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Notation

G = (V ,A) edge-weighted graph, |V | = n,
A = (aij): weighted adjacency matrix
aij = aji ≥ 0 (i 6= j) and aii = 0 (i=1,. . . ,n).

di :=
∑n

j=1 aij (i = 1, . . . , n) generalized degrees

d := (d1, . . . , dn)T : degree vector,
√

d := (
√

d1, . . . ,
√

dn)T

D := diag (d1, . . . , dn): degree matrix

w.l.g.
∑n

i=1

∑n
j=1 aij = 1 will often be assumed
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Modularity matrices

M = A− ddT : modularity matrix
mij = aij − didj : discrepancy
M is usually indefinite and for simple graphs (B, BSM students,
Friedl, LAA (2015)): M is negative semidefinite ⇔ G = Kn1,...,nk .

MD = D−1/2MD−1/2 = D−1/2AD−1/2 −
√

d
√

d
T

: normalized
modularity matrix (B, Phys. Rev. E (2011)), Spec (MD) ∈ [−1, 1].
1 cannot be an eigenvalue if G is connected (A is irreducible), and
0 is always an eigenvalue with eigenvector

√
d.

The spectral gap of G : 1− ‖MD‖ (spectral norm).
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Eigenvectors and representation

u1, . . . ,uk ∈ Rn: unit-norm, pairwise orthogonal eigenvectors
corresponding to the k largest absolute value eigenvalues of A.

(u1, . . . ,uk) =


rT1
rT2
...

rTn

 ,

where r1, . . . , rn ∈ Rk : k-dimensional vertex representatives.
k-variance of them over (U1, . . . ,Uk) ∈ Pk :

S2
k = min

(U1,...,Uk)∈Pk

k∑
i=1

∑
v∈Ui

‖rv − ci‖2, ci =
1

|Ui |
∑
v∈Ui

rv .

Minimizer: k-means algorithm. Ostrovsky et. al., J. ACM (2012):
if S2

k ≤ ε2S2
k−1, then there is a PTAS.
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Weighted k-variance, subspace distances

u1, . . . ,uk−1: unit-norm, pairwise orthogonal eigenvectors
corresponding to the k − 1 largest absolute value eigenvalues of
MD .

(D−1/2u1, . . . ,D
−1/2uk−1) =


rT1
rT2
...

rTn

 .

S̃2
k = min

(U1,...,Uk )∈Pk

k∑
i=1

∑
v∈Ui

dv‖rv − ci‖2

weighted k-variance of them, where ci = 1
Vol (Ui )

∑
v∈Ui

dv rv ,

Vol (Ui ) =
∑

v∈Ui
dv . Minimizer: weighted k-means algorithm.

S2
k and S̃2

k : squared distance between the spectral subspace and
the one spanned by step-vectors over Pk (ANOVA fact).
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Discrepancy

ACTUAL–EXPECTED connection between X ,Y ⊂ V :∑
i∈X

∑
j∈Y

(aij − didj) = a(X ,Y )− Vol (X )Vol (Y ),

Definition

The multiway discrepancy of the edge-weighted graph G = (V ,A)
in the proper k-partition U1, . . . ,Uk of its vertices is

md(G ; U1, . . . ,Uk) = max
1≤i≤j≤k

X⊂Ui ,Y⊂Uj

md(X ,Y ; Ui ,Uj)

md(X ,Y ; Ui ,Uj) =
|a(X ,Y )− ρ(Ui ,Uj)Vol (X )Vol (Y )|√

Vol (X )Vol (Y )

= |ρ(X ,Y )− ρ(Ui ,Uj)|
√
Vol (X )Vol (Y )
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Minimum k-way discrepancy

where a(X ,Y ) =
∑

i∈X

∑
j∈Y aij : weighted cut between X and Y .

If aij = 0/1, then it is the number of cut-edges e(X ,Y ), with
edges counted twice in X ∩ Y if it is not empty;
and ρ(X ,Y ) = a(X ,Y )

Vol (X )Vol (Y ) : density between X and Y .

Definition

The minimum k-way discrepancy of G is

mdk(G ) = min
(U1,...,Uk)∈Pk

md(G ; U1, . . . ,Uk)

B, DAM (2016)
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Remark

md(G ; U1, . . . ,Uk) is the smallest α such that for every Ui ,Uj pair
and for every X ⊂ Ui , Y ⊂ Uj :

|a(X ,Y )− ρ(Ui ,Uj)Vol (X )Vol (Y )| ≤ α
√
Vol (X )Vol (Y ).

