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Outline

Find community structure in large networks.
Communities/clusters: inter- and intra-cluster connections
mainly depend on the cluster memberships.

Penalize clusters of extremely different sizes/volumes.

Minimum multiway cut problems; ratio cut and normalized
cut: Communities with sparse between-cluster (and dense
within-cluster) connections.

Modularity cuts: Communities with more within-cluster (and
less between-cluster) connections than expected under
independence.

Spectral methods: looking for spectral gap in the Laplacian or
modularity spectrum, then find the clusters by means of the
eigenvectors, corresponding to the structural eigenvalues.
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Notation

G = (V ,W): edge-weighted graph on n vertices,
W: n × n symmetric matrix, wij ≥ 0, wii = 0.
(wij : similarity between vertices i and j). Simple graph: 0/1
weights
W.l.o.g.,

∑n
i=1

∑n
j=1 wij = 1, joint distribution with marginal

entries:

di =
n∑

j=1

wij , i = 1, . . . , n

(generalized vertex degrees) D = diag (d1, . . . , dn)
Laplacian: L = D−W
Normalized Laplacian LD = I−D−1/2WD−1/2
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1 ≤ k ≤ n
Pk = (V1, . . . ,Vk): k-partition of the vertices
V1, . . . ,Vk : disjoint, non-empty vertex subsets, clusters

Pk : the set of all k-partitions

e(Va,Vb) =
∑

i∈Va

∑
j∈Vb

wij : weighted cut between Va and Vb

Vol (Va) =
∑

i∈Va
di : volume of Va
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Ratio cut of Pk = (V1, . . . ,Vk) given W:

g(Pk ,W) =
k−1∑
a=1

k∑
b=a+1

(
1

|Va|
+

1

|Vb|

)
e(Va,Vb) =

k∑
a=1

e(Va, V̄a)

|Va|

Normalized cut of Pk = (V1, . . . ,Vk) given W:

f (Pk ,W) =
k−1∑
a=1

k∑
b=a+1

(
1

Vol (Va)
+

1

Vol (Vb)

)
e(Va,Vb)

=
k∑

a=1

e(Va, V̄a)

Vol (Va)
= k −

k∑
a=1

e(Va,Va)

Vol (Va)

Minimum k-way ratio cut and normalized cut of G = (V ,W):

gk(G ) = min
Pk∈Pk

g(Pk ,W) and fk(G ) = min
Pk∈Pk

f (Pk ,W)
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The k-means algorithm

The problem: given the points x1, . . . , xn ∈ Rd and an integer
1 ≤ k ≤ n, find the k-partition of the index set {1, . . . , n} (or
equivalently, the clustering of the points into k disjoint non-empty
subsets) which minimizes the following k-variance:

S2
k (x1, . . . , xn) = min

Pk∈Pk

S2
k (Pk , x1, . . . , xn)

= min
Pk=(V1,...,Vk)

k∑
a=1

∑
j∈Va

‖xj − ca‖2,

ca =
1

|Va|
∑
j∈Va

xj .

Usually, d ≤ k � n.
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To find the global minimum is NP-complete, but the iteration of
the k-means algorithm, first described in MacQueen (1963) is
capable to find a local minimum in polynomial time.
If there exists a well-separated k-clustering of the points (even the
largest within-cluster distance is smaller than the smallest
between-cluster one) the convergence of the algorithm to the
global minimum is proved by Dunn (1973-74), with a convenient
starting. Under relaxed conditions, the speed of the algorithm is
increased by a filtration in Kanungo et al. (2002).
The algorithm runs faster if the separation between the clusters
increases and an overall running time of O(kn) can be guaranteed.
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Sometimes the points x1, . . . , xn are endowed with the positive
weights d1, . . . , dn, w.l.o.g.,

∑n
i=1 di = 1.

Weighted k-variance of the points:

S̃2
k (x1, . . . , xn) = min

Pk∈Pk

S̃2
k (Pk , x1, . . . , xn)

= min
Pk=(V1,...,Vk)

k∑
a=1

∑
j∈Va

dj‖xj − ca‖2,

ca =
1∑

j∈Va
dj

∑
j∈Va

djxj .

