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Outline

We will amalgamate the Rash model and the newly
introduced α-β-models in the framework of a semiparametric
probabilistic graph model.

Our algorithm gives a partition of the vertices of an observed
graph so that the generated subgraphs and bipartite graphs
obey these models, where their strongly connected parameters
give multiscale evaluation of the vertices at the same time.

We build a heterogeneous version of the stochastic block
model via mixtures of loglinear models and the parameters are
estimated with a special EM iteration.

In the context of social networks, the clusters can be identified
with social groups and the parameters with attitudes of
people of one group towards people of the other, which
attitudes depend on the cluster memberships.

The algorithm is applied to randomly generated and real-word
data.
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Tusnády,G., When the degree sequence is a sufficient statistic,
Acta Math. Hung. (2011).

Dempster,A.P., Laird,N.M. and Rubin,D.B., Maximum
likelihood from incomplete data via the EM algorithm, J. R.
Statist. Soc. B (1977).

Lauritzen,S.L., Extremal families and systems of sufficient
statistics. Lecture Notes in Statistics, Springer (1988).

Rasch,G., On general laws and the meaning of measurement
in psychology. In Proc. of 4h Berkeley Symp. on Math.
Statist. and Probab. (1961).

Rinaldo,A., Petrovic,S. and Fienberg,S.E., Maximum
likelihood estimation in the β-model, Ann. Statist. (2013).



Outline The building blocks The multipartite graph model Applications

α-β models for undirected random graphs

A = (Aij): n × n symmetric adjacency with zero diagonal.
pij = P(Aij = 1) independently for all i < j pairs.
α model:

pij
1− pij

= αiαj (1 ≤ i < j ≤ n),

with positive real parameters α1, . . . , αn.
β model: βi = lnαi (i = 1, . . . n).

ln
pij

1− pij
= βi + βj (1 ≤ i < j ≤ n)

with real parameters β1, . . . , βn.
Conversely,

pij =
αiαj

1 + αiαj
, 1− pij =

1

1 + αiαj
.
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ML estimation of the parameters

Find ML estimate of the parameter vector α = (α1, . . . , αn) or
β = (β1, . . . , βn) based on the observed unweighted, undirected
graph (aij) as a statistical sample. (It may seem that we have a
one-element sample here, however, there are

(n
2

)
independent

random variables, the adjacencies, in the background.)
The degree sequence D = (D1, . . . ,Dn) is a sufficient statistic.
The ML estimate α̂ (or equivalently, β̂) is derived from the fact
that the observed degree di =

∑n
j=1 aij is equal to the expected

E(Di ) =
∑n

i=1 pij . Therefore, the ML equation:

di =
n∑
j 6=i

pij =
n∑
j 6=i

αiαj

1 + αiαj
(i = 1, . . . , n).



Outline The building blocks The multipartite graph model Applications

Graphic degree sequences

The sequence d1, . . . , dn of nonnegative integers is called graphic if
there is an unweighted, undirected graph on n vertices such that
its vertex-degrees are the numbers d1, . . . , dn in some order.
By the Erdős–Gallai theorem, the sequence d1 ≥ · · · ≥ dn ≥ 0 of
integers is graphic if and only if

∑n
i=1 di is even and

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}, k = 1, . . . , n − 1.

For given n, the convex hull of all possible graphic degree
sequences is a convex polytope Dn. Its extreme points are the
threshold graphs. For n = 3 all undirected graphs are threshold,
therefore assume that n > 3. The number of vertices of Dn

superexponentially grows with n, therefore the problem of
characterizing threshold graphs has a high computational
complexity.
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Existence and uniqueness of the ML estimete

Chatterjee et al. and V. Csiszár et al. proved that Dn is the
topological closure of the set of expected degree sequences, and for
given n > 3, if d ∈ int (Dn) is an interior point, then the ML
equation has a unique solution.
The converse is also true: Rinaldo et al. proved that the ML
estimate exists if and only if the observed degree vector is an inner
point of Dn.
When the observed degree vector is a boundary point of Dn, there
is at least one 0 or 1 probability pij which can be obtained only by
a parameter vector such that at least one of the βi ’s is not finite.
In this case, the likelihood function cannot be maximized with a
finite parameter set, its supremum is approached with a parameter
vector β with at least one coordinate tending to +∞ or −∞. Still,
the other coordinates have a unique ML estimate.
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Algorithm to estimate the α parameters

V. Csiszár et al. proved that, provided d ∈ int (Dn), the following
iteration converges to the unique solution of the ML equation.

