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Motivation

Having multivariate time series, e.g., financial or economic
data observed at regular time intervals, we want to describe
the components of the time series with a smaller number of
uncorrelated factors.

The usual factor model of multivariate analysis cannot be
applied immediately as the factor process also varies in time.

There is a dynamic part, added to the usual factor model, the
auto-regressive process of the factors.

Dynamic factors can be identified with some latent driving
forces of the whole process. Factors can be identified only by
the expert (e.g., monitary factors) .
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Remarks

The model is applicable to weakly stationary
(covariance-stationary) multivariate processes.

The first descriptions of the model is found in J. F. Geweke,
International Economic Review 22 (1977) and in Gy. Bánkövi
et. al., Zeitschrift für Angewandte Mathematik und Mechanik
63 (1981).

Since then, the model has been developed in such a way that
dynamic factors can be extracted not only sequentially, but at
the same time. For tis purpose we had to solve the problem of
finding extrema of inhomogeneous quadratic forms in Bolla et.
al., Lin. Alg. Appl. 269 (1998).
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The model

The input data are n-dimensional observations
y(t) = (y1(t), . . . , yn(t)), where t is the time and the process is
observed at discrete moments between two limits (t = t1, . . . , t2).
For given positive integer M < n we are looking for uncorrelated
factors F1(t), . . . ,FM(t) such that they satisfy the following model
equations:
1. As in the usual linear model,

Fm(t) =
n∑

i=1

bmiyi (t), t = t1, . . . , t2; m = 1, . . . ,M. (1)
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2. The dynamic equation of the factors:

F̂m(t) = cm0+
L∑

k=1

cmkFm(t−k), t = t1+L, . . . , t2; m = 1, . . . ,M,

(2)
where the time-lag L is a given positive integer and F̂m(t) is the
auto-regressive prediction of the mth factor at date t (the
white-noise term is omitted, therefore we use F̂m instead of Fm).
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3. The linear prediction of the variables by the factors as in the
usual factor model:

ŷi (t) = d0i +
M∑

m=1

dmiFm(t), t = t1, . . . , t2; i = 1, . . . , n. (3)

(The error term is also omitted, that is why we use the notation ŷi

instead of yi .)
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The objective function

We want to estimate the parameters of te model:
B = (bmi ), C = (cmk), D = (dmi )
(m = 1, . . . ,M; i = 1, . . . , n; k = 1, . . . L)
in matrix notation (estimates of the parameters cm0, d0i follow
from these) such that the objective function

w0 ·
M∑

m=1

var (Fm − F̂m)L +
n∑

i=1

wi · var (yi − ŷi ) (4)

is minimum on the conditions for the orthogonality and variance of
the factors:

cov (Fm,Fl) = 0, m 6= l ; var (Fm) = vm, m = 1, . . . ,M (5)

where w0,w1, . . . ,wn are given non-negative constants (balancing
between the dynamic and static part), while the positive numbers
vm’s indicate the relative importance of the individual factors.
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Notation

In Bánkövi et al., authors use the same weights

vm = t2 − t1 + 1, m = 1, . . . ,M.

Denote

ȳi =
1

t2 − t1 + 1

t2∑
t=t1

yi (t)

the sample mean (average with respect to the time) of the ith
component,

cov (yi , yj) =
1

t2 − t1 + 1

t2∑
t=t1

(yi (t)− ȳi ) · (yj(t)− ȳj)

the sample covariance between the ith and jth components, while

cov ∗(yi , yj) =
1

t2 − t1

t2∑
t=t1

(yi (t)− ȳi ) · (yj(t)− ȳj)

the corrected empirical covariance between them.
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The trivial parameters

The parameters cm0, d0i can be written in terms of the other
parameters:

cm0 =
1

t2 − t1 − L + 1

t2∑
t=t1+L

(Fm(t)−
L∑

k=1

cmkFm(t − k)),

m = 1, . . . ,M

and

d0i = ȳi −
M∑

m=1

dmi F̄m,

i = 1, . . . , n.
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Further notation

Thus, the parameters to be estimated are collected in the M × n
matrices B,D, and in the M × L matrix C.
bm ∈ Rn be the mth row of matrix B, m = 1, . . . ,M.