E.g., d1, . . . , dn is a discrete probability distribution and a random
vector takes on values x1, . . . , xn with these probabilities; e.g., in a
MANOVA (Multivariate Analysis of Variance) setup. The above
algorithms can be easily adapted to this situation.
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Ratio cut, partition matrices

Pk : n × k balanced partition matrix Zk = (z1, . . . , zk)
k-partition vector: za = (z1a, . . . , zna)T , where
zia = 1√

|Va|
, if i ∈ Va and 0, otherwise.

Zk is suborthogonal: ZT
k Zk = Ik

The ratio cut of the k-partition Pk given W:

g(Pk ,W) = trZT
k LZk =

k∑
a=1

zT
a Lza. (1)

We want to minimize it over balanced k-partition matrices
Zk ∈ ZB

k .
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Estimation by Laplacian eigenvalues

G is connected, the spectrum of L: 0 = λ1 < λ2 ≤ · · · ≤ λn

unit-norm, pairwise orthogonal eigenvectors: u1,u2, . . . ,un;
u1 = 1/

√
n

The discrete problem is relaxed to a continuous one:
r1, . . . , rn ∈ Rk : representatives of the vertices
X = (r1, . . . , rn)T = (x1, . . . , xk)

min
XT X=Ik

n−1∑
i=1

n∑
j=i+1

wij‖ri − rj‖2 = min
XT X=Ik

trXT LX =
k∑

i=1

λi

and equality is attained with X = (u1, . . . ,uk).
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gk(G ) = min
Zk∈ZB

k

trZT
k LZk ≥

k∑
i=1

λi (2)

and equality can be attained only in the k = 1 trivial case,
otherwise the eigenvectors ui (i = 2, . . . , k) cannot be partition
vectors, since their coordinates sum to 0 because of the
orthogonality to the u1 = 1 vector.
Optimum choice of k?

trZT
k LZk =

n∑
i=1

λi

k∑
a=1

(uT
i za)2. (3)

This sum is the smallest possible if the largest (uT
i za)2 terms

correspond to eigenvectors belonging to the smallest eigenvalues.
Thus, the above sum is the most decreased by keeping only the k
smallest eigenvalues in the inner summation and the corresponding
eigenvectors are close to the subspace Fk = Span {z1, . . . , zk}.
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gk,k(Zk ,L) :=
k∑

i=1

k∑
a=1

λi (uT
i za)2,

we maximize gk,k(Zk ,L) over ZB
k for given L.

The vectors
√
λiui are projected onto the subspace Fk :

√
λiui =

k∑
a=1

√
λi (uT

i za)za + ort Fk
(
√
λiui ), i = 1, . . . , k.

As
√
λ1u1 = 0, there is no use of projecting it.

By the Pythagorean equality:

λi = ‖
√
λiui‖2 =

k∑
a=1

λi (uT
i za)2+dist2(

√
λiui ,Fk), i = 1, . . . , k.
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X′k = (
√
λ1u1, . . . ,

√
λkuk) = (r′1, . . . , r

′
n)T .

S2
k (X′k) =

k∑
i=1

dist2(
√
λiui ,Fk).

k∑
i=1

λi = gk,k(Zk ,L) + S2
k (Pk ,X

′
k),

where the partition matrix Zk corresponds to the k-partition Pk .
ANOVA argument: decomposing of variances by repeated
applications of Steiner’s Theorem ⇐⇒ decomposing the underlying
matrix as the sum of pairwise orthogonal projections.



Preliminaries Ratio cut Normalized cut Newman–Girvan modularity Balanced Newman–Girvan modularity Normalized Newman–Girvan modularity Examples

We are looking for the k-partition maximizing the first term, see
the preceding slide. Increasing gk,k(Zk ,L) can be achieved by
decreasing S2

k (X′k); latter one is obtained by appying the k-means
algorithm with k clusters for the k-dimensional representatives
r′1, . . . , r

′
n.