In the minimizer Pk , every Ui ,Uj pair is α-volume regular, and this
is the smallest possible discrepancy that can be attained with
proper k-partitions of the vertices of G .
See the volume regular pairs of Alon et al. (2010) and the
ε-regular pairs of the Szemerédi regularity lemma (1976) (simple
graph, equitable partition, cardinality instead of volume, too“small”
X ,Y ’s are excluded).
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Generalized random graphs

Definition

We are given a model graph H on k vertices with vertex-weights
r1, . . . , rk (ri > 0,

∑k
i=1 ri = 1) and edge-weights pij = pji ,

1 ≤ i ≤ j ≤ k (entries of the k × k symmetric probability matrix P
of rank k, where 0 ≤ pij ≤ 1, 1 ≤ i ≤ j ≤ k). Gn is a the general
term of a generalized random graph sequence on the model graph
H if

it has n vertices;

to each vertex v a membership cv ∈ {1, . . . , k} is assigned
according to the probability distribution r1, . . . , rk ;

given the memberships, each pair v 6= u is connected with
probability pcv cu ;

further, all these decisions are made independently.
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Remark

Let (U1, . . . ,Uk) be the so obtained k-partition (clustering) of the
vertices (they also depend on n, however we will not denote this
dependence, unless necessary).
The definition implies the following strong balancing condition
on the growth of the cluster sizes ni = |Ui |, i = 1, . . . , k
(
∑k

i=1 ni = n): if n→∞, then ni
n → ri (i = 1, . . . , k).

Lovász, Sós, J. Comb. Theory B (2008)
Abbe, Sandon, FOCS (2015)

In another context:
Holland, Bickel, Coja-Oghlan, Karrer, McSherry, Rohe et al.:
stochastic block-model, planted partition model.

Erdo”s–Rényi random graph: k = 1, Gn(p).
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Properties of generalized random graphs

Theorem

Let (Gn) be a generalized random graph sequence on the model
graph H; Gn has n vertices with vertex-classes U1, . . . ,Uk of sizes
n1, . . . nk . Let H, and so k be kept fixed, i.e., the k × k probability
matrix P of rank k and the “blow-up” ratios r1, . . . , rk are fixed,
while n→∞ under the strong balancing condition. Then the
following hold almost surely for the homorphism densities of simple

graphs in Gn, for the adjacency matrix An = (a
(n)
ij ), the normalized

modularity matrix MD,n, the multiway disccrepancies, and the
within- and between-cluster codegrees of Gn.
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Property 0.

Gn →WH as n→∞ under the strong balancing conditions, where
WH is the step-function graphon corresponding to H, and the
convergence is meant in the sense of the convergence of
homomorphism densities of any simple graph F into Gn.

B, Kói, Krámli, DAM (2012)
Idea: An = Bn + Wn, where
Bn: blown-up of P with sizes n1, . . . , nk

Wn: Wigner-noise (uniformly bounded, independent entries in and
above the main diagonal, of 0 expectation)
‖WWn‖� → 0 as n→∞
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Property 1.

An has exactly k structural eigenvalues that are Θ(n) in absolute
value, while the remaining eigenvalues are O(

√
n). Further, the

k-variance S2
k,n of the k-dimensional vertex representatives, based

on the eigenvectors corresponding to the structural eigenvalues of
An, is O( 1

n ).

B, LAA (2005)
Idea: perturbation results for spectra and spectral subspaces
An = Bn + Wn, where
Bn has as many non-zero eigenvalues of order n as the rank of P
(in our case, k) with stepwise constant eigenvectors;
for the Wigner-noise Wn: ‖Wn‖ = O(

√
n) almost surely.
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Spectral norm of a Wigner-noise

Füredi, Komlós, Combinatorica (1981):

‖Wn‖ = max
1≤i≤n

|λi (Wn)| ≤ 2σ
√

n +O(n1/3 log n)

with probability tending to 1 as n→∞.
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Sharp concentration theorem

Theorem

W is an n × n real symmetric matrix, its entries in and above the
main diagonal are independent random variables with absolute
value at most 1. λ1 ≥ λ2 ≥ · · · ≥ λn: eigenvalues of W.
For any t > 0:

P (|λi − E(λi )| > t) ≤ exp

(
−(1− o(1))t2

32i2

)
when i ≤ n

2
,

and the same estimate holds for the probability

P (|λn−i+1 − E(λn−i+1)| > t) .

