Multiclass generalized quasirandom properties

Marianna Bolla

Institute of Mathematics Budapest University of Technology and Economics Partly joint work with **Bojan Mohar**

December 1, 2016, Budapest

Generalized random graphs Generalized quasirandom graphs Generalized quasirandom properties

Notation

Notation Representation Discrepancy

 $G = (V, \mathbf{A})$ edge-weighted graph, |V| = n, $\mathbf{A} = (a_{ij})$: weighted adjacency matrix $a_{ij} = a_{ji} \ge 0$ $(i \ne j)$ and $a_{ii} = 0$ (i=1,...,n).

 $\begin{aligned} d_i &:= \sum_{j=1}^n a_{ij} \ (i = 1, \dots, n) \text{ generalized degrees} \\ \mathbf{d} &:= (\mathbf{d}_1, \dots, \mathbf{d}_n)^T : \text{ degree vector, } \sqrt{\mathbf{d}} := (\sqrt{d_1}, \dots, \sqrt{d_n})^T \end{aligned}$

 $\mathbf{D} := \operatorname{diag}(d_1, \ldots, d_n)$: degree matrix

w.l.g. $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} = 1$ will often be assumed

(a)

Generalized random graphs Generalized quasirandom graphs Generalized quasirandom properties Notation Representation Discrepancy

Modularity matrices

 $\mathbf{M} = \mathbf{A} - \mathbf{d}\mathbf{d}^{T}$: modularity matrix $m_{ij} = a_{ij} - d_i d_j$: discrepancy \mathbf{M} is usually indefinite and for simple graphs (B, BSM students, Friedl, LAA (2015)): \mathbf{M} is negative semidefinite $\Leftrightarrow G = K_{n_1,...,n_k}$.

 $\mathbf{M}_D = \mathbf{D}^{-1/2}\mathbf{M}\mathbf{D}^{-1/2} = \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2} - \sqrt{\mathbf{d}}\sqrt{\mathbf{d}}^T$: normalized modularity matrix (B, Phys. Rev. E (2011)), Spec (\mathbf{M}_D) \in [-1, 1]. 1 cannot be an eigenvalue if G is connected (\mathbf{A} is irreducible), and 0 is always an eigenvalue with eigenvector $\sqrt{\mathbf{d}}$.

The spectral gap of $G: 1 - \|\mathbf{M}_D\|$ (spectral norm).

Notation Representation Discrepancy

Eigenvectors and representation

 $\mathbf{u}_1, \ldots, \mathbf{u}_k \in \mathbb{R}^n$: unit-norm, pairwise orthogonal eigenvectors corresponding to the k largest absolute value eigenvalues of **A**.

$$(\mathbf{u}_1,\ldots,\mathbf{u}_k) = \begin{pmatrix} \mathbf{r}_1^T \\ \mathbf{r}_2^T \\ \vdots \\ \mathbf{r}_p^T \end{pmatrix},$$

where $\mathbf{r}_1, \ldots, \mathbf{r}_n \in \mathbb{R}^k$: k-dimensional vertex representatives. *k*-variance of them over $(U_1, \ldots, U_k) \in \mathcal{P}_k$:

$$S_k^2 = \min_{(U_1,...,U_k)\in \mathcal{P}_k} \sum_{i=1}^k \sum_{v\in U_i} \|\mathbf{r}_v - \mathbf{c}_i\|^2, \quad \mathbf{c}_i = \frac{1}{|U_i|} \sum_{v\in U_i} \mathbf{r}_v.$$

Minimizer: *k*-means algorithm. Ostrovsky et. al., J. ACM (2012): if $S_k^2 \le \epsilon^2 S_{k-1}^2$, then there is a PTAS.

Notation Representation Discrepancy

Weighted *k*-variance, subspace distances

 $\mathbf{u}_1, \ldots, \mathbf{u}_{k-1}$: unit-norm, pairwise orthogonal eigenvectors corresponding to the k-1 largest absolute value eigenvalues of \mathbf{M}_D .

$$(\mathbf{D}^{-1/2}\mathbf{u}_1,\ldots,\mathbf{D}^{-1/2}\mathbf{u}_{k-1}) = \begin{pmatrix} \mathbf{r}_1^T\\\mathbf{r}_2^T\\\vdots\\\mathbf{r}_n^T \end{pmatrix}$$

$$\tilde{S}_k^2 = \min_{(U_1,\dots,U_k)\in\mathcal{P}_k}\sum_{i=1}^k\sum_{\nu\in U_i}d_\nu\|\mathbf{r}_\nu-\mathbf{c}_i\|^2$$

weighted *k*-variance of them, where $\mathbf{c}_i = \frac{1}{\operatorname{Vol}(U_i)} \sum_{v \in U_i} d_v \mathbf{r}_v$, $\operatorname{Vol}(U_i) = \sum_{v \in U_i} d_v$. Minimizer: weighted *k*-means algorithm. S_k^2 and \tilde{S}_k^2 : squared distance between the spectral subspace and the one spanned by step-vectors over \mathcal{P}_k (ANQVA fact) and $\tilde{S}_k^2 = 0$

Generalized random graphs Generalized quasirandom graphs Generalized quasirandom properties Notation Representation Discrepancy

ACTUAL-EXPECTED connection between $X, Y \subset V$:

$$\sum_{i \in X} \sum_{j \in Y} (a_{ij} - d_i d_j) = a(X, Y) - \operatorname{Vol}(X) \operatorname{Vol}(Y),$$