As the first column of X′k is 0, it is equivalent to apply the
k-means algorithm with k clusters for the (k − 1)-dimensional
representatives that are the row vectors of the n × (k − 1) matrix
obtained from Xk by deleting its first column.
λk � λk+1: we gain the most by omitting the n − k largest
eigenvalues.
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Perturbation results

W = Ww + Wb: within- and between-cluster edges w.r.t. Pk

D = Dw + Db and L = Lw + Lb

ρ: the smallest positive eigenvalue of Lw

ε: the largest eigenvalue of Lb

Suppose ε(Pk) < ρ(Pk)
ρ = mink

i=1 ρi is “large” if the clusters are good expanders.
ε ≤ 2 maxi∈{1,...,n}

∑
j : c(j)6=c(i) wij ,

where c(i) is the cluster membership of vertex i .
It is small, if from each vertex there are few, small-weight edges
emaneting to clusters different of the vertex’s own cluster.
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We proved (B, Tusnády, Discrete Math. 1994) that

S2
k (Xk) = min

Pk∈Pk

S2
k (Pk ,Xk) ≤ k min

Pk∈Pk

ε(Pk)

ρ(Pk)

By the Weyl’s perturbation theorem:

0 < λk ≤ ε < ρ ≤ λk+1 ≤ ρ+ ε (4)

for the ε and ρ of any k-partition with ε < ρ.
Consequently,

λk

λk+1
≤ min

Pk∈Pk

ε(Pk)

ρ(Pk)
, (5)
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Theorem

If for a given k-partition ε(Pk )
ρ(Pk ) < 1, then

S2
k (Pk ,Xk) ≤ k

[ε(Pk)]2

[ρ(Pk)− ε(Pk)]2
,

where Xk = (u1, . . . ,uk).

Theorem

S2
k (Pk ,X

′
k) ≤ [ε(Pk)]2

[ρ(Pk)− ε(Pk)]2

k∑
i=1

λi ,

where X′k = (
√
λ1u1, . . . ,

√
λkuk). Consequently,

S2
k (X′k) ≤

k∑
i=1

λi · min
Pk∈Pk

ε(Pk)2

(ρ(Pk)− ε(Pk))2
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Minimizing the normalized cut

n × k normalized partition matrix: Zk = (z1, . . . , zk)
za = (z1a, . . . , zna)T , where zia = 1√

Vol (Va)
, if i ∈ Va and 0,

otherwise.
The normalized cut of the k-partition Pk given W:

f (Pk ,W) = trZT
k LZk = tr (D1/2Zk)T LD(D1/2Zk) (6)

or equivalently,

f (Pk ,W) = k − tr (D1/2Zk)T (D−1/2WD−1/2)(D1/2Zk).

We want to minimize f (Pk ,W) over the k-partitions. It is
equivalent to maximizing trZT

k WZk over normalized k-partition
matrices Zk ∈ ZN

k .
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Normalized Laplacian eigenvalues

G is connected,
0 = λ1 < λ2 ≤ · · · ≤ λp < 1 ≤ λp+1 ≤ · · · ≤ λn ≤ 2
eigenvalues of LD with corresponding unit-norm, pairwise
orthogonal eigenvectors u1, . . . ,un,
u1 = (

√
d1, . . . ,

√
dn)T

Continuous relaxation: X = (r1, . . . , rn)T = (x1, . . . , xk)

min
XT DX=Ik

n−1∑
i=1

n∑
j=i+1

wij‖ri − rj‖2 = min
XT DX=Ik

trXT LX =
k∑

i=1

λi

and the minimum is attained with xi = D−1/2ui (i = 1, . . . , k).
Especially, x1 = 1.
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fk(G ) = min
Zk∈ZN

k

trZT
k LZk ≥

k∑
i=1

λi

and equality can be attained only in the k = 1 trivial case,
otherwise the transformed eigenvectors D−1/2ui (i = 2, . . . , k)
cannot be partition vectors, since their coordinates sum to 0 due to
the orthogonality of the 1 vector. Equivalently,

max
Zk∈ZN

k

trZT
k WZk ≤ k −

k∑
i=1

λi =
k∑

i=1

(1− λi ).
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Optimum choice of k

trZT
k WZk =

n∑
i=1

(1− λi )
k∑

a=1

[(ui )
T (D1/2za)]2

increased if we neglect the terms belonging to the eigenvalues at
least 1, hence, the outer summation stops at p. The inner sum is
the largest in the k = p case, when the unit-norm, pairwise
orthogonal vectors D1/2z1, . . . ,D1/2zp are close to the
orthonormal eigenvectors u1, . . . ,up, respectively.
Fp := Span {D1/2z1, . . . ,D1/2zp}

fp,p(Zp,W) :=

p∑
i=1

(1− λi )

p∑
a=1

[(u′i )
T (D1/2za)]2

tr (D1/2Zp)T (D−1/2WD−1/2)(D1/2Zp) ≤ fp,p(Zp,W)
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For given W, we maximize fp,p(Zp,W) over ZN
p .