Alon, Krivelevich, Vu, Israel J. Math. (2002)
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Consequence

Lemma

There exist positive constants C1 and C2, depending only on the
common bound K for the entries of the Wigner-noise Wn, such
that

P
(
‖Wn‖ > C1 ·

√
n
)
≤ exp(−C2 · n)

with probability tending to 1 as n→∞.

Borel–Cantelli lemma⇒
The spectral norm of Wn is O(

√
n) almost surely.
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Property 2.

There exists a positive constant 0 < δ < 1 independent of n (it
only depends on k) such that MD,n has exactly k − 1 structural
eigenvalues of absolute value greater than δ, while all the other
eigenvalues are O(n−τ ) in absolute value, for every 0 < τ < 1

2 .

Further, the weighted k-variance S̃2
k,n of the (k − 1)-dimensional

vertex representatives, based on the transformed eigenvectors
corresponding to the structural eigenvalues of MD,n, is O(n−2τ ),
for every 0 < τ < 1

2 .

B, DM (2008)
B, Friedl, Krámli, JMVA (2010), for rectangular matrices of
nonnegative entries
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Property 3.

There is a constant 0 < θ < 1 (independent of n) such that
md1(Gn) > θ, . . . , mdk−1(Gn) > θ, and the k-way discrepancy
md(Gn; U1, . . . ,Uk) is O(n−τ ), for every 0 < τ < 1

2 , where
U1, . . . ,Uk are the vertex-classes in the definition of Gn.

B, DAM (2016)
estimates between multiway discrepancy and normalized modularity
spectra
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Property 4.

For every 1 ≤ i ≤ j ≤ k and u ∈ Ui :

N1(u; Uj) =
∑
v∈Uj

a
(n)
uv = pijnj + o(n) (degrees).

For every 1 ≤ i ≤ j ≤ k and u, v ∈ Ui :

N2(u, v ; Uj) =
∑
t∈Uj

a
(n)
ut a

(n)
vt = p2

ijnj + o(n) (codegrees).

Proof: by Bernstein inequality.
Conclusion: The induced subgraph of Gn, induced by Ui and
denoted by Gii ,n, is the general term of an Erdo”s–Rényi type
random graph sequence with edge probability pii , for every
i = 1, . . . , k. The induced bipartite subgraph of Gn, induced by the
Ui ,Uj pair and denoted by Gij ,n, is the general term of a bipartite
random graph sequence with edge probability pij for i 6= j .

Budapest 2015



Notation
Generalized random graphs

Generalized quasirandom graphs
Generalized quasirandom properties

Generalized quasirandom graphs

Definition

We have a model graph graph H on k vertices with vertex-weights
r1, . . . , rk and edge-weights pij = pji , 1 ≤ i ≤ j ≤ k, entries of P.
Then (Gn) is H-quasirandom if Gn →WH as n→∞.

Lovász, Sós, J. Comb. Theory B (2008)
The authors also proved that the vertex set V of a generalized
quasirandom graph Gn can be partitioned into U1, . . . ,Uk in such a
way that |Ui |

|V | → ri , i = 1, . . . , k (strong balancing condition) and
the subgraph of Gii ,n of Gn induced by Ui is the general term of a
quasirandom graph sequence with edge-density tending to pii

(i = 1, . . . , k), whereas the bipartite subgraph Gij ,n between Ui and
Uj is the general term of a quasirandom bipartite graph sequence
with edge-density tending to pij (i 6= j) as n→∞.
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Revisiting the notion of graph convergence

Lovász, Szegedi, J. Comb. Theory B (2006)
Borgs et al., Ann. Math. (2012)
Gn →WH means that for any simple graph F :

hom(F ,Gn)

|V (Gn)||V (F )| → hom(F ,H) =
∑

ψ:V (F )→V (H)

∏
i∈V (F )

rψ(i)

∏
ij∈E(F )

pψ(i)ψ(j).

If |V (F )| = m, then

hom(F ,H) = hom(F ,WH) =

∫
[0,1]m

∏
{i ,j}∈E(F )

W (xi , xj) dx1 . . . dxm.