Definition

Discrepancy

The multiway discrepancy of the edge-weighted graph $G = (V, \mathbf{A})$ in the proper k-partition U_1, \ldots, U_k of its vertices is

$$\operatorname{md}(G; U_1, \dots, U_k) = \max_{\substack{1 \leq i \leq j \leq k \\ X \subset U_i, Y \subset U_j}} \operatorname{md}(X, Y; U_i, U_j)$$

$$\begin{split} \operatorname{md}(X,Y;U_i,U_j) &= \frac{|a(X,Y) - \rho(U_i,U_j)\operatorname{Vol}(X)\operatorname{Vol}(Y)|}{\sqrt{\operatorname{Vol}(X)\operatorname{Vol}(Y)}} \\ &= |\rho(X,Y) - \rho(U_i,U_j)|\sqrt{\operatorname{Vol}(X)\operatorname{Vol}(Y)} \end{split}$$

Generalized random graphs Generalized quasirandom graphs Generalized quasirandom properties Notation Representation Discrepancy

Minimum *k*-way discrepancy

where $a(X, Y) = \sum_{i \in X} \sum_{j \in Y} a_{ij}$: weighted cut between X and Y. If $a_{ij} = 0/1$, then it is the number of cut-edges e(X, Y), with edges counted twice in $X \cap Y$ if it is not empty; and $\rho(X, Y) = \frac{a(X, Y)}{\operatorname{Vol}(X)\operatorname{Vol}(Y)}$: density between X and Y.

Definition

The minimum k-way discrepancy of G is

$$\operatorname{md}_k(G) = \min_{(U_1, \dots, U_k) \in \mathcal{P}_k} \operatorname{md}(G; U_1, \dots, U_k)$$

B, DAM (2016)

Generalized random graphs Generalized quasirandom graphs Generalized quasirandom properties Notation Representation Discrepancy

Remark

 $md(G; U_1, \ldots, U_k)$ is the smallest α such that for every U_i, U_j pair and for every $X \subset U_i, Y \subset U_j$:

$$|a(X, Y) - \rho(U_i, U_j) \operatorname{Vol}(X) \operatorname{Vol}(Y)| \le \alpha \sqrt{\operatorname{Vol}(X) \operatorname{Vol}(Y)}.$$

In the minimizer \mathcal{P}_k , every U_i , U_j pair is α -volume regular, and this is the smallest possible discrepancy that can be attained with proper *k*-partitions of the vertices of *G*. See the volume regular pairs of Alon et al. (2010) and the ε -regular pairs of the Szemerédi regularity lemma (1976) (simple graph, equitable partition, cardinality instead of volume, too "small" *X*, *Y*'s are excluded).

・ロト ・同ト ・ヨト ・ヨト

Generalized random graphs

Definition

We are given a model graph H on k vertices with vertex-weights r_1, \ldots, r_k $(r_i > 0, \sum_{i=1}^k r_i = 1)$ and edge-weights $p_{ij} = p_{ji}$, $1 \le i \le j \le k$ (entries of the $k \times k$ symmetric probability matrix \mathbf{P} of rank k, where $0 \le p_{ij} \le 1$, $1 \le i \le j \le k$). G_n is a the general term of a generalized random graph sequence on the model graph H if

- it has n vertices;
- to each vertex v a membership c_v ∈ {1,...,k} is assigned according to the probability distribution r₁,..., r_k;
- given the memberships, each pair v ≠ u is connected with probability p_{cvcu};
- further, all these decisions are made independently.

Remark

Let (U_1, \ldots, U_k) be the so obtained *k*-partition (clustering) of the vertices (they also depend on *n*, however we will not denote this dependence, unless necessary).

The definition implies the following **strong balancing condition** on the growth of the cluster sizes $n_i = |U_i|$, i = 1, ..., k $(\sum_{i=1}^k n_i = n)$: if $n \to \infty$, then $\frac{n_i}{n} \to r_i$ (i = 1, ..., k).

Lovász, Sós, J. Comb. Theory B (2008) Abbe, Sandon, FOCS (2015)

In another context:

Holland, Bickel, Coja-Oghlan, Karrer, McSherry, Rohe et al.: stochastic block-model, planted partition model.

Erdo"s–Rényi random graph: k = 1, $G_n(p)$.

イロト イヨト イヨト イヨト

Properties of generalized random graphs

Theorem

Let (G_n) be a generalized random graph sequence on the model graph H; G_n has n vertices with vertex-classes U_1, \ldots, U_k of sizes $n_1, \ldots n_k$. Let H, and so k be kept fixed, i.e., the $k \times k$ probability matrix **P** of rank k and the "blow-up" ratios r_1, \ldots, r_k are fixed, while $n \to \infty$ under the strong balancing condition. Then the following hold almost surely for the homorphism densities of simple graphs in G_n , for the adjacency matrix $\mathbf{A}_n = (a_{ij}^{(n)})$, the normalized modularity matrix $\mathbf{M}_{D,n}$, the multiway disccrepancies, and the within- and between-cluster codegrees of G_n .

Property 0.

 $G_n \to W_H$ as $n \to \infty$ under the strong balancing conditions, where W_H is the step-function graphon corresponding to H, and the convergence is meant in the sense of the convergence of homomorphism densities of any simple graph F into G_n .

B, Kói, Krámli, DAM (2012) Idea: $\mathbf{A}_n = \mathbf{B}_n + \mathbf{W}_n$, where \mathbf{B}_n : blown-up of \mathbf{P} with sizes n_1, \dots, n_k \mathbf{W}_n : Wigner-noise (uniformly bounded, independent entries in and above the main diagonal, of 0 expectation) $\|W_{\mathbf{W}_n}\|_{\Box} \to 0$ as $n \to \infty$

Property 1.

 \mathbf{A}_n has exactly k structural eigenvalues that are $\Theta(n)$ in absolute value, while the remaining eigenvalues are $\mathcal{O}(\sqrt{n})$. Further, the k-variance $S_{k,n}^2$ of the k-dimensional vertex representatives, based on the eigenvectors corresponding to the structural eigenvalues of \mathbf{A}_n , is $\mathcal{O}(\frac{1}{n})$.

