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Motivation

We introduce a directed random contingency table model,
where the entries are in (0, 1), independent and
beta-distributed with parameters depending on their row and
column indices. We will find sufficient statistics, and based on
them, give an algorithm to find ML estimates of the
parameters, together with convergence proof.

Then we extend the model to the multiclass scenario, where
for fixed k and l , we are looking for k so-called out-clusters of
the rows and l in-clusters of the columns so that the
parameters of the beta-distributed entries also depend on their
cluster memberships..

To find the clusters and estimate the parameters, we use an
EM iteration that alternately finds the cluster memberships,
then fixing the memberships, estimates the parameters within
the blocks separately.

The algorithm is applied to generated and genetic data.
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The one-cluster random contingency table model

W = (wij): n ×m contingency table, wij ∈ (0, 1).

Model: wij obeys a beta-distribution with parameters ai > 0 and
bj > 0, independently of the other entries.

Notation: a := (a1, . . . an) and b = (b1, . . . bm)

ai : the potential of row i to send messages out
bj : the resistance of column j to receive messages in
wij : the weight of the i → j message.
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The likelihood function in factorized form

La,b(W) =
n∏

i=1

m∏
j=1

Γ(ai + bj)

Γ(ai )Γ(bj)
wai−1
ij (1− wij)

bj−1

= C (a,b)
n∏

i=1

m∏
j=1

exp[(ai − 1) ln wij + (bj − 1) ln(1− wij)]

C (a,b): normalizing constant

si :=
∑m

j=1 ln wij (i = 1, . . . , n): ith row-sum of the n×m matrix
U = U(W) of general entry ln wij

zj :=
∑n

i=1 ln(1− wij) (j = 1, . . . ,m): jth column-sum of the
n ×m matrix V = V(W) of general entry ln(1− wij)
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The system of ML equations (MLE) in terms of the
sufficient statistics

∂ ln La,b(W)

∂ai
=

m∑
s=1

Γ′(ai + bs)

Γ(ai + bs)
−m

Γ′(ai )

Γ(ai )
+ si = 0, i = 1, . . . , n

∂ ln La,b(W)

∂bi
=

n∑
s=1

Γ′(as + bi )

Γ(as + bi )
− n

Γ′(bi )

Γ(bi )
+ zi = 0, i = 1, . . . ,m



Motivation A random contingency table model with beta-distributed entries The multiclass model Applications

Fixed point iteration

θ = f (θ), where θ = (a,b):

ai = ψ−1

[
1

m
si +

1

m

m∑
s=1

ψ(ai + bs)

]
=: gi (a,b), i = 1, . . . , n

bi = ψ−1

[
1

n
zi +

1

n

n∑
s=1

ψ(as + bi )

]
=: hi (a,b), i = 1, . . . ,m

ψ(x) = ∂ ln Γ(x)
∂x = Γ′(x)

Γ(x) for x > 0 is the digamma function

gi s resp. hjs are the coordinate functions of g : Rn+m → Rn resp.
h : Rn+m → Rm

f = (g , h)
Starting with θ(0), we use the successive approximation
θ(it) := f (θ(it−1)) for it = 1, 2, . . . until convergence.
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Some facts needed for the convergence

As in minimally represented, regular exponential famlies, the MLE
has a unique solution (â, b̂), we have to prove the convergence to
it.
Fact 1.

n∑
i=1

si +
m∑
j=1

zj =
n∑

i=1

m∑
j=1

ln wij +
m∑
j=1

n∑
i=1

ln(1− wij) ≤ −2 ln 2 nm.

with equality if and only if wij = 1
2 (∀i , j).

Fact 2. The function ψ(2x)− ψ(x), x ∈ (0,∞) is decreasing and
its range is (ln 2,∞).



Motivation A random contingency table model with beta-distributed entries The multiclass model Applications

Facts continued

Fact 3.

M := max

{
max

i∈{1,...,n}

(
−si

n

)
, max
i∈{1,...,m}

(
− zi

m

)}
and ε > 0 be the (only) solution of the equation
ψ(2x)− ψ(x) = M. Then (â, b̂) ≥ ε1, where 1 ∈ Rn+m is the all
1’s vector, and the inequality between vectors is understood
componentwise.

Fact 4. With the solution ε of ψ(2x)− ψ(x) = M we have
f (ε1) ≥ ε1.