Starting with initial parameter values α
(0)
1 , . . . , α

(0)
n and using the

observed degree sequence d1, . . . , dn, which is an inner point of Dn:

α
(t)
i =

di∑
j 6=i

1
1

α
(t−1)
j

+α
(t−1)
i

(i = 1, . . . , n)

for t = 1, 2, . . . , until convergence.
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The origins: Rasch model

Our bipartite graph model traces back to Lauritzen,Rasch, etc.
Rasch model: the entries of an m × n binary table A = (Aij) are
independent Bernoulli random variables with parameters
pij = P(Aij = 1) satisfying

ln
pij

1− pij
= βi − δj (i = 1, . . .m; j = 1, . . . , n)

with real parameters β1, . . . , βm and δ1, . . . , δn.
The rows corresponded to persons and the columns to items of
some psychological test, whereas the jth entry of the ith row was 1
if person i answered test item j correctly and 0, otherwise. Rasch
also gave a description of the parameters: βi was the ability of
person i , while δj the difficulty of test item j . Therefore, the more
intelligent the person and the less difficult the test, the larger the
success/failure ratio was on a logarithmic scale.
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β-γ model for bipartite graphs

Given an m × n random binary table A = (Aij), with
pij = P(Aij = 1), the β-γ model:

ln
pij

1− pij
= βi + γj (i = 1, . . . ,m, j = 1, . . . , n)

with real parameters β1, . . . , βm and γ1, . . . , γn.
In terms of the transformed parameters bi = eβi and gj = eγj :

pij
1− pij

= bigj (i = 1, . . . ,m, j = 1, . . . , n)

where b1, . . . , bm and g1, . . . , gn are positive reals.
Conversely, the probabilities can be expressed in terms of the
parameters:

pij =
bigj

1 + bigj
, 1− pij =

1

1 + bigj
.
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Observe that if the β − γ model holds with the parameters βi ’s and
γj ’s, then it also holds with the transformed parameters β′i = βi + c
(i = 1, . . . ,m) and γ′j = γj − c (j = 1, . . . , n) with some c ∈ R.
Equivalently, if the b − g model holds with the positive parameters
bi ’s and gj ’s, then it also holds with the transformed parameters

b′i = biκ, g ′j =
gj
κ

with some κ > 0. Therefore, the parameters bi (i = 1, . . . ,m) and
gj (j = 1, . . . , n) are arbitrary to within a multiplicative constant.
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Sufficient statistics

By the Neyman–Fisher factorization theorem, the row-sums
(Ri =

∑n
j=1 Aij) and the column-sums (Cj =

∑m
i=1 Aij) are the

sufficient for the parameters b = (b1, . . . , bm) and
g = (g1, . . . , gn):

Lb,g(A) =
m∏
i=1

n∏
j=1

p
Aij

ij (1− pij)
1−Aij

=


m∏
i=1

n∏
j=1

(
pij

1− pij

)Aij


m∏
i=1

n∏
j=1

(1− pij)

=

{
m∏
i=1

b
∑n

j=1 Aij

i

}
n∏

j=1

g
∑m

i=1 Aij

j


m∏
i=1

n∏
j=1

(1− pij)

=


m∏
i=1

n∏
j=1

1

1 + bigj


{

m∏
i=1

bRi
i

}
n∏

j=1

g
Cj

j

 .
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0-1 matrices with fixed margins

The first factor (including the partition function) depends only on
the parameters and the row- and column-sums, whereas the
seemingly not present factor – which would depend merely on A –
is constantly 1, indicating that the conditional joint distribution of
the entries, given the row- and column-sums, is uniform in this
model.
Given the margins, the contingency tables coming from the above
model are uniformly distributed, and a typical table of this
distribution is produced by the β-γ model with parameters
estimated via the row- and column sums as sufficient statistics.
In this way, here we obtain another view of the typical table.
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System of ML equations

Based on an observed binary table (aij), since we are in exponential
family, and β1, . . . , βm, γ1, . . . , γn are natural parameters, the
likelihood equation is obtained by making equal the expectation of
the sufficient statistic to its sample value. Therefore, with the
notation ri =

∑n
j=1 aij (i = 1, . . . ,m) and cj =

∑m
i=1 aij

(j = 1, . . . , n), the ML equations:

ri =
n∑

j=1

bigj
1 + bigj

= bi

n∑
j=1

1
1
gj

+ bi
, i = 1, . . .m;

cj =
m∑
i=1

bigj
1 + bigj

= gj

m∑
i=1

1
1
bi

+ gj
, j = 1, . . . n.

