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Notation

Definition

The n × n symmetric real matrix W is a Wigner-noise if its entries
wij , 1 ≤ i ≤ j ≤ n, are independent random variables, Ewij = 0,
Varwij ≤ σ2 with some 0 < σ < ∞ and the wij ’s are uniformly
bounded (there is a constant K > 0 such that |wij | ≤ K ).

Füredi, Komlós (Combinatorica, 1981):

max
1≤i≤n

|λi (W)| ≤ 2σ
√

n + O(n1/3 log n)

with probability tending to 1 as n →∞.
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Sharp concentration theorem

Theorem

W is an n × n real symmetric matrix, its entries in and above the
main diagonal are independent random variables with absolute
value at most 1. λ1 ≥ λ2 ≥ · · · ≥ λn: eigenvalues of W.
For any t > 0:

P (|λi − E(λi )| > t) ≤ exp

(
−(1− o(1))t2

32i2

)
when i ≤ n

2
,

and the same estimate holds for the probability

P (|λn−i+1 − E(λn−i+1)| > t) .

Alon, Krivelevich, Vu, Israel J. Math., 2002
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Previous results imply:

Lemma

There exist positive constants C1 and C2, depending on the
common bound K for the entries of the Wigner-noise W, such that

P
(
‖W‖ > C1 ·

√
n

)
≤ exp(−C2 · n).

Borel–Cantelli Lemma =⇒
The spectral norm of W is O(

√
n) almost surely.
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Perturbation results for weighted graphs

A = B + W, where
W: n × n Wigner-noise
B: n × n blown-up matrix of P with blow-up sizes n1, . . . , nk ,∑k

i=1 ni = n.
P: k × k pattern matrix
k is kept fixed as n1, . . . , nk →∞“at the same rate”: there is a
constant c such that
ni
n ≥ c, i = 1, . . . k.
growth rate condition: g.r.c.
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Spectrum of a noisy graph

Gn = (V ,A), A = B + W is n × n, n →∞
B induces a planted partition Pk = (V1, . . . ,Vk) of V .
Weyl’s perturbation theorem =⇒
Adjacency spectrum of Gn: under g.r.c. there are k structural
eigenvalues of order n (in absolute value) and the others are
O(
√

n), almost surely.
The eigenvectors X = (x1, . . . , xk) corresponding to the structural
eigenvalues are“not far” from the subspace of stepwise constant
vectors on Pk =⇒

S2
k (X) ≤ S2

k (Pk ,X) = O(
1

n
), almost surely.

Laplacian spectrum is not so informative.
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Spectrum of the normalized Laplacian

Gn = (V ,A), A = B + W is n × n, n →∞
LD = I−D−1/2AD−1/2

Theorem

There exists a positive number δ ∈ (0, 1), independent of n, such
that for every 0 < τ < 1/2 the following statement holds with
probability tending to 1 as n →∞, under the g.r.c.:
there are exactly k eigenvalues of LD that are located in the union
of intervals [−n−τ , 1− δ + n−τ ] and [1 + δ − n−τ , 2 + n−τ ], while
all the others are in the interval (1− n−τ , 1 + n−τ ).

Representation: xi = D−1/2ui , (i = 1, . . . , k)

S̃2
k (Pk ,X) ≤ k

( δ
n−τ − 1)2

w. p. to 1 as n →∞, under g.r.c.
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Noisy graph is simple with appropriate noise

The uniform bound K on the entries of W is such that
A = B + W has entries in [0,1].
With an appropriate Wigner-noise the noisy matrix A is a
generalized random graph: edges between Vi and Vj exist with
probability 0 < pij < 1.
For 1 ≤ i ≤ j ≤ k and l ∈ Vi , m ∈ Vj :

wlm :=

{
1− pij , with probability pij

−pij with probability 1− pij

be independent random variables, otherwise W is symmetric. The
entries have zero expectation and bounded variance:

σ2 = max
1≤i≤j≤k

pij(1− pij) ≤
1

4
.
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Szemerédi’s Regularity Lemma

For any graph on n vertices there exist a partition (V0,V1, . . . ,Vk)
of the vertices (here V0 is a“small” exceptional set) such that
“most”of the Vi ,Vj pairs (1 ≤ i < j ≤ k) are ε-regular with ε > 0
fixed in advance.
The pair Vi ,Vj (i 6= j) is ε-regular, if for any A ⊂ Vi , B ⊂ Vj with
|A| > ε|Vi |, |B| > ε|Vj |:

|dens (A,B)− dens (Vi ,Vj)| < ε,

where

dens (A,B) =
e(A,B)

|A| · |B|
is the edge-density between the disjoint vertex-sets A and B.
Informally, ε-regularity means that the edge-densities between the
Vi ,Vj pairs are homogeneous.
If the graph is sparse, then k = 1, otherwise k can be arbitrarily
large (but it depends only on ε).
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The planted partition is ε-regular almost surely