The vectors
√

1− λi ui are projected onto the subspace Fp:

√
1− λi ui =

p∑
a=1

[(
√

1− λi ui )
T D1/2za] D1/2za+ort Fp (

√
1− λi ui )

(i = 1, . . . , p)
As
√

1− λ1 u1 = u1 is in Fp, its orthogonal component is 0.
By the Pythagorean equality:

1− λi =

p∑
a=1

[(
√

1− λi ui )
T D1/2za]2 + dist2(

√
1− λi ui ,Fp)

(i = 1, . . . , p)
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Representation

X′p = (r1, . . . , rn)T = (
√

1− λ1D−1/2u1, . . . ,
√

1− λpD−1/2up)

dist2(
√

1− λi ui ,Fp) =
n∑

j=1

dj(rji − cji )
2, i = 1, . . . , p

where rji is the ith coordinate of the vector rj and cji is the same
for vector cj ∈ Rp; further, there are at most p different ones
among the centers c1, . . . , cn assigned to the vertex
representatives. Namely,

cji =
1

Vol (Va)

∑
`∈Va

d`r`i , j ∈ Va, i = 1, . . . , p.

S̃2
p (Pp,Xp) =

p∑
i=1

dist2(
√

1− λi ui ,Fp) =
n∑

j=1

dj‖rj − cj‖2.
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p∑
i=1

(1− λi ) = fp,p(Zp,W) + S̃2
p (Pp,X

′
p).

We are looking for the p-partition maximizing the first term. In
view of the above formula, increasing fp,p(Zp,W) can be achieved
by decreasing S̃2

p (X′p); latter one is obtained by appying the
k-means algorithm with p clusters for the p-dimensional
representatives r1, . . . , rn with respective weights d1, . . . , dn. As
the first column of X′p is 1, it is equivalent to apply the k-means
algorithm with p clusters for the (p − 1)-dimensional
representatives that are the row vectors of the n × (p − 1) matrix
obtained from X′p by deleting its first column.
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Similarly, for d < k ≤ p:

d∑
i=1

(1−λi ) =
d∑

i=1

k∑
a=1

[(
√

1− λi ui )
T D1/2za]2+

d∑
i=1

dist2(
√

1− λi ui ,Fk)

:= fk,d(Zk ,W) + S̃2
k (Pk ,X

′
d),

X′d = (
√

1− λ1 D−1/2u1, . . . ,
√

1− λd D−1/2ud).
In the presence of a spectral gap between λd and λd+1 < 1 neither∑d

i=1(1− λi ) nor S̃2
k (X′d) is increased significantly by introducing

one more eigenvalue-eigenvector pair (by using (d + 1)-dimensional
representatives instead of d-dimensional ones). Consequently,
fk,d(Zk ,W) would not change much, and k = d clusters based on
d-dimensional representatives will suffice. Increasing the number of
clusters (k + 1, . . . , p) will decrease the sum of the inner variances
S̃2

k+1(X′d) ≤ S̃2
k (X′d), but not significantly.
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In the k = p special case

trZT
p LZp ≥ p − fp,p(Zp,W) =

p∑
i=1

λi + S̃2
p (Pp,X

′
p)

that is true for the minima too:

fp(G ) ≥
p∑

i=1

λi + S̃2
p (X′p),

a sharper lower estimator for the minimum normalized p-way cut
than

∑p
i=1 λi .
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Spectral gap and variance

In B, Tusnády, Discrete Math., 1994

Theorem

In the representation X2 = (D−1/2u1, D−1/2u2) = (1, D−1/2u2):

S̃2
2 (X2) ≤ λ2

λ3

Similarly,

Theorem

In the representation X′2 =
(
√

1− λ1D−1/2u1,
√

1− λ2D−1/2u2) = (1,
√

1− λ2D−1/2u2):

S̃2
2 (X ′2) ≤ λ2(1− λ2)

λ3

Can it be generalized for k > 2?
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Isoperimetric number

Definition

The Cheeger constant of the weighted graph G = (V ,W ) is

h(G ) = min
U ⊂ V

Vol (U) ≤ 1/2

e(U, Ū)