Budapest 2015



Notation
Generalized random graphs

Generalized quasirandom graphs
Generalized quasirandom properties

Construction of a generalized quasirandom graph

Given k, P, and vertex-weights of the model graph H: consider the
instance when there are k sets U1, . . . ,Uk ⊂ V of sizes n1, . . . , nk

such that ni
n = ri (i = 1, . . . , k). Let us choose the independent

irrational numbers αij (1 ≤ i ≤ j ≤ k).
Then the subgraph on the vertex-set Ui is constructed as follows:

u ∼ v ⇔ {(u − v)2αii} ≤ pii , i = 1, . . . , k.

The bipartite subgraph between Ui and Uj : v ∈ Ui and u ∈ Uj

u ∼ v ⇔ {(u − v)2αij} ≤ pij , 1 ≤ i < j ≤ k.

Analytical number theoretical considerations guarantee that the
above fractional parts are symmetrically well-distributed over [0, 1]2

if n→∞ and ni
n → ri (i = 1, . . . , k). V. T. Sós, Pinch, G. Kiss
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Generalized random graph with k = 5

Ev’s of MD : 0.304, 0.214, 0.17, 0.153, -0.097, -0.094, -0.093, . . .
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Generalized quasirandom graph with k = 5

Ev’s of MD : 0.318, 0.207, 0.154, 0.115, -0.100, -0.099, -0.091, . . .
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The same with appropriately mixing the vertices
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Proofs

Equivalent properties

Gn = (Vn,An) with |Vn| = n→∞ is an expanding family of
graphs and k be a fixed positive integer.
Then, for them, we consider the following properties, irrespective
of stochastic models.

P0. There exists a vertex- and edge-weighted graph H on k
vertices, with probability matrix P, rankP = k, such that
Gn →WH as n→∞ in terms of the homomorphism densities.

PI. An has k structural eigenvalues λ1,n, . . . , λk,n such that the
normalized eigenvalues converge: 1

n |λi ,n| → qi as n→∞
(i = 1, . . . , k) with some positive reals q1, . . . , qk , and the
remaining eigenvalues are o(n) in absolute value. The
k-variance S2

k,n of the optimal vertex representatives is o(n).
For the k-partition (U1, . . . ,Uk) minimizing this k-variance
the strong balancing condition holds.
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Proofs

continued

PII. Gn has no dominant vertices, and there exists a constant
0 < δ < 1 (independent of n, it only depends on k) such that
MD,n has k − 1 structural eigenvalues that are greater than δ
in absolute value, while the remaining eigenvalues are o(1).
Further, the weighted k-variance S̃2

k,n of the optimal vertex
representatives is o(1). For the k-partition (U1, . . . ,Uk)
minimizing this k-variance the strong balancing condition
holds.

PIII. There are vertex-classes (U1, . . . ,Uk) satisfying the strong
balancing condition and there exists a constant 0 < θ < 1
(independent of n, it only depends on k) such that
md1(Gn), . . . , mdk−1(Gn) > θ, and
mdk(Gn; U1, . . . ,Uk) = o(1).
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Proofs

continued

PIV. There are vertex-classes U1, . . . ,Uk of cluster sizes n1, . . . , nk

obeying the strong balancing condition, and there is a k × k
symmetric probability matrix P = (pij) of rank k such that,
with them, the following holds:∑
u,v∈Ui

|N2(u, v ; Uj)−p2
ijnj | = o(p2

ijn
2
i nj) = o(n3), ∀i , j = 1, . . . , k,

where N2(u, v ; Uj) denotes the number of common neighbors
of u, v in Uj .

Then P0 is equivalent to PIV, and they imply PI and PII; further,
PII implies PIII.
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Proofs

P0=⇒PIV

We use the results of Chung–Graham–Wilson, Combinatorica
(1989); Lovász–T. Sós, JCTB (2008) in view of which:
The vertex set of the generalized quasirandom graph Gn (defined
by P0) can be partitioned into classes U1, . . . ,Uk in such a way

that |Ui |
n → ri (i = 1, . . . , k), that gives the strong balancing; the

subgraph Gii ,n is the general term of a quasirandom graph sequence
with edge-density tending to pii (i = 1, . . . , k), whereas Gij ,n is the
general term of a bipartite quasirandom graph sequence with
edge-density tending to pij (i 6= j) as n→∞. Therefore, for the
subgraphs, the equivalent statements of Chung–Graham–Wilson of
the usual (1-class) quasirandomness are applicable, and similar
considerations can be made for the bipartite subgraphs as well.
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Proofs

Chung–Graham–Wilson: Quasi-random graphs,
k = 1, p = 1

2

P1(s): for all graphs M(s) on s vertices,

N∗Gn
(M(s)) = (1+o(1))ns(

1

2
)(s

2) labelled induced subgraphs.

