A with eig.val. λ if
Au = λu. v is left eigenvector of A with the same eig.val. λ if
v∗A = λv∗ (equivalently, A∗v = λ̄v). If A is diagonalizable then

A =
n∑

i=1

λiuiv
∗
i = UΛU−1,

where U = (u1, . . . ,un) columnwise and U−1 contains the vectors
v∗i rowvise.
Note that the matrices uiv

∗
i in the above dyadic decomposition are

(skew) projections (idempotent) as the right- and left eigenvectors
form a biorthonormal system: v∗i uj = u∗j vi = δij and v∗i Auj = λiδij .
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Eigenvalues, left and right eigenvectors of T

T : eigenval. λ ∈ R λ ∈ C, λ̄ ̸= λ
right eigenvect. z ∈ R2m z ∈ C2m, z̄ ∈ C2m

left eigenvect. − 1
λ z̆ ∈ R2m c˘̄z = c¯̆z, c z̆ ∈ C2m

T T : eigenval. λ ∈ R λ̄ ∈ C, λ ̸= λ̄
right eigenvect. − 1

λ z̆ ∈ R2m c˘̄z = c¯̆z, c z̆ ∈ C2m

left eigenvect. z ∈ R2m z, z̄ ∈ C2m

Important: If z is an eigenvector of T corresponding to an
eigenvalue not 1, then z ⊥ 1, where 1 is the eigenvector
corresponding to the eigenvalue 1.
Note that usually there is no orthogonality of the eigenvectors (T
is not a normal matrix in general).
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More about these eigenvectors

Theorem

Assume that B is irreducible and diagonalizable. Then the
eigenvalues of T = D−1

rowB are allocated within the closed circle of
center 0 and radius 1 of the complex plane C, and 1 is a single real
eigenvalue. Furthermore, the right eigenvectors zi ’s corresponding
to the positive real eigenvalues λi ’s of T can be normalized so that
they form a Drow -orthonormal system. The left eigenvectors z̆i s
(with the same positive real eigenvalues) form a Dcol -orthonormal
system at the same time; i.e., zTi Drowzj = z̆Ti Dcol z̆j = δij for i , j
such that λi > 0 and λj > 0 are positive reals. (Note that we use
the notation zTi as the eigenvectors, corresponding to real
eigenvalues of a matrix of real entries, can also have real
coordinates.) Further, wj = − 1

λj
z̆j is the left eigenvector of T such

that zTi wj = δij for i , j = 1, . . . , k, where k is the number of real
eigenvalues of T .
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Proof (sketch)

The transition probability matrix T is a doubly stochastic matrix as
its row-sums are 1s; further, its transpose

(D−1
rowB)

T = BTD−1
row = D−1

colB
T

is also a stochastic matrix (it is the transition probability matrix of
the reversed random walk along to the inverses of the oriented
edges). So the largest modulus real eigenvalue of both T and T T

is 1 with eigenvector 1. This also means that the stationary
distribution of the corresponding ergodic Markov chain is uniform.
The left and right eigenvectors, corresponding to the (same) real
eigenvalues of T , form a bi-orthogonal system as the matrix T is
diagonalizable.
Therefore, 1 is a single real eigenvalue of the irreducible matrix
D−1

rowB of nonnegative entries, by the Frobenius theorem; also, the
moduli of the other (possibly complex) eigenvalues are at most 1.
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continued

A right eigenvector z with eigenvalue λ of T satisfies the equation

D−1
rowBz = λz.

We will use the special structure of B when we consider a positive
real eigenvalue λ and corresponding right eigenvector z of T . By
V2 = I2m, V

T = V, this is equivalent to

(VD−1
rowV)(VBV)(Vz) = λ(Vz),

so
D−1

colB
T z̆ = λz̆.

Consequently, if z is a right eigenvector of D−1
rowB with the real

eigenvalue λ, then z̆ is a right eigenvector of D−1
colB

T , with the
same real eigenvalue λ; and it is also a left eigenvector of D−1

rowB
with the real eigenvalue λ.
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continued with complex λ’s that are not real

Now ¯̆z is a left eigenvector of T with the same eigenvalue. Indeed,

T ∗¯̆z = T T ¯̆z = D−1
colB

T ¯̆z = (VD−1
rowV)(VBV)˘̄z = V(D−1

rowBz̄) =

= VD−1
rowBz = Vλz = Vλ̄z̄ = λ̄(Vz̄) = λ̄˘̄z = λ̄¯̆z,

so ¯̆z is a right eigenvector of T ∗ with eigenvalue λ̄ which means
that ¯̆z is a left eigenvector of T with eigenvalue λ.
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Generalized eigenvalue problem

Bzi = λiDrowzi

By the theory of the generalized eigenvalue problem, since Drow is
positive definite and B is diagonalizable, there exists a basis
(usually not ortogonormal) in C2m which simultaneously
diagonalizes B and Drow . As Drow is also diagonal with positive
diagonal entries, we can choose a Drow -orthonormal basis, i.e.,

z∗i Drowzj = δij , i , j = 1, . . . , k.