Because of
∑m

i=1 ri =
∑n

j=1 cj , there is a dependence between the
ML equations, indicating that the solution is not unique, in accord
with our previous remark about the arbitrary scaling factor κ > 0.
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We will prove that apart from this scaling, the solution is unique if
it exists at all. So that to avoid this indeterminacy, we may impose
conditions on the parameters, for example,

∑m
i=1 βi +

∑n
j=1 γj = 0.

Conditions for the sequences r1 ≥ · · · ≥ rm > 0 and
c1 ≥ · · · ≥ cn > 0 of integers to be row- and column-sums of an
m × n matrix of 0-1 entries:

k∑
i=1

ri ≤
n∑

j=1

min{cj , k}, k = 1, . . . ,m;

k∑
j=1

cj ≤
m∑
i=1

min{ri , k}, k = 1, . . . , n.

These conditions define bipartite realizable sequences and form a
polytope in Rm+n; more precisely, in an (m + n − 1)-dimensional
hyperplane of it. It is called polytope of bipartite degree sequences
and denoted by Pm,n.
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When the ML estimate exists

Analogously to the α− β models, Pm,n is the closure of the set of
the expected row- and column-sum sequences in the above model.
Hammer proved that an m × n binary table, or equivalently a
bipartite graph on the independent sets of m and n vertices, is on
the boundary if it does not contain two vertex-disjoint edges. In
this case, the likelihood function cannot be maximized with a finite
parameter set, its supremum is approached with a parameter vector
with at least one coordinate βi or γj tending to +∞ or −∞.
Rinaldo et al.: the ML estimate of the model parameters exists if
and only if the observed row- and column-sum sequence
(r, c) ∈ ri (Pm,n), the relative interior of Pm,n.
In this case for the probabilities, calculated through the estimated
finite parameter values b̂i ’s and ĝj ’s, 0 < pij < 1 holds ∀i , j .
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Algorithm

Under these conditions, we defined an algorithm that converges to
the unique (up to the above equivalence) solution of the ML
equation. More precisely, we proved that if (r, c) ∈ ri (Pm,n), then
our algorithm gives a unique equivalence class of the parameter
vectors as the fixed point of the iteration, which therefore provides
the ML estimate of the parameters.

Starting with positive parameter values b
(0)
i (i = 1, . . . ,m) and

g
(0)
j (j = 1, . . . , n) and using the observed row- and column-sums,

the iteration:

b
(t)
i =

ri∑n
j=1

1
1

g
(t−1)
j

+b
(t−1)
i

, i = 1, . . .m

g
(t)
j =

cj∑m
i=1

1
1

b
(t)
i

+g
(t−1)
j

, j = 1, . . . n

for t = 1, 2, . . . , until convergence.
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The multipartite graph model

The above α-β and β-γ models will be the building blocks of a
heterogeneous block model. Here the degree sequences are not any
more sufficient for the whole graph, only for the subgraphs.
Given 1 ≤ k ≤ n, we are looking for k-partition, in other words,
clusters C1, . . . ,Ck of the vertices such that

different vertices are independently assigned to a cluster Cu

with probability πu (u = 1, . . . , k), where
∑k

u=1 πu = 1;

given the cluster memberships, vertices i ∈ Cu and j ∈ Cv are
connected independently, with probability pij such that

ln
pij

1− pij
= βiv + βju

for any 1 ≤ u, v ≤ k pair. Equivalently,

pij
1− pij

= gicjgjci

where ci is the cluster membership of node i and giv = eβiv .
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EM algorithm

The parameters are collected in the vector π = (π1, . . . , πk) and
the n × k matrix G = (giu) (i ∈ Cu, u = 1, . . . , k).
The likelihood function is the following mixture:∑

1≤u,v≤k
πuπv

∏
i∈Cu ,j∈Cv

p
aij
ij (1− pij)

(1−aij ).