N∗Gn
(M(s)) = (1 + o(1))nsp|E(M(s))|(1− p)(s

2)−|E(M(s))|.

P2(t): e(Gn) ≥ (1 + o(1))n2

4 , NGn(Ct)) ≤ (1 + o(1))nt(1
2)t .

2e(Gn) ≥ (1 + o(1))pn2, hom(Ct ,Gn) ≤ (1 + o(1))ntpt .
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Proofs

Chung–Graham–Wilson continued

P3: e(Gn) ≥ (1 + o(1))n2

4 , λ1 = (1 + o(1))n
2 , λ2 = o(n).

2e(Gn) ≥ (1 + o(1))pn2, λ1 = (1 + o(1))pn, λ2 = o(n).

P4 : ∀S ⊂ V , e(S) = 1
4 |S |

2 + o(n2).
∀X ⊂ V : e(X ,X ) = p|X |2 + o(n2).

P7:
∑

u,v |N2(u, v)− n
4 | = o(n3),∑

u,v |N2(u, v)− p2n| = o(n3).

Then for s ≥ 4 and t ≥ 4 even,

P2(4)⇒ P2(t)⇒ P1(s)⇒ P3 ⇒ · · · ⇒ P7 ⇒ P2(4).

Quasirandom graph: satisfies any (all) of the above properties.
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Proofs

Lemma 1.

Lemma

If (Gii ,n) is quasirandom, then∑
u,v∈Ui

N2(u, v ; Ui ) ≥ (1 + o(1))p2
iin

3
i , i = 1, . . . , k.

Proof: We drop the index n of the adjacency entries.∑
u,v∈Ui

N2(u, v ; Ui ) =
∑

u,v∈Ui

∑
t∈Ui

autavt

=
∑
t∈Ui

∑
u∈Ui

aut

∑
v∈Ui

avt =
∑
t∈Ui

[N1(t; Ui )]2 ≥ 1

ni
[
∑
t∈Ui

N1(t; Ui )]2

=
1

ni
[2e(Ui )]2 ≥ 1

ni
[(1 + o(1))piin

2
i ]2 = (1 + o(1))p2

iin
3
i ,
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Proofs

Proof of Lemma 1, continued

where N1(t; Ui ) denotes the number of neighbors of t in Ui , and
e(Ui ) is the number of edges within the induced subgraph Gii ,n of
Gn, induced by Ui . In the first inequality we used the
Cauchy–Schwarz, and in the second one, the first part of the
equivalent quasirandom property P2 of Chung–Graham–Wilson.
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Proofs

Lemma 2.

Lemma

If (Gij ,n) is bipartite quasirandom, then∑
u,v∈Ui

N2(u, v ; Uj) = (1 + o(1))p2
ijn

2
i nj , i 6= j .

Proof:∑
u,v∈Ui

N2(u, v ; Uj) =
∑

u,v∈Ui

∑
t∈Uj

autavt

=
∑
t∈Uj

∑
u∈Ui

aut

∑
v∈Ui

avt =
∑
t∈Uj

[N1(t; Ui )]2 ≥ 1

nj
[
∑
t∈Uj

N1(t; Ui )]2

=
1

nj
[e(Ui ,Uj)]2 ≥ 1

nj
[(1 + o(1))pijninj ]

2 = (1 + o(1))p2
ijn

2
i nj ,
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Proofs

Proof of Lemma 2, continued

where e(Ui ,Uj) is the number of cut-edges between Ui and Uj ,
i.e., the number of edges in the induced bipartite subgraph Gij ,n of
Gn, induced by the Ui ,Uj pair. Here, in the first inequality we used
the Cauchy–Schwarz, and in the second one, the equivalent
quasirandom property of bipartite quasirandom graphs.
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Proofs