Vol (U)

Theorem

(B, M-Sáska, Discrete Math. 2004). Let λ2 be the smallest
positive eigenvalue of LD . Then

λ2

2
≤ h(G ) ≤ min{1,

√
2λ2}

. If λ2 ≤ 1 then the upper estimate can be improved to

h(G ) ≤
√
λ2(2− λ2).
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f2(G ) is the symmetric version of h(G ): f2(G ) ≤ 2h(G ) =⇒
f2(G ) ≤ 2

√
λ2(2− λ2), λ2 ≤ 1.

h(G ) and f2(G ) were estimated by Mohar,J. Comb. Theory B.
1989 for simple graphs (similar formula by max-degree)

Theorem

Suppose that G = (V ,W) is connected, and λi ’s are the
eigenvalues of LD . Then

∑k
i=1 λi ≤ fk(G ) and in the case when

the optimal k-dimensional representatives can be classified into k
well-separated clusters in such a way that the maximum cluster
diameter ε satisfies the relation
ε ≤ min{1/

√
2k,
√

2 mini

√
Vol (Vi )} with k-partiton (V1, . . . ,Vk)

induced by the clusters above, then

fk(G ) ≤ c2
k∑

i=1

λi ,

where c = 1 + εc ′/(
√

2− εc ′) and c ′ = 1/mini

√
Vol (Vi ).
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Maximal correlation of A. Rényi

Random walk view: ξ1, ξ2 · · · ∈ V ; transition matrix (stochastic):
D−1W has the same eigenvalues as D−1/2WD−1/2 with
transformed eigenvectors.
If there are k ”small” normalized Laplacian eigenvalues, the random
walk stays within the clusters with ”high” probability.
W: symmetric joint distribution, D: marginal distribution.
Maximal correlation: ρ = sup EW (XY ) = 1− λ2, where
X ,Y ∈ L2(V ,A,D) are identically distributed, E(X ) = 0,
Var (X ) = 1.

1− ρ
2
≤ min

PD(ξt∈U)≤1/2
PW (ξt+1 ∈ U | ξt ∈ U) ≤

√
1− ρ2,

where U ⊂ V , Vol (U) = PD(ξt ∈ U), 0 ≤ ρ < 1 (0 < λ2 ≤ 1).



Preliminaries Ratio cut Normalized cut Newman–Girvan modularity Balanced Newman–Girvan modularity Normalized Newman–Girvan modularity Examples

The Newman–Girvan modularity for simple graphs

G = (V ,A): simple graph, |V | = n, A is 0/1 adjacency matrix
number of edges: e = 1

2

∑n
i=1

∑n
j=1 aij

di =
∑n

j=1 aij : the degree of vertex i

hij :=
didj

2e : expected number of i ∼ j edges by random attachment

Pk = (V1, . . . ,Vk): k-partition of the vertices (modules)

Newman and Girvan, Phys. Rev. E, 2004 introduced a modularity
with large values for stronger (than expected) intra-module
connections.
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Definition

The Newman–Girvan modularity of the k-partition Pk given A:

QNG (Pk ,A) =
1

2e

k∑
a=1

∑
i ,j∈Va

(aij − hij)

Obviously, QNG takes on values less than 1, and due to∑n
i=1

∑n
j=1 aij =

∑n
i=1

∑n
j=1 hij it is 0 for k = 1 (no community

structure at all); therefore, only integers k ∈ [2,N] are of interest.
For given A and k, we are looking for maxPk∈Pk

QNG (Pk ,A), more
precisely, for the optimum k-partition giving the arg max of it; and
eventually, for the optimum k too (there may be several local
maxima).
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H = (hij): matrix of rank 1

B = A−H: modularity matrix

The row sums of B are zeros, therefore it always has a 0 eigenvalue
with the trivial eigenvector 1 = (1, 1, . . . , 1)T .
If G is the complete graph, then B is negative semidefinite; but
typically, it is indefinite.

β1 ≥ β2 ≥ · · · ≥ βn eigenvalues of B with unit norm, pairwise
orthogonal eigenvectors u1, . . . ,un.