B, LAA (2005)

Idea: perturbation results for spectra and spectral subspaces $\mathbf{A}_n = \mathbf{B}_n + \mathbf{W}_n$, where \mathbf{B}_n has as many non-zero eigenvalues of order n as the rank of \mathbf{P} (in our case, k) with stepwise constant eigenvectors; for the Wigner-noise \mathbf{W}_n : $\|\mathbf{W}_n\| = \mathcal{O}(\sqrt{n})$ almost surely.

(日)

Spectral norm of a Wigner-noise

Füredi, Komlós, Combinatorica (1981):

$$\|\mathbf{W}_n\| = \max_{1 \le i \le n} |\lambda_i(\mathbf{W}_n)| \le 2\sigma\sqrt{n} + \mathcal{O}(n^{1/3}\log n)$$

with probability tending to 1 as $n \to \infty$.

Image: A matrix

Sharp concentration theorem

Theorem

W is an $n \times n$ real symmetric matrix, its entries in and above the main diagonal are independent random variables with absolute value at most 1. $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$: eigenvalues of **W**. For any t > 0:

$$\mathbb{P}\left(|\lambda_i - \mathbb{E}(\lambda_i)| > t
ight) \leq \exp\left(-rac{(1-o(1))t^2}{32i^2}
ight) \quad \textit{when} \quad i \leq rac{n}{2},$$

and the same estimate holds for the probability

$$\mathbb{P}\left(|\lambda_{n-i+1}-\mathbb{E}(\lambda_{n-i+1})|>t
ight).$$

Alon, Krivelevich, Vu, Israel J. Math. (2002)

Consequence

Lemma

There exist positive constants C_1 and C_2 , depending only on the common bound K for the entries of the Wigner-noise \mathbf{W}_n , such that

$$\mathbb{P}\left(\left\|\mathbf{W}_{n}\right\| > C_{1} \cdot \sqrt{n}\right) \leq \exp(-C_{2} \cdot n)$$

with probability tending to 1 as $n \to \infty$.

Borel–Cantelli lemma \Rightarrow The spectral norm of \mathbf{W}_n is $\mathcal{O}(\sqrt{n})$ almost surely.

Property 2.

There exists a positive constant $0 < \delta < 1$ independent of n (it only depends on k) such that $\mathbf{M}_{D,n}$ has exactly k - 1 structural eigenvalues of absolute value greater than δ , while all the other eigenvalues are $\mathcal{O}(n^{-\tau})$ in absolute value, for every $0 < \tau < \frac{1}{2}$. Further, the weighted k-variance $\tilde{S}_{k,n}^2$ of the (k - 1)-dimensional vertex representatives, based on the transformed eigenvectors corresponding to the structural eigenvalues of $\mathbf{M}_{D,n}$, is $\mathcal{O}(n^{-2\tau})$, for every $0 < \tau < \frac{1}{2}$.

B, DM (2008) B, Friedl, Krámli, JMVA (2010), for rectangular matrices of nonnegative entries

Property 3.

There is a constant $0 < \theta < 1$ (independent of *n*) such that $\mathrm{md}_1(G_n) > \theta, \ldots, \mathrm{md}_{k-1}(G_n) > \theta$, and the *k*-way discrepancy $\mathrm{md}(G_n; U_1, \ldots, U_k)$ is $\mathcal{O}(n^{-\tau})$, for every $0 < \tau < \frac{1}{2}$, where U_1, \ldots, U_k are the vertex-classes in the definition of G_n .

B, DAM (2016)

estimates between multiway discrepancy and normalized modularity spectra

Property 4.

For every $1 \le i \le j \le k$ and $u \in U_i$:

$$N_1(u; U_j) = \sum_{v \in U_j} a_{uv}^{(n)} = p_{ij}n_j + o(n)$$
 (degrees).

For every $1 \le i \le j \le k$ and $u, v \in U_i$:

$$N_2(u, v; U_j) = \sum_{t \in U_j} a_{ut}^{(n)} a_{vt}^{(n)} = p_{ij}^2 n_j + o(n)$$
 (codegrees).

Proof: by Bernstein inequality.

Conclusion: The induced subgraph of G_n , induced by U_i and denoted by $G_{ii,n}$, is the general term of an Erdo"s–Rényi type random graph sequence with edge probability p_{ii} , for every i = 1, ..., k. The induced bipartite subgraph of G_n , induced by the U_i, U_j pair and denoted by $G_{ij,n}$, is the general term of a bipartite random graph sequence with edge probability p_{ij} , for $i \neq j$,

Generalized quasirandom graphs

Definition

We have a model graph graph H on k vertices with vertex-weights r_1, \ldots, r_k and edge-weights $p_{ij} = p_{ji}$, $1 \le i \le j \le k$, entries of **P**. Then (G_n) is H-quasirandom if $G_n \to W_H$ as $n \to \infty$.

Lovász, Sós, J. Comb. Theory B (2008)

The authors also proved that the vertex set V of a generalized quasirandom graph G_n can be partitioned into U_1, \ldots, U_k in such a way that $\frac{|U_i|}{|V|} \rightarrow r_i$, $i = 1, \ldots, k$ (strong balancing condition) and the subgraph of $G_{ii,n}$ of G_n induced by U_i is the general term of a quasirandom graph sequence with edge-density tending to p_{ii} ($i = 1, \ldots, k$), whereas the bipartite subgraph $G_{ij,n}$ between U_i and U_j is the general term of a quasirandom bipartite graph sequence with edge-density tending to p_{ij} ($i \neq j$) as $n \to \infty$.