P0=⇒PIV

In view of the lemmas and the the Cauchy–Schwarz inequality: ∑
u,v∈Ui

|N2(u, v ; Uj)− p2
ijnj |

2

≤ n2
i

∑
u,v∈Ui

|N2(u, v ; Uj)− p2
ijnj |2

= n2
i

 ∑
u,v∈Ui

[N2(u, v ; Uj)]2 − 2p2
ijnj

∑
u,v∈Ui

N2(u, v ; Uj) + n2
i (p2

ijnj)
2


≤ n2

i

{
(1 + o(1))p4

ijn
2
i n2

j − 2(1 + o(1))p4
ijn

2
i n2

j + p4
ijn

2
i n2

j

}
= n2

i o(1)p4
ijn

2
i n2

j = o(p4
ijn

4
i n2

j ),
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Proofs

Proof continued

∑
u,v∈Ui

[N2(u, v ; Uj)]2 ∼ hom(C4,Gij ,n)

i = j : by P2(4),

hom(C4,Gii ,n) ≤ (1 + o(1))p4
iin

4
i .

i 6= j : by Lovász–Sós (bipartite quasirandom graphs),

hom(C4,Gij ,n)

n2
i n2

j

= (1 + o(1))p4
ij .

Only 4-cycles in the above bipartition have to be considered; these
4-cycles have 2 vertices from Ui and 2 from Uj , and any 2 of the
common neighbors of u, v ∈ Ui in Uj are possible candidates to
close a (labelled) 4-cycle with them.
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Proof of PIV=⇒P0

By C-G-W P7 ⇒ P1(s), the subgraphs Gii ,n are quasirandom.
Likewise, if i 6= j , the bipartite subgraphs Gij ,n are bipartite
quasirandom.
Therefore, Gn is built of quasirandom and bipartite quasirandom
blocks, so under the strong balancing condition, they together form
a generalized quasirandom graph sequence on k classes and model
graph H, the vertex-weights of which are r1, . . . , rk of the strong
balancing condition, and the edge-weights are entries of the
probability matrix P = (pij).
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For P0=⇒PII we use the following

Theorem (B, EJC (2014))

Gn = (Vn,An)→W , Gn connected with edge-weights in [0,1] and
the vertex-weights are the generalized degrees. Assume that there
are no dominant vertices. |µn,1| ≥ |µn,2| ≥ · · · ≥ |µn,n| = 0 is the
spectrum of MD,n.
Let µi (PW) be the i-th largest absolute value eigenvalue of the
integral operator PW : L2(ξ′)→ L2(ξ) taking conditional
expectation with respect to the joint measure W embodied by the
normalized limit graphon W , and ξ, ξ′ are identically distributed
random variables with the marginal distribution of their symmetric
joint distribution W.
Then for every i ≥ 1: µn,i → µi (PW) as n→∞.
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Theorem (B, EJC (2014))

Assume that there are constants 0 < ε < δ ≤ 1 such that

|µn,1| ≥ · · · ≥ |µn,k−1| ≥ δ > ε ≥ |µn,k | ≥ · · · ≥ |µn,n| = 0.

Then the subspace spanned by the transformed eigenvectors

D
−1/2
n un,1, . . . ,D

−1/2
n un,k−1 converges to the corresponding

(k − 1)-dimensional subspace of PW. More exactly, if Pn,k−1

denotes the projection onto the subspace spanned by the
transformed eigenvectors belonging to k − 1 largest absolute value
eigenvalues of MD,n, and Pk−1 denotes the projection onto the
analogous eigen-subspace of PW, then ‖Pn,k−1 − Pk−1‖ → 0 as
n→∞.

Note: S̃2
k,n is the distance between these subspaces.
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For PII=⇒PIII we use the following

Theorem (B, DAM (2016))

Let G = (V ,A) be an edge-weighted, undirected graph, A is
irreducible. Then for any integer 1 ≤ k < rank (A),

|µk | ≤ 9mdk(G )(k + 2− 9k ln mdk(G ))

holds, provided 0 < mdk(G ) < 1, where µk is the k-th largest
absolute value eigenvalue of the normalized modularity matrix MD

of G.

Converse: k = 1

Theorem (Chung-Graham, RSA (2008), expander mixing
lemma for irregular graphs)

md1(G ) ≤ ‖MD‖ = |µ1|.
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Theorem (B, EJC (2014), k ≥ 1, developed version)

Let G = (V ,A) be a graph on n vertices, with degrees d1, . . . , dn

and degree-matrix D. Assume that G is connected, and there are
no dominant vertices: dv = Θ(n) except for o(n) vertices. Let the
eigenvalues of the normalized modularity matrix MD of G,
enumerated in decreasing absolute values, be

|µ1| ≥ · · · ≥ |µk−1| > ε ≥ |µk | ≥ · · · ≥ |µn| = 0.