Newman, Phys. Rev. E, 2006 uses the eigenvectors belonging to
the positive eigenvalues of B.
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for edge-weighted graphs

G = (V ,W), w.l.o.g.
∑n

i=1

∑n
j=1 wij = 1 supposed

hij = didj , i , j = 1, . . . , n

Definition

the Newman-Girvan modularity of Pk given W:

Q(Pk ,W) =
k∑

a=1

∑
i ,j∈Va

(wij − hij)

=
k∑

a=1

[e(Va,Va)− Vol 2(Va)],

Under the null-hypothesis, vertices i and j are connected to each
other independently, with probabilities proportional (actually,
because of the normalizing condition, equal) to their generalized
degrees.
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For given k we maximize Q(Pk ,W) over Pk .
This task is equivalent to minimizing∑

a 6=b

∑
i∈Va, j∈Vb

(wij − hij).

We want to penalize partitions with clusters of extremely different
sizes or volumes

Definition

Balanced Newman–Girvan modularity of Pk given W:

QB(Pk ,W) =
k∑

a=1

1

|Va|
∑

i ,j∈Va

(wij − hij)

=
k∑

a=1

[
e(Va,Va)

|Va|
− Vol 2(Va)

|Va|

]
,
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Definition

Normalized Newman–Girvan modularity of Pk given W:

QN(Pk ,W) =
k∑

a=1

1

Vol (Va)

∑
i ,j∈Va

(wij − hij)

=
k∑

a=1

e(Va,Va)

Vol (Va)
− 1,

Maximizing the normalized Newman–Girvan modularity over Pk is
equivalent to minimizing the normalized cut.
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Maximizing the balanced Newman–Girvan
modularity

B = W −H: modularity matrix
Spectrum: β1 ≥ · · · ≥ βp > 0 = βp+1 ≥ · · · ≥ βn

Unit-norm, pairwise orthogonal eigenvectors: u1, . . . ,un,
up+1 = 1/

√
n.

QB(Pk ,W) = QB(Zk ,B) =
k∑

a=1

zT
a Bza = trZT

k BZk .

We want to maximize trZT
k BZk over balanced k-partition

matrices Zk ∈ ZB
k .
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Continuous relaxation:

max
YT Y=Ik

tr (YT BY) = max
yT
a yb=δab

k∑
a=1

yT
a Bya =

k∑
a=1

βa

and equality is attained when y1, . . . , yk are eigenvectors of B
corresponding to β1, . . . , βk . Though the vectors themselves are
not necessarily unique (e.g., in case of multiple eigenvalues), the
subspace Span {y1, . . . , yk} is unique if βk > βk+1.

max
Zk∈ZB

k

QB(Zk ,B) ≤
k∑

a=1

βa ≤
p+1∑
a=1

βa.

Both inequalities can be attained by equality only in the k = 1,
p = 0 case, when our underlying graph is the complete graph:
A = 11T − I, W = 1

n(n−1)A. In this case there is only one cluster

with partition vector of equal coordinates (balanced eigenvector
belonging to the single 0 eigenvalue).
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The maximum with respect to k is attained with the choice of
k = p + 1.

QB(Zk ,B) = trZT
k BZk =

k∑
a=1

zT
a (

n∑
i=1

βiuiu
T
i )za

=
n∑

i=1

βi

k∑
a=1

(uT
i za)2.

We can increase the last sum if we neglect the terms belonging to
the negative eigenvalues, hence, the outer summation stops at p,
or equivalently, at p + 1. In this case the inner sum is the largerst
in the k = p + 1 case, when the partition vectors z1, . . . , zp+1 are
“close” to the eigenvectors u1, . . . ,up+1, respectively. As both
systems consist of orthonormal sets of vectors, the two subspaces
spanned by them should be close to each other. The subspace
Fp+1 = Span {z1, . . . , zp+1} consists of stepwise constant vectors
on p + 1 steps, therefore up+1 ∈ Fp+1, and it suffices to process
only the first p eigenvectors.
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QB(Zp+1,B) ≤ Q ′p+1,p(Zp+1,B) :=

p∑
i=1

βi

p+1∑
a=1

(uT
i za)2,

and in the sequel, for given B, we want to maximize
Q ′p+1,p(Zp+1,B) over ZB

p+1.

Project the vectors
√
βiui onto the subspace Fp+1:

√
βiui =

p+1∑
a=1

[(
√
βiui )

T za]za+ort Fp+1(
√
βiui ),

i = 1, . . . , p.