With the notation Zk := (z1, . . . , zk) and Λk := diag(λ1, . . . , λk),
we have that

ZT
k BZk = Z∗

kBZk = Λk .

Hence, the first k (positive real) generalized eigenvalues of B and
Drow are λ1, . . . , λk , that are the first k eigenvalues of T , and
these are real numbers. The other λ’s can be complex.
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Consider the left eigenvectors wi ’s of T that constitute a
biorthonormal system with zi ’s: z

∗
i wj = δij . (In particular,

w1 ∥ z̆1 ∥ 1 will do, which is the scalar multiple of the vector 1).
With the notation W = (w1, . . . ,w2m) and by the biorthogonality,
this means that W∗ = Z−1.
In this way, we have the system of equations

D−1
colB

Twi = λ̄iwi ,

because a left eigenvector of D−1
rowB is a right eigenvector of its

adjoint (transpose as real) D−1
colB

T with eigenvalue λ̄i .
This is exactly the problem of finding the generalized eigenvalues
of the matrices BT and Dcol . Indeed,

BTwi = λ̄iDcolwi (1)

that is used for i = 1, . . . , k.
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We know that Z̆∗
kDcol Z̆k = Ik and Wk = Z̆kCk . We want to prove

that for the k × k diagonal real matrix Ck : Ck = −Λ−1
k .

W∗
kB

TWk = C∗
k Z̆

∗
kDcol Z̆kCkΛk = C2

kΛk .

As VWk = Z̆k :

W̆
T
k B

−1W̆k = Λ−1
k

so by the equality of a part of SVD in BT and B−1, Λ−1
k = C2

kΛk ,
so C2

k = Λk
−2 and ci = − 1

λi
, i = 1, . . . , k.
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Relation between the eigenvalues of B and L or T

Our ultimate goal is to find clusters of the nodes by means of the
structural non-backtracking eigenvalues that are real ones,
separated from the bulk of the spectrum (they are positive in
assortative networks). To conclude for them it is more convenient
and customary to consider the non-backtracking Laplacian (L)
eigenvalues separated from 1, or equivalently, the eigenvalues of
the transition probability matrix (T ), separated from 0. All these
eigenvalues are confined to a circle of radius 1 in the complex
plane, but we are interested only in the

”
structural” (outstanding)

real ones. For this purpose, we consider the following equivalent
version:

(D−1/2
row BD−1/2

row )(D1/2
rowz) = λ(D1/2

rowz).
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continued

The structural positive real eigenvalues

µ1 ≥ · · · ≥ µk > 0

of B and the largest modulus eigenvalues of T are

1 = λ1, λ2, . . . , λk .

To a real eigenvalue λi an eigenvector zi of T corresponds (zi also
has real coordinates). By the above equivalent version, the matrix

D−1/2
row BD−1/2

row has the same eigenvalues with eigenvectors

x = D1/2
rowz. We know that z1 = 1 and x1 = D1/2

row1.
These eigenvectors form a Drow -orthonormal system, i.e.
zTi Drowzj = δij for i , j = 1, . . . , k. Consequently, the vectors

xi = D1/2
rowzi are orthonormal: xTi xj = δij for i , j = 1, . . . , k. They

are the right eigenvectors of D−1/2
row BD−1/2

row with eigenvalues λi .
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Bauer–Fike perturbations

Proposition

A = UΛU−1 is diagonalizable with eigenvalues α’s, B is arbitrary
with eigenvalues β’s (both are n × n with possibly complex
entries). Then for any β there is an i ∈ {1, . . . , n} such that

|β − αi | ≤ κ(U)∥B− A∥ =: R.

There can be more than one such i, but we can tell the following.
Let Ci be the circle centered at αi with radius R (in C). For any
union of some Ci ’s, which is disjoint of the union of the remaining
Ci ’s, the number of β’s within this union is equal to the number of
Ci ’s in the union (or to the number of α’s in the union). In
particular, if a Ci is disjoint of the others, then there is exactly one
β in it (so, β’s and α’s cannot be too far apart).

Here κ(U) = ∥U∥ · ∥U−1∥ = smax (U)
smin(U) .
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Application of te Bauer–Fike theorem

∥T − 1

µ1
B∥ = ∥(D−1

row − 1

µ1
I)B∥ ≤ ∥D−1

row − 1

µ1
I∥ · ∥B∥,

where ∥B∥ = max di − 1 (the maximal singular value of B) and

∥D−1
row − 1

µ1
I∥ = max

i
| 1

di − 1
− 1

µ1
| = 1

min di − 1
− 1

µ1
.

Here di is around c, but min di < c. So

R

κ(Z)
≤ max di − 1

min di − 1
− max di − 1

µ1
.