Yij := cov (yi , yj), i , j = 1, . . . n,

and Y := (Yij) is the n × n symmetric, positive semidefinite
empirical covariance matrix of the sample (sometimes it is
corrected).
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Delayed time series:

zm
i (t) = yi (t)−

L∑
k=1

cmkyi (t − k), (6)

t = t1 + L, . . . , t2; i = 1, . . . , n; m = 1, . . . ,M

and
Zm

ij := cov (zm
i , zm

j ) =

=
1

t2 − t1 − L + 1

t2∑
t=t1+L

(zm
i (t)− z̄m

i ) · (zm
j (t)− z̄m

j ), (7)

i , j = 1, . . . n,

where z̄m
i = 1

t2−t1−L+1

∑t2
t=t1+L zm

i (t), i = 1, . . . , n; m = 1, . . . ,M.
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The objective function revisited

Let Zm = (Zm
ij ) be the n × n symmetric, positive semidefinite

covariance matrix of these variables.
The objective function of (4) to be minimized:

G (B,C,D) = w0

M∑
m=1

bT
mZmbm +

n∑
i=1

wiYii−

−2
n∑

i=1

wi

M∑
m=1

dmi

n∑
j=1

bmjYij +
n∑

i=1

wi

M∑
m=1

d2
mivm,

where the minimum is taken on the constraints

bT
mYbl = δml · vm, m, l = 1, . . . ,M. (8)
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Outer cycle of the iteration

Choosing an initial B satisfying (8), the following two steps are
alternated:

1 Starting with B we calculate the Fm’s based on (1), then we
fit a linear model to estimate the parameters of the
autoregressive model (2). Hence, the current value of C is
obtained.

2 Based on this C, we find matrices Zm using (6) and (7)
(actually, to obtain Zm, the mth row of C is needed only),
m = 1, . . . ,M. Putting it into G (B,C,D), we take its
minimum with respect to B and D, while keeping C fixed.

With this B, we return to the 1st step of the outer cycle and
proceed until convergence.
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Fixing C, the part of the objective function to be minimized in B
and D is

F (B,D) = w0

M∑
m=1

bT
mZmbm +

n∑
i=1

wi

M∑
m=1

d2
mivm−

−2
n∑

i=1

wi

M∑
m=1

dmi

n∑
j=1

bmjYij ,

Taking the derivative with respect to D:

F (B,Dopt) = w0

M∑
m=1

bT
mZmbm −

n∑
i=1

wi

M∑
m=1

1

vm
(

n∑
j=1

bmjYij)
2.

Introducing Vjk =
∑n

i=1 wiYijYik , V = (Vjk), and

Sm = w0Z
m − 1

vm
V, m = 1, . . . ,M

we have

F (B,Dopt) =
M∑

m=1

bT
mSmbm. (9)
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Thus, F (B,Dopt) is to be minimized on the constraints for bm’s.
Transforming the vectors b1, . . . ,bm into an orthonormal set, an
algorithm to find extrema of inhomogeneous quadratic forms is to
be used.
The transformation

xm :=
1

√
vm

Y1/2bm, Am := vmY−1/2SmY−1/2, m = 1, . . . ,M

(10)
will result in an orthonormal set x1, . . . , xM ∈ Rn, further

F (B,Dopt) =
M∑

m=1

xT
mAmxm,

and by back transformation:

bopt
m =

√
vmY−1/2xopt

m , m = 1, . . . ,M.
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German Federal Republic, 1953–1982