Revisiting the notion of graph convergence

Lovász, Szegedi, J. Comb. Theory B (2006) Borgs et al., Ann. Math. (2012) $G_n \to W_H$ means that for any simple graph F: $\frac{\hom(F, G_n)}{|V(G_n)|^{|V(F)|}} \to \hom(F, H) = \sum_{\psi: V(F) \to V(H)} \prod_{i \in V(F)} r_{\psi(i)} \prod_{ij \in E(F)} p_{\psi(i)\psi(j)}.$

If |V(F)| = m, then

$$\hom(F,H) = \hom(F,W_H) = \int_{[0,1]^m} \prod_{\{i,j\}\in E(F)} W(x_i,x_j) dx_1 \dots dx_m.$$

イロト イヨト イヨト 一日

Construction of a generalized quasirandom graph

Given k, **P**, and vertex-weights of the model graph H: consider the instance when there are k sets $U_1, \ldots, U_k \subset V$ of sizes n_1, \ldots, n_k such that $\frac{n_i}{n} = r_i$ $(i = 1, \ldots, k)$. Let us choose the independent irrational numbers α_{ij} $(1 \le i \le j \le k)$.

Then the subgraph on the vertex-set U_i is constructed as follows:

$$u \sim v \Leftrightarrow \{(u-v)^2 \alpha_{ii}\} \leq p_{ii}, \quad i=1,\ldots,k.$$

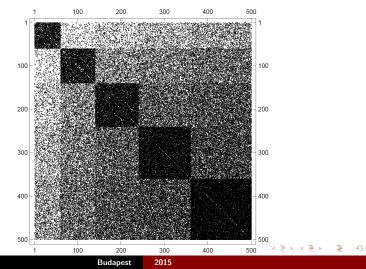
The bipartite subgraph between U_i and U_j : $v \in U_i$ and $u \in U_j$

$$u \sim v \Leftrightarrow \{(u-v)^2 \alpha_{ij}\} \leq p_{ij}, \quad 1 \leq i < j \leq k.$$

Analytical number theoretical considerations guarantee that the above fractional parts are symmetrically well-distributed over $[0, 1]^2$ if $n \to \infty$ and $\frac{n_i}{n} \to r_i$ (i = 1, ..., k). V. T. Sós, Pinch, G. Kiss

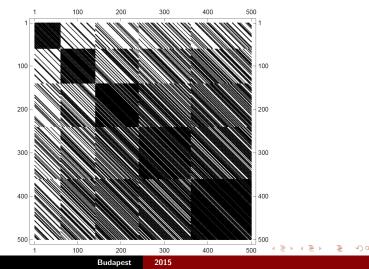
Generalized random graph with k = 5

Ev's of M_D : 0.304, 0.214, 0.17, 0.153, -0.097, -0.094, -0.093, ...

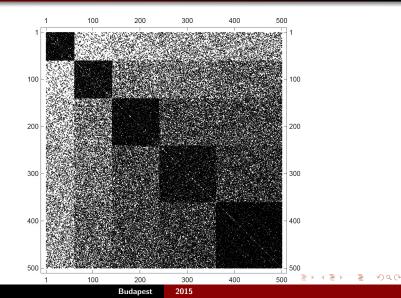


Generalized quasirandom graph with k = 5

Ev's of M_D : 0.318, 0.207, 0.154, 0.115, -0.100, -0.099, -0.091, ...



The same with appropriately mixing the vertices



Proofs

Equivalent properties

 $G_n = (V_n, \mathbf{A}_n)$ with $|V_n| = n \to \infty$ is an expanding family of graphs and k be a fixed positive integer. Then, for them, we consider the following properties, irrespective of stochastic models.

- **P0.** There exists a vertex- and edge-weighted graph H on k vertices, with probability matrix \mathbf{P} , rank $\mathbf{P} = k$, such that $G_n \to W_H$ as $n \to \infty$ in terms of the homomorphism densities.
- **PI. A**_n has k structural eigenvalues $\lambda_{1,n}, \ldots, \lambda_{k,n}$ such that the normalized eigenvalues converge: $\frac{1}{n}|\lambda_{i,n}| \rightarrow q_i$ as $n \rightarrow \infty$ $(i = 1, \ldots, k)$ with some positive reals q_1, \ldots, q_k , and the remaining eigenvalues are o(n) in absolute value. The k-variance $S_{k,n}^2$ of the optimal vertex representatives is o(n). For the k-partition (U_1, \ldots, U_k) minimizing this k-variance the strong balancing condition holds.

continued

PII. G_n has no dominant vertices, and there exists a constant $0 < \delta < 1$ (independent of n, it only depends on k) such that $\mathbf{M}_{D,n}$ has k - 1 structural eigenvalues that are greater than δ in absolute value, while the remaining eigenvalues are o(1). Further, the weighted k-variance $\tilde{S}_{k,n}^2$ of the optimal vertex representatives is o(1). For the k-partition (U_1, \ldots, U_k) minimizing this k-variance the strong balancing condition holds.

Proofs

PIII. There are vertex-classes (U_1, \ldots, U_k) satisfying the strong balancing condition and there exists a constant $0 < \theta < 1$ (independent of *n*, it only depends on *k*) such that $\operatorname{md}_1(G_n), \ldots, \operatorname{md}_{k-1}(G_n) > \theta$, and $\operatorname{md}_k(G_n; U_1, \ldots, U_k) = o(1)$.

(日)

continued

PIV. There are vertex-classes U_1, \ldots, U_k of cluster sizes n_1, \ldots, n_k obeying the strong balancing condition, and there is a $k \times k$ symmetric probability matrix $\mathbf{P} = (p_{ij})$ of rank k such that, with them, the following holds:

$$\sum_{u,v\in U_i} |N_2(u,v;U_j) - p_{ij}^2 n_j| = o(p_{ij}^2 n_i^2 n_j) = o(n^3), \quad \forall i,j = 1, \dots, k,$$

Proofs

where $N_2(u, v; U_j)$ denotes the number of common neighbors of u, v in U_j .

Then P0 is equivalent to PIV, and they imply PI and PII; further, PII implies PIII.