For diagonalizable matrices of nonnegative entries we know that
min di − 1 ≤ µ1 ≤ max di − 1. Applying this to µ1 of B:

0 ≤ R

κ(Z)
≤ max di − 1

min di − 1
− 1.
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continued

Jost et al., Discrete Math. 2023: the spectral gap between the
transition probability spectrum and zero is at least 1

maxi di−1 . Also,
taking into consideration the relation between the right–left
eigenvectors, κ(Z) ≤ max di−1

min di−1 and

R ≤ max di − 1

min di − 1

(
max di − 1

min di − 1
− 1

)
that is the closer to zero as max di is closer to min di which is
supported by the SBMk model.

Possibly, it is better to consider only Zk and work with the k-rank
approximation of T . Jost et al., Discrete Math. 2023 (for k = 1):
In the assortative sparse SBMk model there are k positive real
eigenvalues ≥ 1√

c−1
, the others (partly complex conjugate pairs)

are less in absolute value.
Good news, as for the clustering we use only (real) eigenvectors,
corresponding to real eigenvalues of a real matrix.
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Clustering

Spectral clustering algorithms use the heuristic that eigenvectors
corresponding to the structural eigenvalues of a suitable matrix are
applicable to the k-means clustering. In case of the dense
stochastic block model, this is supported by subspace perturbation
theorems. In the sparse case, similar arguments can be used for
some deflated (n-dimensional) versions of the 2m-dimensional B-
or T -eigenvectors.
If G , and hence, G, come from the sparse stochastic block model,
we can cluster the vertices with the deflated z or x vectors.
As the eigenvectors, corresponding to the k leading eigenvalues of
B are close to the leading inflated eigenvectors of Ā (with an inner
product approaching 1 as n → ∞), and latter ones are step-vectors.
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continued

So the leading λs are within a constant factor of µs. The
corresponding eigenvectors (if the structural eigenvalues are single)
are continuous functions of the matrices. As the eigenvectors xi s
of B, corresponding to its structural eigenvalues µ1, . . . , µk are
close to the inflated versions of the eigenvalues of Ā, they are close
to step-vectors if our graph comes from the sparse SBMk model.
Therefore, between the zi s, as eigenvectors of the transition
probability matrix T = D−1

rowB and the inflated eigenvectors vi s of
the matrix D−1

Ā
Ā (which are step-vectors), the following relation

holds true, as the norms of the matrices D−1
row and D−1

Ā
do not

depend on n. Here the diagonal matrix DĀ contains entries ci in
the ith block for i = 1, . . . , k.
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continued

The structural eigenvalues of D−1/2
row BD−1/2

row are also λi s with

orthonormal eigenvectors D1/2
rowzi and those are aligned with the

structural eigenvalues of D
−1/2

Ā
ĀD

−1/2

Ā
. Also, the unit-norm

eigenvectors D1/2
rowzi are close to the inflated versions of the

unit-norm eigenvectors of this matrix, which are step-vectors, say
v1, . . . , vk (form an orthonormal system as the matrix is
symmetric). So∥∥∥∥x− Endu

∥Endu∥

∥∥∥∥2 ≤ 2− 2(1− 1

2
ε) = ε,

where ε can be any small with increasing n. Therefore,∥∥∥∥D1/2
rowz−

End v

∥End v∥

∥∥∥∥2 ≤ ε′,

where the relation between ε′ and ε does not depend on n, but
both tend to 0 as n → ∞.
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continued

Since D1/2
rowz

in
= End∗D1/2

rowz and End∗End = D,∥∥∥∥End∗D1/2
rowz− End∗

End v

∥End v∥

∥∥∥∥2 = ∥∥∥∥(D1/2
rowz)

in −D
v

∥End v∥

∥∥∥∥2
also holds. Consequently,∥∥∥∥D−1(D1/2

rowz)
in − v

∥End v∥

∥∥∥∥2 ≤ ∥D−1End∗∥2ε′ ≤ ε′.

Indeed, the largest eigenvalue of
(D−1End∗)(EndD−1) = D−1DD−1 = D−1 is maxi

1
di
, so the

largest singular value (spectral norm) of D−1End∗ is estimated

from above with
(
maxi

1
di

) 1
2
. Therefore,

∥D−1End∗∥2 ≤ max
i

1

di
=

1

mini di
≤ 1.
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continued

Now we apply this to the k leading normalized eigenvectors
z1, . . . , zk of T , for which

k∑
j=1

∥D−1(D1/2
rowzj)

in −
vj

∥End vj∥
∥2 ≤ kε′.

As vjs are step-vectors with k different coordinates on the same k
steps, the above sum of the squares estimates from above the
objective function of the k-means algorithm. Without knowing the
vjs, we minimize it with the k-dimensional node representatives
that are row vectors of the n× k matrix, whose column vectors are

D−1(D1/2
rowzj)

in (j = 1, . . . , k).
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