The partition (U1, . . . ,Uk) of V is defined so that it minimizes the
weighted k-variance s2 = S̃2

k of the optimal vertex representatives.
Assume that the k-partition (U1, . . . ,Uk) satisfies the strong
balancing condition. Then

md(G ; U1, . . . ,Uk) = O(
√

2ks + ε).
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P0=⇒PI

We use Theorem 6.7 of Borgs et al., Ann. Math. (2012), where
the authors prove that if the sequence (WGn) of graphons
converges to the limit graphon W , then both ends of the spectra
of the integral operators, induced by WGn ’s as kernels (these are
the numbers 1

nλi ,n), converge to the ends of the spectrum of the
integral operator induced by W as kernel. We apply this argument
for the limit graphon WH of (Gn). The same argument as in P0
=> PII can be applied to the convergence of the spectral
subspaces, so the convergence of the k-variances is also obtained.
The steps are proportional to ri ’s =⇒ strong balancing.
PI does not necessarily implies P0!
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Strengthening of PI

PI+: An has k structural eigenvalues λ1,n, . . . , λk,n such that the
normalized eigenvalues converge: 1

nλi ,n → qi as n→∞
(i = 1, . . . , k) with some non-zero reals q1, . . . , qk , and the
remaining eigenvalues are o(

√
n). Further, the k-variance S2

k,n of
the k-dimensional vertex representatives, based on the eigenvectors
corresponding to the structural eigenvalues of An, is o( 1

n ). The
k-partition Pk,n = (U1n, . . . ,Ukn) of the vertices of Gn minimizing

this k-variance satisfies: |Uin|
n → ri with some ri (i = 1, . . . , k).

Also assume that there is a k × k symmetric probability matrix
P = (pij) of rank k such that

d(Uin,Ujn) :=
e(Uin,Ujn)

|Uin||Ujn|
→ pij (1 ≤ i ≤ j ≤ k), n→∞. (1)

(I.e., the within- and between-cluster edge densities converge to
the entries of P.)
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PI+=⇒P0

By B, LAA (2005) we are able to find a blown-up matrix Bn of
rank k and an error-matrix En with ‖En‖ = o(

√
n) such that

An = Bn + En (n = k, k + 1, . . . ). Say Bn is the blown-up matrix

of the k × k pattern matrix Pn, the ij entry p
(n)
ij of which is the

common entry of the Uin × Ujn block of Bn.
Then using the relation between the cut-norm of a graphon and a
matrix, further, between the cut-norm and the spectral norm of a
matrix, and the transformation of a graph into graphon, we get
that

‖WEn‖� ≤
1

n2
‖En‖� ≤

1

n2
n‖En‖ =

1

n
o(
√

n) = o(n−1/2),

where ‖En‖ is the spectral-norm, ‖En‖� is the matrix cut-norm of
En, and WEn denotes the graphon corresponding to the symmetric
matrix En of uniformly bounded entries.
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Using the Steiner equality, we get that the squared Frobenius norm
of An − Bn, restricted to the ij block, is

‖(An − Bn)ij‖2F =
∑

u∈Uin

∑
v∈Ujn

(a
(n)
uv − p

(n)
ij )2

=
∑

u∈Uin

∑
v∈Ujn

(a
(n)
uv − d(Uin,Ujn))2 + |Uin||Ujn|(d(Uin,Ujn)− p

(n)
ij )2,

where the edge-density d(Uin,Ujn) is now viewed as the average of
the entries of An in the Uin × Ujn block. Then by the inequality
between the Frobenius and spectral norms,

‖(An − Bn)ij‖2F ≤ n‖An − Bn‖2 = n‖En‖2 = no2(
√

n).
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Therefore, for every 1 ≤ i ≤ j ≤ k pair: (d(Uin,Ujn)− p
(n)
ij )2 ≤