COP: Consumer Prices
INP: Industrial Production
EMP: Employment
WAG: Wages
EXP: Export
GOC: Goverment Consumption
GFC: Gross Fixed Capital
PRC: Private Consumption
IMP: Imports
GDP: Gross Domestic Product
CPS: Claims on Private Sector
DOC: Domestic Credit
POP: Population, Population
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The first dynamic factor
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Further dynamic factors
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Factors as linear combinations of variables
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Variables as linear combinations of factors



Preliminaries Estimating the model parameters Application to economic data Extrema Compromise factor analysis

Extrema of sums of inhomogeneous quadratic forms

Given the n × n symmetric matrices A1, . . . ,Ak (k ≤ n) we are
looking for an orthonormal set of vectors x1, . . . , xk ∈ Rn such that

k∑
i=1

xT
i Aixi → maximum.



Preliminaries Estimating the model parameters Application to economic data Extrema Compromise factor analysis

Theoretical solution

By Lagrange’s multipliers the xi ’s giving the optimum satisfy the
system of linear equations

A(X) = XS (11)

with some k × k symmetric matrix S, where the n × k matrices X
and A(X) are as follows:

X = (x1, . . . , xk), A(X) = (A1x1, . . . ,Akxk).

Due to the constraints imposed on x1, . . . , xk , the non-linear
system of equations

XTX = Ik (12)

must also hold.
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As X and the symmetric matrix S contain alltogether
nk + k(k + 1)/2 free parameters, while the equations (11) and
(12) the same number of equations, the solution of the problem is
expected. Transform (11) into a homogeneous system of linear
equations, to get a non-trivial solution,

|A− In ⊗ S| = 0 (13)

must hold, where the nk × nk matrix A is a Kronecker-sum
A = A1 ⊕ · · · ⊕ Ak (⊗ denotes the Kronecker-product).
Generalization of the eigenvalue problem: eigenmatrix problem.
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Numerical solution

Starting with a matrix X(0) of orthonormal columns, the mth step
of the iteration based on the (m − 1)th one is as follows
(m = 1, 2, . . . ):
Teke the polar decomposition

A(X(m−1)) = X(m) · S

into an n × k matrix of orthonormal columns and a k × k
symmetric matrix . Let the first factor be X(m), etc. until
convergence.
The polar decomposition is obtained by SVD.
The above iteration is easily adopted to negative semidefinite or
indefinite matrices and to finding minima instead of maxima.
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COMPROMISE FACTOR ANALYSIS

A method for compromise factor extraction from
covariance/correlation matrices corresponding to different strata is
introduced.
Compromise factors are independent and on this constraint they
explain the largest possible part of the variables’ total variance over
the strata.
The so-called compromise representation of the strata is
introduced. A practical application for parallel factoring of medical
data in different strata is also presented.
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Application

In biological applications data are frequently derived from different
strata, but the observed variables are the same in each of them.
We would like to assign scores to the variables – different ones in
different strata – in such a way that together with other strata
scores they accomplish the best possible compromise between the
strata.
In the case of normally distributed data the covariance matrices of
the same variables are calculated in each stratum separately. In
fact, the data need not be necessarily normally distributed, but it is
supposed that the covariance structure somehow reflects the
interconnection between the variables. One factor from each
stratum is extracted.
The purpose of the compromise factor analysis is similar to that of
the discriminant analysis. Here, however, we find a linear
combination of the variables for each stratum that obey the
orthogonality conditions.
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The model

Let ξ1, . . . , ξk be n-dimensional, normally distributed random
variables with positive definite covariance matrices C1, . . . ,Ck

(k ≤ n), respectively.
Let us suppose that the mean vectors are zero (otherwise the
estimated means are subtracted).