With the above Wigner-noise, e(Vi ,Vj) is the sum of |Vi | · |Vj |
independent, identically distributed Bernoulli variables with
parameter pij (1 ≤ i , j ≤ k). Hence, e(A,B) is binomially
distributed with expectation |A| · |B| · pij and variance
|A| · |B| · pij(1− pij).
By Chernoff’s inequality for large deviations:

P (|dens (A,B)− pij | > ε) ≤ e
− ε2|A|2|B|2

2[|A||B|pij (1−pij )+ε|A||B|/3]

= e
− ε2|A||B|

2[pij (1−pij )+ε/3]

≤ e
−

ε4|Vi ||Vj |
2[pij (1−pij )+ε/3

that tends to 0, as |Vi | = ni →∞ and |Vj | = nj →∞. Hence,
any pair Vi ,Vj is ε-regular with probability tending to 1
if n1, . . . , nk →∞ under the g.r.c. (weaker than the structure
guaranteed by Szemerédi’s Lemma)
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Recognizing the structure

Theorem

Let An be a sequence of n × n matrices, where n →∞. Assume
that An has exactly k eigenvalues of order greater than

√
n, and

there is a k-partition of the vertices such that the k-variance of the
representatives is O( 1

n ), in the representation with the
corresponding eigenvectors. Then there is a blown-up matrix Bn

such that An = Bn + En with ‖En‖ = O(
√

n).

Proof: construction by the cluster centers.
Results with planted partitions and cut-matrices or low-rank
approximation of the column space of A:

Frieze, A., Kannan, R.

McSherry, F.

Amin Coja-Oghlan
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Edge- and node-weighted graphs

G = Gn: weighted graph on the node set [n] = {1, . . . , n} = V (G ).
Edge-weights: βij = βji ∈ R (strength of the interaction between
the nodes).
For randomization purposes suppose that βij ∈ [0, 1] (0=no edge).
Node-weights: αi > 0, i = 1, . . . , n (individual weights of the
nodes).
Let G denote the set of such weighted graphs.
αG :=

∑n
i=1 αi (volume of G )

αU :=
∑

i∈U αi (volume of the node-set U ⊂ V (G ))

eG (U,T ) :=
∑
u∈U

∑
t∈T

αuαtβut , U,T ⊂ V = V (G )

Pk : set of k-partitions P = (V1, . . . ,Vk) of V .
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Definition

The homomorphism density between the simple graph F
(|V (F )| = k) and the weighted graph G :

t(F ,G ) =
1

(αG )k

∑
Φ:V (F )→V (G)

k∏
i=1

αΦ(i)

∏
ij∈E(F )

βΦ(i)Φ(j)

For simple G , this is the probability that a random map F → G is
a homomorphism.

Definition

The sequence (Gn) is (left) convergent if t(F ,Gn) is convergent for
any simple graph F .

Gn’s become more and more similar in small details.
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As most maps into a large graph are injective, we consider mainly
injective homomorphisms and use the notation:

αΦ =
k∏

i=1

αΦ(i), injΦ(F ,G ) =
∏

ij∈E(F )

βΦ(i)Φ(j),

indΦ(F ,G ) =
∏

ij∈E(F )

βΦ(i)Φ(j)

∏
ij∈E(F̄ )

(1− βΦ(i)Φ(j)),

tinj(F ,G ) =
1

(αG )k

∑
Φ inj .

αΦ · injΦ(F ,G ),

tind(F ,G ) =
∑
Φ inj .

αΦ · indΦ(F ,G ).
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Randomization

A simple graph on k vertices is selected at random based on the
weighted graph G :
k vertices are chosen with replacement with respective probabilities
αi (G )/α(G ) (i = 1, . . . , n). Given the node-set {Φ(1), . . . ,Φ(k)},
the edges come into existence conditionally independently, with
probabilities of the edge-weights. ξ(k,G ) is the resulted random
graph.