1
|Ui ||Uj |no2(

√
n) = 1

|Uin|
n

|Ujn|
n

n(o(
√

n)
n )2 = no2(n−1/2) as |Uin|

n → ri

when n→∞ (i = 1, . . . , k).
Eventually, we prove the Gn →WH convergence by proving that
the cut-distance between the corresponding graphons tends to 0.
H is a model graph with vertex-weights ri ’s and edge-weights pij ’s
in the PI+ conditions.
Using the triangle inequality, we get

‖WGn−WH‖� ≤ ‖WGn−WBn‖�+‖WBn−WGn/Pk,n
‖�+‖WGn/Pk,n

−WH‖�

were Gn/Pk,n is the factor graph of Gn with respect to the
k-partition Pk,n. This is an edge- and vertex-weighted graph on k

vertices, with vertex-weights |Uin|
n and edge-weights d(Uin,Ujn),

i , j = 1, . . . , k.
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The first term is ‖WEn‖� = o(n−1/2). To estimate the second
term, observe that because Bn is the blown-up matrix of Pn with
respect to the k-partition Pk,n, after conveniently permuting its
rows (and columns, accordingly). The gaphon WBn is also stepwise
constant over the unit square, where the sides are divided into k

parts: the interval Ij has lengths
|Ujn|

n (j = 1, . . . , k), and over

Ii × Ij the stepfunction takes on the value p
(n)
ij . By its nature, the

graphon WGn/Pk,n
is stepwise constant with the same subdivision of

the unit square, and over Ii × Ij it takes on the value d(Uin,Ujn),
i , j = 1, . . . , k. But in view of the above,
‖WBn −WGn/Pk,n

‖� =
√

no(n−1/2) = o(1). The third term is

o(1), because of the assumptions |Uin|
n → ri (i = 1, . . . , k) and

d(Uin,Ujn)→ pij , i , j = 1, . . . , k. Therefore,
‖WGn −WH‖� = o(1) and so, Gn → H, which finishes the proof.
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Define PII+ and PIII+ as PII and PIII together with

There is a k × k symmetric probability matrix P = (pij) of
rank k such that

d(Ui ,Uj) = pij + o(1) (1 ≤ i ≤ j ≤ k), n→∞

for every 1 ≤ i ≤ j ≤ k and u ∈ Ui :

N1(u; Uj) = (1 + o(1))pijnj

hold.
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Lemma

Under P0, the following holds for except o(ni ) vertices u ∈ Ui , and
for every i = 1, . . . , k: N1(u; Ui ) = (1 + o(1))piini .
Under P0, the following holds for except o(ni ) vertices u ∈ Ui , and
for every 1 ≤ i < j ≤ k: N1(u; Uj) = (1 + o(1))pijnj .

The statement follows from the P1(s) (∀s) => P ′0 implication of
C-G-W and its bipartite analogue.
The subgraphs ara almost-regular, the bipartite subgraphs are
almost-biregular: weaker than quasirandomness.
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P0 => PII+ => PIII+ => PIV => P0, so they
are all equivalent.

Proof of P0 => PII+ => PIII+
By Lovász–Sós, JCTB (2008) and the Lemma, P0 implies the
extras of PII and PIII too.

Proof of PIII+ => PIV
We are able to prove that P4 of C-G-W, and the analogous
statement of Theorem 2 of Thomason, DM (1989) hold, whenever
PIII+ holds.
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Proof in the i = j case

Let (U1, . . . ,Uk) be the k-partition, guaranteed by PIII+, such
that mdk(Gn; U1, . . .Uk) = o(1). Then by the extra conditions of
PIII+, for X ⊂ Ui , Vol (X ) = |X |(1 + o(1))

∑k
`=1 pi`n`, and so,

e(X ,X )− pii |X |2 = e(X ,X )− [d(Ui ,Ui ) + o(1)]|X |2

= e(X ,X )− e(Ui ,Ui )
Vol 2(Ui )

(1+o(1))2(
Pk

`=1 pi`n`)2

Vol 2(X )

(1 + o(1))2(
∑k

`=1 pi`n`)2
− o(1)|X |2

= [e(X ,X )− ρ(Ui ,Ui )Vol
2(X )]− o(1)ρ(Ui ,Ui )Vol

2(X )− o(1)|X |2

≤ mdk(Gn; U1, . . .Uk)
√
Vol 2(X )− o(1)e(Ui ,Ui )

(
Vol (X )

Vol (Ui )

)2

− o(n2)

= o(n2).

Then P4 implies P7 of Chung–Graham–Wilson, that is our PIV.
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