
Θ = Rp × Rp
+ × E(p

2)
. The 3-dimensional elliptope:



Ĉ = 1
nS indeed produces the maximum of the

log-likelihood function

`(Ĉ−1)− `(C−1)

= c +
n

2
ln |Ĉ−1| − 1

2
tr (Ĉ−1S)

− c − n

2
ln |C−1|+ 1

2
tr (C−1S)

=
n

2
ln |(S

n
)−1| − 1

2
tr ((

S

n
)−1S)

− n

2
ln |C−1|+ 1

2
tr (C−1S)

=
n

2

[
− ln |C−1 S

n
| − p

2
+ tr (C−1 S

n
)

]



`(Ĉ−1)− `(C−1) =
n

2

p∑
i=1

[− lnλi − 1 + λi ] ≥ 0,

where λi (i = 1, . . . , p) are positive real eigenvalues of the matrix
C−1 S

n . Equality is attained if C−1 S
n = Ip, i.e., at Ĉ.

Lemma: If A and B are symmetric, positive definite matrices, then
AB (not singular) has real positive eigenvalues.

Proof:
ABx = λx

(B1/2AB1/2)(B1/2x) = λ(B1/2x),

where B1/2AB1/2 = (B1/2A1/2)(B1/2A1/2)T is positive definite.
(For pos. def. A = UΛUT =⇒ A1/2 = UΛ1/2UT .)



Converse statement of Theorem 2: Eugene Lukács

A characterization of the normal distribution, Ann Math.
Statistics 13 (1942), 91–93.
”A necessary and sufficient condition for the normality of the
parent distribution is that the sampling distributions of the mean
and of the variance be independent.”
This was first proved in
R. C. Geary, Distribution of Student’s ratio for nonnormal samples,
Roy. Stat. Soc. Jour., Supp. Vol. 3, no. 2 (1936).
Here it is proved (for absolutely continuous distributions), by using
characteristic functions.
”This reasoning applies also to the multivariate case.”



Eugene Lukács

The stochastic independence of symmetric and homogeneous
linear and quadratic statistics. Ann Math. Statistics 23 (1952),
442–449.
”If a univariate distribution has moments of first and second order
and admits a homogeneous and symmetric quadratic statistic Q
which is independently distributed of the mean of a sample of n
drawn from this distribution, then it is either the normal
distribution (Q is then proportional to the variance) or the
degenerate distribution (in this case no restriction is imposed on
Q) or a step function with two symmetrically located steps (in this
case Q is the sum of the squared observations).
The converse of this statement is also true.”



The standard Wishart density

The density of the p × p standard Wishart-matrix W:

cnp|W|
n−p−1

2 e−
1
2
trW,

where n > p and

cnp =

[
√

2
np√

π(p
2)

p∏
i=1

Γ

(
n + 1− i

2

)]−1

.

J. Wishart, The generalized product moment distribution in
samples from a normal multivariate population, Biometrika 20
(1928), 32–52.
I. Olkin, The 70th anniversary of the distribution of random
matrices: A survey, Lin. Alg. Appl. 354 (2002), 231–243.



Olkin’s method

Old: X −→ New: Y = t(X), t is bijection.

pdfX(x) −→ pdfY(y) = pdfX(t−1(y)) ·
∣∣∣det (∂x

∂y )
∣∣∣

Xp×n −→ Wp×p = XXT (p < n) not a bijection, but

pdf of X:
∏n

i=1

∏p
j=1

1√
2π

e−
1
2
X 2

ij = 1√
2π

np e−
1
2
tr (W) =: f (W)

pdf of W: f (W) · h(W), h =?



Find h!

1. Xp×n −→ Yp×n: X = AY with Ap×p non-singular.

pdfY(Y) = pdfX(AY) ·
∣∣∣∣det (

∂X

∂Y
)

∣∣∣∣ = f (AYYT AT ) · |det (A)|n,

since

det (
∂X

∂Y
) = det (In ⊗ A) = (det (In))p · (det (A))n = (det (A))n.



2. Yp×n −→ Vp×p: V = YYT . Find pdf of V!
On the one hand, since W = XXT = AYYT AT = AVAT :

pdfV(V) = pdfW(AVAT ) ·
∣∣∣∣det (

∂W

∂V
)

∣∣∣∣
= f (AVAT ) · h(AVAT ) · |det (A)|p+1.

On the other hand, since V depends on Y in the same way as W
depends on X:

pdfV(V) = pdfY(V) · h(V) = f (AVAT ) · |det (A)|n · h(V).



We make the two expressions for the pdf of V equal:

f (AVAT ) · h(AVAT ) · |det (A)|p+1 = f (AVAT ) · |det (A)|n · h(V)

h(AVAT ) = h(V) · |det (A)|n−p−1

Choosing A such that V = Ip, yields

h(W) = h(Ip) · (det (W))
n−p−1

2 = κp · (det (W))
n−p−1

2

and

cnp = κp
1√

2π
np .