Here A = (aij) is the incomplete data specification as the cluster
memberships are missing. Therefore, it is straightforward to use
the EM algorithm, proposed by Dempster et al., reminiscent of
collaborative filtering.
We complete our data matrix A with latent membership vectors
m1, . . . ,mn of the vertices that are k-dimensional i.i.d.
Multy(1, π) random vectors. More precisely, mi = (mi1, . . . ,mik),
where miu = 1 if i ∈ Cu and zero otherwise. Thus, the sum of the
coordinates of any mi is 1, and P(miu = 1) = πu.
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EM iteration

Starting with initial parameter values π(0), G(0) and membership

vectors m
(0)
1 , . . . ,m

(0)
n , the t-th step of the iteration is the

following (t = 1, 2, . . . ).
E-step: Calculate the conditional expectation of each mi

conditioned on the model parameters and on the other cluster
assignments M(t−1), obtained in step t − 1.
The responsibility of vertex i for cluster u in the t-th step:

π
(t)
iu = E(miu |M(t−1))

and by the Bayes theorem, it is

π
(t)
iu =

P(M(t−1)|miu = 1) · π(t−1)u∑k
v=1 P(M(t−1)|miv = 1) · π(t−1)v

(u = 1, . . . , k; i = 1, . . . , n).



Outline The building blocks The multipartite graph model Applications

For each i , π
(t)
iu is proportional to the numerator, therefore the

conditional probabilities P(M(t−1)|miu = 1) should be calculated
for u = 1, . . . , k.
But this is just the part of the complete likelihood effecting vertex
i under the condition miu = 1. Therefore,

P(M(t−1)|miu = 1)

=
k∏

v=1

∏
j∈Cv , j∼i

p
(t−1)
ij

∏
j∈Cv , j�i

(1− p
(t−1)
ij )

=
k∏

v=1

{
p
(t−1)
ij

}evi
{

(1− pij)
(t−1)

}|Cv |·(|Cv |−1)/2−evi
,

where evi is the number of edges within Cv that are connected to i
and

p
(t−1)
ij =

g
(t−1)
icj

g
(t−1)
jci

1 + g
(t−1)
icj

g
(t−1)
jci

.
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M-step: We update π(t) and m(t): π
(t)
u := 1

n

∑n
i=1 π

(t)
iu and

m
(t)
iu = 1 if π

(t)
iu = maxv π

(t)
iv and 0, otherwise. (in case of

ambiguity, we select the smallest index for the cluster membership
of vertex i). This gives a new clustering of the vertices.
Then we estimate the parameters in the actual clustering of the
vertices. In the within-cluster scenario, we use the parameter
estimation of the α− β model, obtaining estimates of giu’s
(i ∈ Cu) in each cluster separately (u = 1, . . . , k); as for cluster u,
giu corresponds to αi and the number of vertices is |Cu|. In the
between-cluster scenario, we use the bipartite graph model in the
following way. For u < v , edges connecting vertices of Cu and Cv

form a bipartite graph, based on which the parameters giv (i ∈ Cu)
and gju (j ∈ Cv ) are estimated with the above algorithm; here giv ’s
correspond to bi ’s, gju’s correspond to gj ’s, and the number of
rows and columns of the rectangular array corresponding to this
bipartite subgraph of A is |Cu| and |Cv |, respectively. With the
estimated parameters, collected in the n × k matrix G(t), we go
back to the E-step, etc.
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By the general theory of the EM algorithm, since we are in
exponential family, the iteration will converge.
The parameter βiv with ci = u embodies the affinity of vertex i of
cluster Cu towards vertices of cluster Cv ; and likewise, βju with
cj = v embodies the affinity of vertex j of cluster Cv towards
vertices of cluster Cu. By the model, this affinities are added
together on the level of the log-odds.
This so-called k − β model, introduced in V. Csiszár et al., is
applicable to social networks, where attitudes of individuals in the
same social group (say, u) are the same toward members of
another social group (say, v), though, this attitude also depends on
the individual in group u. The model may also be applied to
biological networks, where the clusters consist, for example, of
different functioning synopses or other units of the brain.
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Application to generated data
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Application to the B&K (Bernard and Killworth)
fraternity data
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Thank you for your attention
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