Proofs

P0⇒>PIV

We use the results of Chung–Graham–Wilson, Combinatorica (1989); Lovász–T. Sós, JCTB (2008) in view of which: The vertex set of the generalized quasirandom graph G_n (defined by P0) can be partitioned into classes U_1, \ldots, U_k in such a way that $\frac{|U_i|}{r} \rightarrow r_i$ (i = 1, ..., k), that gives the strong balancing; the subgraph $G_{ii,n}$ is the general term of a quasirandom graph sequence with edge-density tending to p_{ii} (i = 1, ..., k), whereas $G_{ii,n}$ is the general term of a bipartite quasirandom graph sequence with edge-density tending to p_{ii} ($i \neq j$) as $n \to \infty$. Therefore, for the subgraphs, the equivalent statements of Chung-Graham-Wilson of the usual (1-class) quasirandomness are applicable, and similar considerations can be made for the bipartite subgraphs as well.

Proofs

Chung–Graham–Wilson: Quasi-random graphs, k = 1, $p = \frac{1}{2}$

- $P_1(s)$: for all graphs M(s) on s vertices,
 - $N^*_{G_n}(M(s)) = (1+o(1))n^s(rac{1}{2})^{\binom{s}{2}}$ labelled induced subgraphs.

 $N_{G_n}^*(M(s)) = (1 + o(1))n^s p^{|E(M(s))|} (1 - p)^{\binom{s}{2} - |E(M(s))|}.$

• $P_2(t)$: $e(G_n) \ge (1 + o(1)) \frac{n^2}{4}$, $N_{G_n}(C_t)) \le (1 + o(1)) n^t (\frac{1}{2})^t$.

 $2e(G_n) \ge (1+o(1))pn^2$, hom $(C_t, G_n) \le (1+o(1))n^t p^t$.

Proofs

Chung–Graham–Wilson continued

•
$$P_3$$
: $e(G_n) \ge (1 + o(1))\frac{n^2}{4}$, $\lambda_1 = (1 + o(1))\frac{n}{2}$, $\lambda_2 = o(n)$.

 $2e(G_n) \ge (1+o(1))pn^2, \quad \lambda_1 = (1+o(1))pn, \quad \lambda_2 = o(n).$

•
$$P_4: \forall S \subset V, e(S) = \frac{1}{4}|S|^2 + o(n^2).$$

 $\forall X \subset V: e(X, X) = p|X|^2 + o(n^2).$

•
$$P_7$$
: $\sum_{u,v} |N_2(u,v) - \frac{n}{4}| = o(n^3),$
 $\sum_{u,v} |N_2(u,v) - p^2 n| = o(n^3).$

Then for $s \ge 4$ and $t \ge 4$ even,

 $P_2(4) \Rightarrow P_2(t) \Rightarrow P_1(s) \Rightarrow P_3 \Rightarrow \cdots \Rightarrow P_7 \Rightarrow P_2(4).$

イロト イヨト イヨト イヨト

Quasirandom graph: satisfies any (all) of the above properties.

Lemma 1.

Lemma

If
$$(G_{ii,n})$$
 is quasirandom, then

$$\sum N_2(u, v; U_i) > (1 + o(1))p_{ii}^2 n_i^3, \quad i = 0$$

$$\sum_{u,v\in U_i} N_2(u,v;U_i) \ge (1+o(1))p_{ii}^2 n_i^3, \quad i=1,\ldots,k.$$

Proofs

Proof: We drop the index n of the adjacency entries.

$$\sum_{u,v \in U_i} N_2(u,v;U_i) = \sum_{u,v \in U_i} \sum_{t \in U_i} a_{ut} a_{vt}$$

= $\sum_{t \in U_i} \sum_{u \in U_i} a_{ut} \sum_{v \in U_i} a_{vt} = \sum_{t \in U_i} [N_1(t;U_i)]^2 \ge \frac{1}{n_i} [\sum_{t \in U_i} N_1(t;U_i)]^2$
= $\frac{1}{n_i} [2e(U_i)]^2 \ge \frac{1}{n_i} [(1+o(1))p_{ii}n_i^2]^2 = (1+o(1))p_{ii}^2n_i^3,$

Proofs

Proof of Lemma 1, continued

where $N_1(t; U_i)$ denotes the number of neighbors of t in U_i , and $e(U_i)$ is the number of edges within the induced subgraph $G_{ii,n}$ of G_n , induced by U_i . In the first inequality we used the Cauchy–Schwarz, and in the second one, the first part of the equivalent quasirandom property P_2 of Chung–Graham–Wilson.

Proofs

Lemma 2.

Lemma

If $(G_{ij,n})$ is bipartite quasirandom, then

$$\sum_{v \in U_i} N_2(u, v; U_j) = (1 + o(1)) p_{ij}^2 n_i^2 n_j, \quad i \neq j$$

Proof:

и

$$\sum_{u,v\in U_i} N_2(u,v;U_j) = \sum_{u,v\in U_i} \sum_{t\in U_j} a_{ut} a_{vt}$$
$$= \sum_{t\in U_j} \sum_{u\in U_i} a_{ut} \sum_{v\in U_i} a_{vt} = \sum_{t\in U_j} [N_1(t;U_i)]^2 \ge \frac{1}{n_j} [\sum_{t\in U_j} N_1(t;U_i)]^2$$
$$= \frac{1}{n_j} [e(U_i,U_j)]^2 \ge \frac{1}{n_j} [(1+o(1))p_{ij}n_in_j]^2 = (1+o(1))p_{ij}^2n_i^2n_j,$$

Proofs

Proof of Lemma 2, continued

where $e(U_i, U_j)$ is the number of cut-edges between U_i and U_j , i.e., the number of edges in the induced bipartite subgraph $G_{ij,n}$ of G_n , induced by the U_i, U_j pair. Here, in the first inequality we used the Cauchy–Schwarz, and in the second one, the equivalent quasirandom property of bipartite quasirandom graphs.