Fact 5. If (a,b) ≥ (x, y) > 0, then f (a,b) ≥ f (x, y).
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Convergence theorem

Theorem

Let θ̂ = (â, b̂) be the unique solution of the MLE. Then the above
mapping f = (g , h) is a contraction in some closed neighborhood
K of θ̂, and so, starting at any θ(0) ∈ K, the fixed point of the
iteration θ(it) = f (θ(it−1)) exists and is θ̂.

Since f : Rn+m → Rn+m is continuously differentiable in a
neighborhood of θ̂ = (â, b̂), existing theorems guarantee that there
is a closed neighborhood K of θ̂ such that f is a contraction on K .
In particular, the fixed point iteration f (θ(it−1)) = θ(it) (it →∞)
converges for every θ(0) ∈ K to θ̂, which is the unique solution of
the MLE.
Starting with ε1, sooner or later we get into K .
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The multiclass model

In the several clusters case, we are putting the blocks together.
Here the statistics are sufficient only within the blocks.

Given the integers 1 ≤ k ≤ n and 1 ≤ l ≤ m, we are looking for
k-partition (clusters) R1, . . . ,Rk of the rows and C1, . . . ,Cl of the
columns such that the row and column items are assigned to the
clusters independently, and given the cluster memberships, the
wight of the message sent by row u ∈ Ri to v ∈ Cj has weight
wuv ∼ Beta(auj , bvi );
further, all these assignments are done independently.
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Parameter estimation

Parameter matrices:
A: n× l , where the jth column of A contains the parameters auj in
the block u ∈ Ri , for i = 1, . . . , k; j = 1, . . . , l .
B: m × k, where the ith column of B contains the parameters bvi
in the block v ∈ Cj , for j = 1, . . . , l ; i = 1, . . . , k.

Here auj can be thought of as the potential of row-item u of
cluster Ri to send messages out to Cj , and bvi as the of
column-item v of cluster Cj to receive messages in from Ri .

This is a mixture of exponential-family distributions, and as the
mixing can be supervised by two multinomially distributed random
variables (responsible for the memberships), the general theory of
mixtures and the iteration of the EM algorithm can be used to
estimate the parameters.
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M-step: maximization

Starting with an initial clustering R
(0)
1 , . . . ,R

(0)
k of the rows and

C
(0)
1 , . . . ,C

(0)
l of the columns, the t-th step of the iteration is as

follows (t = 1, 2, . . . ).

Maximization step within the blocks:
We update estimates of the parameters A(t), B(t) within the kl

blocks, separately. For the block R
(t)
i × C

(t)
j , we use the

one-cluster algorithm to find the estimates a
(t)
uj for u ∈ R

(t)
i and

b
(t)
vi for v ∈ C

(t)
j .

As each row u and column v uniquely corresponds to exactly one

row- and column-cluster, respectively, in this way, the R
(t)
i × C

(t)
j

parameter blocks for i = 1, . . . , k, j = 1, . . . , l will fill in the A(t),
B(t) parameter matrices.
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E-step: relocation between the blocks (Bayes rule)

Given the new estimates of the parameters A(t), B(t), we relocate
u into the row-cluster Ri∗ and v into the column-cluster Cj∗ for
which the contribution of wuv to the overall likelihood is maximal.
We do it separately for the rows and columns.
Relocation for the rows: For each u (u = 1, . . . n) take the
maximum of the following over i (i = 1, . . . , k):

m∑
v=1

l∑
j=1

cvj

[
ln

Γ(auj) + bvi )

Γ(auj)Γ(bvi )
+ (auj − 1) ln wuv + (bvi − 1) ln(1− wuv )

]
.

If it is maximum for i∗, then we relocate u into the row-cluster Ri∗ .

max
i

E(rui |M(t−1)) = max
i

P(rui = 1 |M(t−1))

Bayes rule: maxi P(M(t−1) | rui = 1)× P(rui = 1).

Uniform law: P(rui = 1) = 1
k or else,

n
(t−1)
i
n .
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Relocation for the columns

For each v (v = 1, . . .m) take the maximum of the following over
j (j = 1, . . . , l):

n∑
u=1

k∑
i=1

rui

[
ln

Γ(auj) + bvi )

Γ(auj)Γ(bvi )
+ (auj − 1) ln wuv + (bvi − 1) ln(1− wuv )

]
.