βi = ‖
√
βiui‖2 =

p+1∑
a=1

[(
√
βiui )

T za]2

+ dist2(
√
βiui ,Fp+1), i = 1, . . . , p.
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p∑
i=1

βi =

p∑
i=1

p+1∑
a=1

[(
√
βiui )

T za]2 +

p∑
i=1

dist2(
√
βiui ,Fp+1)

= Q ′p+1,p(Zp+1,B) + S2
p+1(Xp),

where the rows of Xp = (
√
β1u1, . . . ,

√
βpup) are regarded as

p-dimensional representatives of the vertices.
We could as well take (p + 1)-dimensional representatives as the
last coordinates are zeros, and hence, S2

p+1(Xp) = S2
p+1(Xp+1).

Maximizing Q ′p+1,p is equivalent to minimizing S2
p+1(Xp) that can

be obtained by applying the k-means algorithm for the
p-dimensional representatives with p + 1 clusters.
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More generally, if there is a gap between βk � βk+1 > 0, then we
look for k + 1 clusters based on k-dimensional representatives of
the vertices.
k leading eigenvectors are projected onto the k-dimensional
subspace of Fk+1 orthogonal to 1.
Calculating eigenvectors is costy; the Lánczos method performs
well if we calculate only eigenvectors belonging to some leading
eigenvalues followed by a spectral gap. Some authors suggest to
use as many eigenvectors as possible. In fact, using more
eigenvectors (up to p) is better from the point of view of accuracy,
but using less eigenvectors (up to a gap in the positive part of the
spectrum) is better from the computational point of view. We
have to compromise.
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Normalized modularity matrix

BD = D−1/2BD−1/2 = I− LD −
√

d
√

d
T

QN(Pk ,W) = QN(Zk ,B) =
k∑

a=1

zT
a Bza

= tr (D1/2Zk)T BD(D1/2Zk)

1 ≥ β′1 ≥ · · · ≥ β′n ≥ −1: spectrum of BD (1 is not an eigenvalue
if G is connected)
u′1, . . . ,u

′
n: unit-norm, pairwise orthogonal eigenvectors

u′1 = (
√

d1, . . . ,
√

dn)T =:
√

d
p: number of positive eigenvalues of BD (this p not necessarily
coincides with that of B)
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max
Zk∈ZN

k

QN(Zk ,B) ≤
k∑

a=1

β′a ≤
p+1∑
a=1

β′a.

QN(Zk ,B) =
n∑

i=1

β′i

k∑
a=1

[(u′i )
T (D1/2za)]2.

We can increase this sum if we neglect the terms belonging to the
negative eigenvalues, hence, the outer summation stops at p, or
equivalently, at p + 1. The inner sum is the largest in the
k = p + 1 case, when the unit-norm, pairwise orthogonal vectors
D1/2z1, . . . ,D1/2zp+1 are close to the eigenvectors u′1, . . . ,u

′
p+1,

respectively. In fact, the two subspaces spanned by them should be
close to each other.
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Fp+1 = Span {D1/2z1, . . . ,D1/2zp+1} not stepwise constant
vectors!
X′p = (

√
β′1 D−1/2u′1, . . . ,

√
β′p D−1/2u′p)

S̃2
p+1(Pk ,X

′
p) =

p∑
i=1

dist2(
√
β′i u′i ,Fp+1)

=
n∑

j=1

dj‖x′j − cj‖2 → min.

weighted k-means algorithm
gap history
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Pure community structure

G : disjoint union of k complete graphs on n1, . . . , nk vertices
Eigenvalues of the modularity matrix:

k − 1 positive βi ’s (>1)
In the n1 = · · · = nk special case it is a multiple eigenvalue.

0: single eigenvalue

−1: eigenvalue with multiplicity n − k

Eigenvalues of the normalized modularity matrix:

1: with multiplicity k − 1

0: single eigenvalue

n − k negative eigenvalues in (-1,0)
In the n1 = · · · = nk special case there is one negative
eigenvalue with multiplicity n − k

Piecewise constant eigenvectors belonging to the positive
eigenvalues =⇒ k clusters



Preliminaries Ratio cut Normalized cut Newman–Girvan modularity Balanced Newman–Girvan modularity Normalized Newman–Girvan modularity Examples