Proofs

P0⇒PIV

In view of the lemmas and the the Cauchy-Schwarz inequality:

$$\begin{split} &\left[\sum_{u,v\in U_i} |N_2(u,v;U_j) - p_{ij}^2 n_j|\right]^2 \leq n_i^2 \sum_{u,v\in U_i} |N_2(u,v;U_j) - p_{ij}^2 n_j|^2 \\ &= n_i^2 \left\{\sum_{u,v\in U_i} [N_2(u,v;U_j)]^2 - 2p_{ij}^2 n_j \sum_{u,v\in U_i} N_2(u,v;U_j) + n_i^2 (p_{ij}^2 n_j)^2 \right\} \\ &\leq n_i^2 \left\{ (1+o(1)) p_{ij}^4 n_i^2 n_j^2 - 2(1+o(1)) p_{ij}^4 n_i^2 n_j^2 + p_{ij}^4 n_i^2 n_j^2 \right\} \\ &= n_i^2 o(1) p_{ij}^4 n_i^2 n_j^2 = o(p_{ij}^4 n_i^4 n_j^2), \end{split}$$

イロト イヨト イヨト イヨト

æ

DQC

Proof continued

$$\sum_{u,v \in U_i} [N_2(u,v;U_j)]^2 \sim \hom(C_4, G_{ij,n})$$

• $i = j$: by $P_2(4)$,

$$\hom(C_4, G_{ii,n}) \leq (1 + o(1))p_{ii}^4 n_i^4.$$

• $i \neq j$: by Lovász–Sós (bipartite quasirandom graphs),

$$\frac{\hom(C_4, G_{ij,n})}{n_i^2 n_j^2} = (1 + o(1)) p_{ij}^4.$$

Image: A matrix and a matrix

Only 4-cycles in the above bipartition have to be considered; these 4-cycles have 2 vertices from U_i and 2 from U_j , and any 2 of the common neighbors of $u, v \in U_i$ in U_j are possible candidates to close a (labelled) 4-cycle with them.

Proof of PIV >> P0

By C-G-W $P_7 \Rightarrow P_1(s)$, the subgraphs $G_{ii,n}$ are quasirandom. Likewise, if $i \neq j$, the bipartite subgraphs $G_{ij,n}$ are bipartite quasirandom.

Therefore, G_n is built of quasirandom and bipartite quasirandom blocks, so under the strong balancing condition, they together form a generalized quasirandom graph sequence on k classes and model graph H, the vertex-weights of which are r_1, \ldots, r_k of the strong balancing condition, and the edge-weights are entries of the probability matrix $\mathbf{P} = (p_{ij})$.

イロト イヨト イヨト イヨト

Proofs

For $P0 \Longrightarrow PII$ we use the following

Theorem (B, EJC (2014))

 $G_n = (V_n, \mathbf{A}_n) \to W$, G_n connected with edge-weights in [0,1] and the vertex-weights are the generalized degrees. Assume that there are no dominant vertices. $|\mu_{n,1}| \ge |\mu_{n,2}| \ge \cdots \ge |\mu_{n,n}| = 0$ is the spectrum of $\mathbf{M}_{D,n}$.

Let $\mu_i(P_{\mathbb{W}})$ be the *i*-th largest absolute value eigenvalue of the integral operator $P_{\mathbb{W}} : L^2(\xi') \to L^2(\xi)$ taking conditional expectation with respect to the joint measure \mathbb{W} embodied by the normalized limit graphon W, and ξ, ξ' are identically distributed random variables with the marginal distribution of their symmetric joint distribution \mathbb{W} .

Then for every $i \ge 1$: $\mu_{n,i} \to \mu_i(P_{\mathbb{W}})$ as $n \to \infty$.

<ロト <問ト < 注ト < 注ト

Theorem (B, EJC (2014))

Assume that there are constants 0 $< \varepsilon < \delta \leq 1$ such that

$$|\mu_{n,1}| \geq \cdots \geq |\mu_{n,k-1}| \geq \delta > \varepsilon \geq |\mu_{n,k}| \geq \cdots \geq |\mu_{n,n}| = 0.$$

Then the subspace spanned by the transformed eigenvectors $\mathbf{D}_n^{-1/2} \mathbf{u}_{n,1}, \ldots, \mathbf{D}_n^{-1/2} \mathbf{u}_{n,k-1}$ converges to the corresponding (k-1)-dimensional subspace of $P_{\mathbb{W}}$. More exactly, if $\mathbf{P}_{n,k-1}$ denotes the projection onto the subspace spanned by the transformed eigenvectors belonging to k-1 largest absolute value eigenvalues of $\mathbf{M}_{D,n}$, and \mathbf{P}_{k-1} denotes the projection onto the analogous eigen-subspace of $P_{\mathbb{W}}$, then $\|\mathbf{P}_{n,k-1} - \mathbf{P}_{k-1}\| \to 0$ as $n \to \infty$.

Note: $\tilde{S}_{k,n}^2$ is the distance between these subspaces.

Proofs

For PII ⇒ PIII we use the following

Theorem (B, DAM (2016))

Let $G = (V, \mathbf{A})$ be an edge-weighted, undirected graph, \mathbf{A} is irreducible. Then for any integer $1 \le k < \operatorname{rank}(\mathbf{A})$,

 $|\mu_k| \leq 9 \mathtt{md}_k(G)(k+2-9k \ln \mathtt{md}_k(G))$

holds, provided $0 < md_k(G) < 1$, where μ_k is the k-th largest absolute value eigenvalue of the normalized modularity matrix \mathbf{M}_D of G.