If it is maximum for j∗, then we relocate v into the column-cluster
Cj∗ .

It is also equivalent to

max
j

E(cvj |M(t−1)) = max
j

P(cvj = 1 |M(t−1)).
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Practical considerations

Relocation is a discrete maximization. Break ties arbitrarily.

In the E-step, we get a new clustering R
(t)
1 , . . . ,R

(t)
k of the rows

and C
(t)
1 , . . . ,C

(t)
l of the columns, with which we go back to the

M-step.

As in both steps we increase the likelihood, and the likelihood
function is bounded from above with the sum of the existing
maxima over the blocks, the iteration must converge to a local
maximum of it.
A good starting, for example, with spectral biclustering helps a lot.
The iteration also resembles the collaborative filtering algorithm.
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Application for simulated data

Figure: The original versus the estimated parameters auj ’s

1 2 3 4 5
0

1

2

3

4

5

au1 , u∈R1, MSE = 0.029557

a
u1

6 7 8 9 10
6

7

8

9

10

11

au2 , u∈R1, MSE = 0.415935

a
u2

11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5

11

12

13

14

15

au1 , u∈R2, MSE = 0.2547340

a
u1

16 17 18 19
15

16

17

18

19

20

21

22

au2 , u∈R2, MSE = 0.6126018

a
u2

22 23 24 25

22

23

24

25

26

au1 , u∈R3, MSE = 1.0826113

a
u1

26 27 28 29 30
25

26

27

28

29

30

31

32

au2 , u∈R3, MSE= 1.57340291

a
u2

Printed by Wolfram Mathematica Student Edition



Motivation A random contingency table model with beta-distributed entries The multiclass model Applications

Figure: The original versus the estimated parameters bvi ’s
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Application for genetic data

n = 1036 unrelated samples in the U.S. population, divided into
k = 4 population groups:
R1: African American (AA)
R2: Caucasian (Cauc)
R3: Hispanic (Hisp)
R4: Asian (Asian)

m = 29 loci, divided into l = 3 genotypes by the experts:
C1: U.S. core genes (G1)
C2: non-core U.S. genes (G2)
C3: general genes (G3)

wuv ’s: measured allele frequencies.
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The estimated parameters in the A matrix, toward
to the genotypes
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The estimated parameters in the B matrix, toward
to the population groups
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Conclusions

The starting clusters were those given by the experts, and they did
not change much during the iteration until the fifth step, when the
algorithm converged. The estimated parameters in A showed that
all the four groups of U.S. individuals have low core U.S. genotype
representations and higher representations of both non-core U.S.
and general genotypes. At the same time, the estimated
parameters in B indicated that all the three genotype categories
have the lowest representation in the African American samples
and the highest representation in the Asian group samples.
http://dx.doi.org/10.1016/j.fsigen.2017.08.011
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One-cluster estimates for emigration–immigration
data (2011)

i Country ai bi i Country ai bi
1 Australia 0.26931 1475.7 18 Japan 0.23211 9926.9
2 Austria 0.27403 632.8 19 Korea 0.22310 4199.2
3 Belgium 0.33380 46.1 20 Luxembourg 0.17543 107.9
4 Canada 0.27383 2363.2 21 Mexico 0.26706 4655.9
5 Chile 0.21236 28940.5 22 Netherlands 0.37754 39.5
6 Czech Rep. 0.31188 470.2 23 New Zealand 0.20542 2568.1
7 Denmark 0.26514 847.3 24 Norway 0.22646 519.1
8 Estonia 0.23235 25602.3 25 Poland 0.62846 1106.5
9 Finland 0.29357 1100.1 26 Portugal 0.31011 1606.6

10 France 0.52721 37.9 27 Slovak Rep. 0.27871 42451.2
11 Germany 0.62020 1.6 28 Slovenia 0.19720 6824.5
12 Greece 0.29708 6319.1 29 Spain 0.39732 182.4
13 Hungary 0.31443 32750.8 30 Sweden 0.39627 57.3
14 Iceland 0.18051 2950.7 31 Switzerland 0.33611 4524.6
15 Ireland 0.27555 364.5 32 Turkey 0.25900 146175.8
16 Israel 0.25854 1926.1 33 United Kingdom 0.49301 48.6
17 Italy 0.50522 135.1 34 United States 0.38019 2433.7
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