ξi = f + ei (i = 1, . . . , k),

where f and ei (i = 1, . . . , k) are n-dimensional normally
distributed random vector variables with zero mean vectors and
covariance matrices D and Bi (i = 1, . . . , k), respectively, and D is
supposed to be an n × n diagonal matrix.
ei s are mutually independent of each-other and of f . The random
vector variable f can be thought of as a main common factor of
ξi ’s while ei is characteristic to the ith stratum or measurement
(i = 1, . . . , k).
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Matrix notation

Therefore, Ci = D + Bi and the cross-covariance matrix
Eξiξ

T
j = D is the same diagonal matrix with nonnegative diagonal

entries for all i 6= j .
The observed random vectors ξ1, . . . , ξk may also be repeated
measurements for n dependent Gaussian variables in the same
population. This kind of linear model can be fitted with the usual
techniques, and the maximum likelihood estimate for D is
constructed on the basis of a sample taken in k not independent
strata or in the case of k times repeated measurements. To test
the diagonality of D a likelihood ratio test is used.
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The optimum problem

Provided the model fits, we are looking for stochastically
independent linear combinations aT

1 ξ1, . . . , a
T
k ξk of the above

vector variables such that

k∑
i=1

Var (aT
i ξi ) =

k∑
i=1

aT
i Ciai → maximum

on the following constraints: the vectors ai s are standardized in
such a way that aT

i Dai = 1 (i = 1, . . . , k).
The constraints together with the independence conditions imply
that

aT
i Daj = δij (i , j = 1, . . . , k).
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Numerical algorithm

By means of the transformations bi := D1/2ai (i = 1, . . . , k), the
optimization problem is equivalent to

k∑
i=1

bT
i (D−1/2CiD

−1/2)bi → maximum

where the maximization is through all orthonormal systems
b1, . . . , bk ∈ Rn.
Since the n × n matrices D−1/2CiD

−1/2 are symmetric, the
algorithm constructed for inhomogeneous quadratic forms is
applicable. Let b∗1, . . . , b

∗
k denote the compromise system of the

matrices D−1/2C1D
−1/2, . . . ,D−1/2CkD−1/2.

Finally, by backward transformations a∗i = D−1/2b∗i the linear
combinations giving the extremum are obtained.
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A medical application

We applied the method for clinical measurements (protein,
triglicerin and other organic matter concentration in the urine) of
nephrotic patients. We distinguished between three stages of the
illness : a no symptoms stage and two nephrotic stages, one of
them is an intermediate stage, and in the other the illness has
already seriously developed.
First, we tried to perform discriminant analysis for the three above
groups, but the difference between them was not really remarkable.
We obtained a poor classification, and the canonical variables best
discriminating the groups providing the largest ANOVA F-statistics
did not show significant difference between the groups.
Instead, our program provides a profile of the variables in each
group and remarkable differences in the factor loadings can be
observed even in cases when the difference of
covariance/correlation matrices is not so evident.
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Compromise factor loadings for three nephrotic
stages

The total sample consisted of 100 patients.
The results for the three stages:

NO SYMPTOMS INTERMEDIATE NEPHROTIC
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AT −0.104339 −0.151711 −0.068392

PC −0.151864 +0.060398 +0.062981

KO2 −0.355027 −0.662945 −0.423931

TG −0.134190 −0.372486 +0.781611

HK −0.241672 +0.194526 +0.421601

LK +0.496214 −0.543357 +0.149016

PROT +0.522984 +0.194241 −0.027665

URIN −0.493607 +0.155758 +0.001543

NAK −0.014336 +0.005123 +0.001286
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Conclusions

In the characterization of the no symptoms stage the variables
PROT, LK and URIN play the most important role (former ones
positively, while the latter one negatively characterizes the healthy
patients).
In the seriously nephrotic stage TG and HK positively, while KO2
negatively characterizes the patients.
In the intermediate stage KO2’s effect is also negative (even more
than in the case of seriously ill stage), while LK’s effect is opposite
to that of the no symptoms stage.
Thus, one may conclude that mainly measurements with high
loadings in absolute value have to be considered seriously in the
diagnosis.
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