Converse: k = 1

Theorem (Chung-Graham, RSA (2008), expander mixing lemma for irregular graphs)

 $\mathrm{md}_1(G) \leq \|\mathbf{M}_D\| = |\mu_1|.$

D Q C

Proofs

Theorem (B, EJC (2014), $k \ge 1$, developed version)

Let $G = (V, \mathbf{A})$ be a graph on *n* vertices, with degrees d_1, \ldots, d_n and degree-matrix **D**. Assume that *G* is connected, and there are no dominant vertices: $d_v = \Theta(n)$ except for o(n) vertices. Let the eigenvalues of the normalized modularity matrix \mathbf{M}_D of *G*, enumerated in decreasing absolute values, be

$$|\mu_1| \geq \cdots \geq |\mu_{k-1}| > \varepsilon \geq |\mu_k| \geq \cdots \geq |\mu_n| = 0.$$

The partition (U_1, \ldots, U_k) of V is defined so that it minimizes the weighted k-variance $s^2 = \tilde{S}_k^2$ of the optimal vertex representatives. Assume that the k-partition (U_1, \ldots, U_k) satisfies the strong balancing condition. Then

$$\mathrm{md}(G; U_1, \ldots, U_k) = \mathcal{O}(\sqrt{2ks} + \varepsilon).$$

(日)

Proofs

P0⇒>PI

We use Theorem 6.7 of Borgs et al., Ann. Math. (2012), where the authors prove that if the sequence (W_{G_n}) of graphons converges to the limit graphon W, then both ends of the spectra of the integral operators, induced by W_{G_n} 's as kernels (these are the numbers $\frac{1}{n}\lambda_{i,n}$, converge to the ends of the spectrum of the integral operator induced by W as kernel. We apply this argument for the limit graphon W_H of (G_n) . The same argument as in P0 => PII can be applied to the convergence of the spectral subspaces, so the convergence of the k-variances is also obtained. The steps are proportional to r_i 's \implies strong balancing. PI does not necessarily implies P0!

・ロト ・同ト ・ヨト ・ヨト

Proofs

Strengthening of PI

PI+: \mathbf{A}_n has k structural eigenvalues $\lambda_{1,n}, \ldots, \lambda_{k,n}$ such that the normalized eigenvalues converge: $\frac{1}{n}\lambda_{i,n} \rightarrow q_i$ as $n \rightarrow \infty$ ($i = 1, \ldots, k$) with some non-zero reals q_1, \ldots, q_k , and the remaining eigenvalues are $o(\sqrt{n})$. Further, the k-variance $S_{k,n}^2$ of the k-dimensional vertex representatives, based on the eigenvectors corresponding to the structural eigenvalues of \mathbf{A}_n , is $o(\frac{1}{n})$. The k-partition $P_{k,n} = (U_{1n}, \ldots, U_{kn})$ of the vertices of G_n minimizing this k-variance satisfies: $\frac{|U_{in}|}{n} \rightarrow r_i$ with some r_i ($i = 1, \ldots, k$). Also assume that there is a $k \times k$ symmetric probability matrix $\mathbf{P} = (p_{ij})$ of rank k such that

$$d(U_{in}, U_{jn}) := \frac{e(U_{in}, U_{jn})}{|U_{in}||U_{jn}|} \rightarrow p_{ij} \quad (1 \le i \le j \le k), \quad n \to \infty.$$
(1)

(I.e., the within- and between-cluster edge densities converge to the entries of \mathbf{P} .)

Proofs

PI+⇒P0

By B, LAA (2005) we are able to find a blown-up matrix \mathbf{B}_n of rank k and an error-matrix \mathbf{E}_n with $\|\mathbf{E}_n\| = o(\sqrt{n})$ such that $\mathbf{A}_n = \mathbf{B}_n + \mathbf{E}_n (n = k, k + 1, ...)$. Say \mathbf{B}_n is the blown-up matrix of the $k \times k$ pattern matrix \mathbf{P}_n , the *ij* entry $p_{ij}^{(n)}$ of which is the common entry of the $U_{in} \times U_{jn}$ block of \mathbf{B}_n . Then using the relation between the cut-norm of a graphon and a matrix, further, between the cut-norm and the spectral norm of a matrix, and the transformation of a graph into graphon, we get

that

$$\|W_{\mathbf{E}_n}\|_{\Box} \leq \frac{1}{n^2} \|\mathbf{E}_n\|_{\Box} \leq \frac{1}{n^2} n \|\mathbf{E}_n\| = \frac{1}{n} o(\sqrt{n}) = o(n^{-1/2}),$$

where $||\mathbf{E}_n||$ is the spectral-norm, $||\mathbf{E}_n||_{\Box}$ is the matrix cut-norm of \mathbf{E}_n , and $W_{\mathbf{E}_n}$ denotes the graphon corresponding to the symmetric matrix \mathbf{E}_n of uniformly bounded entries.

Using the Steiner equality, we get that the squared Frobenius norm of $\mathbf{A}_n - \mathbf{B}_n$, restricted to the *ij* block, is

$$\begin{split} \|(\mathbf{A}_n - \mathbf{B}_n)_{ij}\|_F^2 &= \sum_{u \in U_{in}} \sum_{v \in U_{jn}} (a_{uv}^{(n)} - p_{ij}^{(n)})^2 \\ &= \sum_{u \in U_{in}} \sum_{v \in U_{jn}} (a_{uv}^{(n)} - d(U_{in}, U_{jn}))^2 + |U_{in}||U_{jn}|(d(U_{in}, U_{jn}))^2) \end{split}$$

where the edge-density $d(U_{in}, U_{jn})$ is now viewed as the average of the entries of \mathbf{A}_n in the $U_{in} \times U_{jn}$ block. Then by the inequality between the Frobenius and spectral norms,

$$\|(\mathbf{A}_n - \mathbf{B}_n)_{ij}\|_F^2 \le n \|\mathbf{A}_n - \mathbf{B}_n\|^2 = n \|\mathbf{E}_n\|^2 = no^2(\sqrt{n}).$$

Proofs

Therefore, for every $1 \le i \le j \le k$ pair: $(d(U_{in}, U_{jn}) - p_{ij}^{(n)})^2 \le \frac{1}{|U_i||U_j|} no^2(\sqrt{n}) = \frac{1}{\frac{|U_{in}|}{n}} n(\frac{o(\sqrt{n})}{n})^2 = no^2(n^{-1/2})$ as $\frac{|U_{in}|}{n} \to r_i$ when $n \to \infty$ (i = 1, ..., k). Eventually, we prove the $G_n \to W_H$ convergence by proving that the cut-distance between the corresponding graphons tends to 0. H is a model graph with vertex-weights r_i 's and edge-weights p_{ij} 's in the PI+ conditions.