(The non-standard Wishart density is obtained by an easy
transformation.)



Distribution of the standard Wishart eigenvalues

M. L. Mehta: Random matrices. Academic Press, London, 1991.
pdf of W:

cnp|W|
n−p−1

2 e−
1
2
trW = cnp

p∏
j=1

(
λ

n−p−1
2

j e−
1
2
λj

)

where λ1, . . . , λp > 0 are the eigenvalues of W (n > p).

pdf of W = UΛUT −→ pdf of (Λ,U)

integrating with respect to U, the joint pdf of λ1, . . . , λp:

κnp(

p∏
j=1

λj)
n−p−1

2 e−
1
2

Pp
j=1 λj

∏
j<k

|λj − λk |



Remark

Without absolute values, this is the van der Monde determinant:

∏
j<k

(λj − λk) =

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
λ1 λ2 . . . λp

λ2
1 λ2

2 . . . λ2
p

. . . . . . . . . . . .

λp−1
1 λp−1

2 . . . λp−1
p

∣∣∣∣∣∣∣∣∣∣
If n > p, then the eigenvalues are (w. p. 1) positive and distinct.
The pdf of their ordered sample is p! times the above.



W→ (Λ, U)

# of parameters: p(p + 1)/2 = p + p(p − 1)/2:

λ = (λ1, . . . , λp), q = (q1, . . . , qp(p−1)/2)

pdf of (λ,q):

g(λ,q) = cnp

p∏
j=1

(
λ

n−p−1
2

j e−
1
2
λj

)
·
∣∣∣∣ ∂W

∂(λ,q)

∣∣∣∣
= cnp

p∏
j=1

(
λ

n−p−1
2

j e−
1
2
λj

)
· |J(λ,q)|



Some technical steps

We differentiate both sides of UT U = Ip with respect to qz :

∂UT

∂qz
U + UT ∂U

∂qz
= Op×p,

from where

−∂UT

∂qz
U = UT ∂U

∂qz
= S(z)

is skew symmetric:

for 1 ≤ x ≤ y ≤ p: s
(z)
xy = −s

(z)
yx , z = 1, . . . ,

(p
2

)
.

(Consequently, s
(z)
xx = 0, x = 1, . . . , p.)



Some technical steps

We differentiate both sides of W = UΛUT with respect to qz :

∂W

∂qz
=
∂U

∂qz
ΛUT + UΛ

∂UT

∂qz
,

from where, multiplying by UT from the left, and by U from the
right:

UT ∂W

∂qz
U = S(z)Λ− ΛS(z).

Equivalently, for the entries:∑
j ,k

∂wjk

∂qz
ujxuky = s

(z)
xy (λy − λx),

1 ≤ x ≤ y ≤ p, z = 1, . . . ,
(p
2

)
.

(For x > y we get the same because of the skew symmetry of
S(z).)



Some technical steps

We differentiate both sides of UT WU = Λ with respect to λt :∑
j ,k

∂wjk

∂λt
ujxuky =

∂Λxy

λt
= δxyδxt ,

1 ≤ x ≤ y ≤ p, t = 1, . . . p.



Now we collect our knowledge together

The p(p + 1)/2× p(p + 1)/2 Jacobian J = J(λ,q):

J =

(
∂wjj

∂λt

∂wjk

∂λt
∂wjj

∂qz

∂wjk

∂qz

)

Rows: t = 1, . . . p, z = 1, . . . , p(p − 1)/2.
Columns: j = 1, . . . , p, 1 ≤ j < k ≤ p (#: p + p(p − 1)/2)

Auxiliary matrix V :=

(
ujxujy

2ujxuky

)
Rows: j = 1, . . . , p, 1 ≤ j < k ≤ p
Columns: 1 ≤ x ≤ y ≤ p (#: p + p(p − 1)/2)



J · V =

(
δxyδxt

s
(z)
xy (λy − λx)

)
Rows: t = 1, . . . p, z = 1, . . . , p(p − 1)/2
Columns: 1 ≤ x ≤ y ≤ p.

|J| · |V| = |J · V| =
∏
x<y

|λy − λx | ·

∣∣∣∣∣δxyδxts
(z)
xy

∣∣∣∣∣.
Since the right hand side determinant and |V| depends merely on
q:

|J(λ,q)| =
∏
x<y

|λy − λx | · f (q).



Last step: we integrate with respect to the
eigenvectors

The joint pdf of the eigenvalues and eigenvectors of W:

g(λ,q) = cnp(

p∏
j=1

λj)
n−p−1

2 e−
1
2

Pp
j=1 λj

∏
j<k

|λj − λk | · f (q)

=⇒ The eigenvalues and eigenvectors of W are independent.
The pdf of q: cst · f (q) (Haar).
The joint pdf of the eigenvalues of W:∫

g(λ,q) dq = κnp(

p∏
j=1

λj)
n−p−1

2 e−
1
2

Pp
j=1 λj

∏
j<k

|λj − λk |

where κnp = cnp/cst.


