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» Image segmentation with spectral clustering tools
(tumor-segmentation, computer aided surgery): M. Bolla,
Spectral Clustering and Biclustering, Wiley (2013).



Singular (deterministic) time series: Cramér, Wold,
Wiener, Kolmogorov
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Non-singular time series: Wold decomposition
H. Wold’s Theorem:
oo
X; = Z Bje:_j + Type (0) singular,
j=0

where Bj: n x r matrix (with square-summable entries), and
{e+} r-dimensional white noise with covariance matrix X.

If {X;:} is regular with n x n symmetric, positive semidefinite
spectral density matrix f, rangf(w) =r < n (a.s.) and

f(z) <= (B(2),X): f(z)= %B(Z)EB*(Z),

where

B(z) = Z Bz, |z/<1
=0

transfer-function.



General Dynamic Factor Model (GDFM)

If r=n X¢= )/Et|t_1 + &4, then
X¢|¢—1: one-step ahead prediction (based on infinite past) and &;:
innovation.

If r < n: only the innovation subspace is unique, and

dim (innovation subspace) =rank (f) = r.

GDFM (Forni, Lippi, Deistler): n,t — oo (from a starting time).
Number of dynamic factors: essential rank of f (number of
structural eigenvalues in the frequency domain).

Dynamic factors: standardized innovations.

After eliminating the idiosyncratic part, we predict in the time
domain (based on finite past, block Cholesky decomposition, then
static factor analysis in the innovation subspaces).

Application: finding underlying signals detected by many sensors.
Telecommunication systems (NOKIA), EEG, biomedical sensors.



Graphical models

Chain graph model, EDHS 2014 data
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Application: artificial intelligence, medical diagnosis, health, and
demography planning in developing countries.



Non-parametric regression: iteration along a DAG
Xi,...,Xq: random variables (vertices), X<, := (Xk41,---,Xq):
context variables.

Pj(x>j) ::E(Xj]X>J-:x>j), j:k,k—l,...,l;

57 (x5) Zx W) (xo;), j=kk—1,...,1

smoother (local averaging), e.g., with product kernels.
Consistency Theorem: If

B[S (Xs) = PGP 0. noo, j=kik-1....1
then

EIS (S (SN (S (Xok)s ) Xok) Xok) Xok)—
— Pi(Pis1(Pjsa(- - - (Pk(Xsk), -+ ), X5k), Xsk), Xsk)? = 0, n— o0

Vj=kk—1,...,1.



Using Kalman'’s filtering in SEM

Structural Equation Model (SEM) as a linear dynamical system:

Bn: = A&t + Cr
X: =C& + e
Y: = Dn; + 6,

where 1; is m- and &; is n-dimensional latent vector; B and A are
m x m and m x n coefficient matrices; (; is a random vector of
residuals. It is uncorrelated with &;, and B is nonsingular. In the
recursive models, B is upper triangular.

X: and Y are g- and p-dimensional observable variables, g > n
and p>m. Cisgxn, Dis px m; A,B,C,D are estimated from
a learning sample (LISLER or block Cholesky decomposition).

¢t is an orthogonal process, E€J ¢ = 0 for s < t; e, is
independent of &, d; is independent of 7;, they are also
independent of each other and of (;.

Prediction: X; — & — 1y — Y.



Spectral clustering

Or|g|nal picture and pixels colored with 3, 4, 5 colors (clusters)

(48 x 48 pixels)

Structural eigenvalues of the normalized modularity matrix:
0.137259, 0.014255, 0.000925,

—0.0006707, —0.0006706, ...

Reproducing Kernel Hilbert Spaces, product Gaussian kernels
image segmentation

Normalized contingency table (e.g., microarray), directed graphs:
Cp= D,_o:b.,pCD:ol,/2 (correspondence analysis)
Application: image segmentation, microarrays (forensic data);

e.g., tumor segmentation, computer aided surgery.
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Thank you for your attention.
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