Pure anticommunity structure

G : complete k-partite graph on n1, . . . , nk vertices
Eigenvalues of the modularity matrix:

k − 1 negative eigenvalues

0: all the other eigenvalues

Eigenvalues of the normalized modularity matrix:

k − 1 negative eigenvalues in (-1,0)

0: all the other eigenvalues

MINIMIZE THE MODULARITY!
Piecewise constant eigenvectors belonging to the negative
eigenvalues =⇒ k clusters
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Block matrices

Definition

The n× n symmetric real matrix B is a blown-up matrix, if there is
a k × k symmetric so-called pattern matrix P with entries
0 ≤ pij ≤ 1, and there are positive integers n1, . . . , nk with∑k

i=1 ni = n, such that – after rearranging its rows and columns –
the matrix B can be divided into k × k blocks, where block (i , j) is
an ni × nj matrix with entries all equal to pij (1 ≤ i , j ≤ n).

G = (V ,B) is a weighted graph with possible loops (it is a special
generalized quasirandom graph).
B + appropriate noise =⇒ Generalized random graph: we can
partition the vertices so that the probability associated with each
edge depends only on the cluster memberships of the endpoints
(pij).
Pure community structure: pii = 1, pij = 0 (i 6= j)
Pure anticommunity structure: pii = 0, pij = 1 (i 6= j)
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Eigenvalues of blown-up matrices and their
Laplacians

GENERAL CASE: pij ’s are arbitrary, P =⇒ B
∆ := diag (n1, . . . , nk) with ni ≥ cn (i = 1, . . . , k)
rank (B) = k, non-zero eigenvalues: n · λi = Θ(n)
with stepwise constant eigenvectors
λi ’s are eigenvalues of ∆1/2P∆1/2

Laplacian eigenvalues:

0: single eigenvalue

λ1, . . . , λk−1 = Θ(n) with stepwise constant eigenvectors

γi = Θ(n) with multiplicity ni − 1, eigenspace: vectors with
coordinates 0 except block i , where the sum of the
coordinates is 0 (i = 1, . . . , k)
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Normalized Laplacian eigenvalues:
There exists δ > 0 (independent of n) such that there are
k eigenvalues ∈ [0, 1− δ] ∪ [1 + δ, 2]
with stepwise constant eigenvectors.
All the other eigenvalues are 1.
Spectral characterization of generalized quasirandom graphs:

There are k normalized Laplacian eigenvalues well separated
from 1. All the other eigenvalues are near 1.

There are k normalized modularity eigenvalues well separated
from 0. All the other eigenvalues are small in absolute value.
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COMPLETE k-PARTITE GRAPH pii = 0, pij = 1 (i 6= j)
non-zero eigenvalues of B: |λ1|, . . . , |λk | =Θ(n)
with stepwise constant eigenvectors
λ1, . . . , λk ∈ [−maxi ni ,−mini ni ] ∪ [n −maxi ni , n −mini ni ]
Laplacian eigenvalues:

0: single eigenvalue

λ1 = · · · = λk−1 = n with stepwise constant eigenvectors

γi = n − ni with multiplicity ni − 1, eigenspace: vectors with
coordinates 0 except block i , where the sum of the
coordinates is 0 (i = 1, . . . , k)
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Normalized Laplacian eigenvalues:
There exists δ > 0 (independent of n) such that there are
k − 1 eigenvalues ∈ [1 + δ, 2]
with stepwise constant eigenvectors.
0 is a single eigenvalue,
all the other eigenvalues are 1.
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k DISJOINT CLUSTERS
A = ⊕k

i=1Ai block-diagonal
Diagonal/off-diagonal entries of the ni × ni matrix Ai : νi/µi

Large eigenvalues of A: λi = (ni − 1)µi + νi= Θ(n) with stepwise
constant eigenvectors.
Small eigenvalues of A: νi − µi with multiplicity ni − 1
(i = 1, . . . , k).
Laplacian eigenvalues:

0: with multiplicity k, eigenspace: stepwise constant vectors.

niµi with with multiplicity ni − 1 (i = 1, . . . , k)

Normalized Laplacian eigenvalues:

0: with multiplicity k.
niµi

νi+(ni−1)µi
∼ 1 with with multiplicity ni − 1 (i = 1, . . . , k).

Union of k complete graphs (νi = 0). Non-0 e.v.’s: ni
ni−1 > 1.
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