Using the triangle inequality, we get

$$\|W_{G_n} - W_H\|_{\Box} \le \|W_{G_n} - W_{B_n}\|_{\Box} + \|W_{B_n} - W_{G_n/P_{k,n}}\|_{\Box} + \|W_{G_n/P_{k,n}} - W_H\|_{\Box}$$

were $G_n/P_{k,n}$ is the factor graph of G_n with respect to the k-partition $P_{k,n}$. This is an edge- and vertex-weighted graph on k vertices, with vertex-weights $\frac{|U_{in}|}{n}$ and edge-weights $d(U_{in}, U_{jn})$, i, j = 1, ..., k.

イロト イヨト イヨト イヨト

Proofs

The first term is $||W_{\mathbf{F}_{\mathbf{r}}}||_{\Box} = o(n^{-1/2})$. To estimate the second term, observe that because \mathbf{B}_n is the blown-up matrix of \mathbf{P}_n with respect to the k-partition $P_{k,n}$, after conveniently permuting its rows (and columns, accordingly). The gaphon W_{B_n} is also stepwise constant over the unit square, where the sides are divided into kparts: the interval I_i has lengths $\frac{|U_{jn}|}{n}$ (j = 1, ..., k), and over $I_i \times I_i$ the stepfunction takes on the value $p_{ii}^{(n)}$. By its nature, the graphon W_{G_n/P_k} is stepwise constant with the same subdivision of the unit square, and over $I_i \times I_j$ it takes on the value $d(U_{in}, U_{in})$, $i, j = 1, \ldots, k$. But in view of the above, $\|W_{\mathbf{B}_n} - W_{G_n/P_{k_n}}\|_{\Box} = \sqrt{n}o(n^{-1/2}) = o(1)$. The third term is o(1), because of the assumptions $\frac{|U_{in}|}{n} \rightarrow r_i$ (i = 1, ..., k) and $d(U_{in}, U_{in}) \rightarrow p_{ii}, i, j = 1, \dots, k$. Therefore, $\|W_{G_n} - W_H\|_{\Box} = o(1)$ and so, $G_n \to H$, which finishes the proof.

Proofs

Define PII+ and PIII+ as PII and PIII together with

• There is a $k \times k$ symmetric probability matrix $\mathbf{P} = (p_{ij})$ of rank k such that

$$d(U_i, U_j) = p_{ij} + o(1) \quad (1 \le i \le j \le k), \quad n \to \infty$$

• for every $1 \le i \le j \le k$ and $u \in U_i$:

$$N_1(u; U_j) = (1 + o(1))p_{ij}n_j$$

Image: A matrix

hold.

Lemma

Under P0, the following holds for except $o(n_i)$ vertices $u \in U_i$, and for every i = 1, ..., k: $N_1(u; U_i) = (1 + o(1))p_{ii}n_i$. Under P0, the following holds for except $o(n_i)$ vertices $u \in U_i$, and for every $1 \le i < j \le k$: $N_1(u; U_j) = (1 + o(1))p_{ij}n_j$.

The statement follows from the $P_1(s)$ ($\forall s$) => P'_0 implication of C-G-W and its bipartite analogue.

The subgraphs ara almost-regular, the bipartite subgraphs are almost-biregular: weaker than quasirandomness.

Proofs

P0 => PII+ => PIII+ => PIV => P0, so they are all equivalent.

Proof of P0 => PII + => PIII +

By Lovász–Sós, JCTB (2008) and the Lemma, P0 implies the extras of PII and PIII too.

Proof of PIII + => PIV

We are able to prove that P_4 of C-G-W, and the analogous statement of Theorem 2 of Thomason, DM (1989) hold, whenever PIII+ holds.

Proofs

Proof in the i = j case

Let (U_1, \ldots, U_k) be the *k*-partition, guaranteed by PIII+, such that $\operatorname{md}_k(G_n; U_1, \ldots, U_k) = o(1)$. Then by the extra conditions of PIII+, for $X \subset U_i$, $\operatorname{Vol}(X) = |X|(1+o(1)) \sum_{\ell=1}^k p_{i\ell} n_\ell$, and so,

$$\begin{split} e(X,X) &- p_{ii}|X|^2 = e(X,X) - [d(U_i,U_i) + o(1)]|X|^2 \\ &= e(X,X) - \frac{e(U_i,U_i)}{\frac{Vol^2(U_i)}{(1+o(1))^2(\sum_{\ell=1}^k p_{i\ell}n_\ell)^2}} \frac{Vol^2(X)}{(1+o(1))^2(\sum_{\ell=1}^k p_{i\ell}n_\ell)^2} - o(1)|X|^2 \\ &= [e(X,X) - \rho(U_i,U_i)Vol^2(X)] - o(1)\rho(U_i,U_i)Vol^2(X) - o(1)|X|^2 \\ &\leq \mathrm{md}_k(G_n;U_1,\ldots,U_k)\sqrt{Vol^2(X)} - o(1)e(U_i,U_i)\left(\frac{Vol(X)}{Vol(U_i)}\right)^2 - o(n^2) \\ &= o(n^2). \end{split}$$

Then P_4 implies P_7 of Chung–Graham–Wilson, that is our PIV.