P(ξ(k,G ) = F ) ∼ tind(F ,G ), t(F ,G ) ∼ tinj(F ,G ) (k � n)

and there is a well-defined relation between tinj(F ,G ) and
tind(F ,G ).
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Graphons

Borgs et al. (2006) also construct the limit object: that is a
W : [0, 1]× [0, 1] → R symmetric, bounded, measurable function,
graphon
The interval [0,1] corresponds to the vertices and the values
W (x , y) = W (y , x) to the edge-weights.
The set of symmetric, measurable functions
W : [0, 1]× [0, 1] → [0, 1] is denoted by W[0,1].
The stepfunction graphon WG ∈ W[0,1] is assigned to the weighted
graph G ∈ G in the following way: the sides of the unit square are
divided into intervals I1, . . . , In of lengths α1/αG , . . . , αn/αG , and
over the rectangle Ii × Ij the stepfunction takes on the value βij .
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Cut-distance

The cut-distance between the graphons W and U is

δ�(W ,U) = inf
ν
‖W − Uν‖�

where the cut-norm of the graphon W is defined by

‖W ‖� = sup
S,T⊂[0,1]

∣∣∣∣∫∫
S×T

W (x , y) dx dy

∣∣∣∣ ,

and the infimum is taken over all measure preserving bijections
ν : [0, 1] → [0, 1], while Uν denotes the transformed U after
performing the same measure preserving bijection ν on both sides
of the unit square.
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An equivalence relation is defined over the set of graphons: two
graphons belong to the same class if they can be transformed into
each other by a measure preserving map, i.e., their δ�-distance is
zero.
By a Theorem of Lovász, Szegedi, 2006: the classes of W[0,1] form
a compact metric space with the δ� metric.

δ�(G ,G ′) = δ�(WG ,WG ′) and δ�(W ,G ) = δ�(W ,WG ).

A sequence of weighted graphs with uniformly bounded
edge-weights is convergent if and only if it is a Cauchy sequence in
the metric δ�.
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Weak Szemerédi Lemma

Lemma

(Borgs et al., 2006) For every ε, every weighted graph G has a
partition P into at most 41/ε2

classes such that

δ�(G ,G/P) ≤ ε‖G‖2 ≤ ε.

‖G‖2 =

√∑
i ,j

αiαj

α2
G

β2
ij

αi (G/P) =
αVi

αG
, βij(G/P) =

eG (Vi ,Vj)

αVi
αVj
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Testability of weighted graph parameters

Definition

A weighted graph parameter f is testable if for every ε > 0 there is
a positive integer k such that if G ∈ G satisfies

max
i

αi (G )

αG
≤ 1

k
,

then
P(|f (G )− f (ξ(k,G ))| > ε) ≤ ε,

where ξ(k,G ) is a random simple graph on k nodes randomized
“appropriately” from G .
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Equivalent statements of testability

Theorem

Equivalent statements for the testability of the bounded weighted
graph parameter f .

For every ε > 0 there is a positive integer k such that for
every weighted graph G ∈ G satisfying the node-condition
maxi αi (G )/αG ≤ 1/k, |f (G )− E(f (ξ(k,G )))| ≤ ε.

For every left-convergent weighted graph sequence (Gn) with
maxi αi (Gn)/αGn → 0, f (Gn) is also convergent (n →∞).

f can be extended to graphons such that f̃ (W ) is continuous
in the cut-norm and f̃ (WGn)− f (Gn) → 0, whenever
maxi αi (Gn)/αGn → 0 (n →∞).

For every ε > 0 there is an ε0 > 0 real and an n0 > 0 integer
such that if G1,G2 are weighted graphs satisfying
maxi αi (G1)/αG1 ≤ 1/n0, maxi αi (G2)/αG2 ≤ 1/n0, and
δ�(G1,G2) < ε0, then |f (G1)− f (G2)| < ε.
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Minimum multiway cut densities

Let k < n be a fixed positive integer.

fk(G ) := min
P∈Pk

1

α2
G

k−1∑
i=1

k∑
j=i+1

eG (Vi ,Vj)

minimum k-way cut density of G .
Let c ≤ 1/k be a fixed positive real number.
Pc

k : set of k-partitions of V such that
αVi
αG

≥ c (i = 1, . . . , k), or

equivalently, c ≤ αVi
αVj

≤ 1
c (i 6= j).

f c
k (G ) := min

P∈Pc
k

1

α2
G

k−1∑
i=1

k∑
j=i+1

eG (Vi ,Vj)

minimum c-balanced k-way cut density of G .
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Let a = {a1, . . . , ak} be a probability distribution on [k].
Pa

k : set of k-partitions of V such that(
αV1

αG
, . . . ,

αVk

αG

)
is approximately a-distributed.

f a
k (G ) := min

P∈Pa
k

1

α2
G

k−1∑
i=1

k∑
j=i+1

eG (Vi ,Vj)

minimum a-balanced k-way cut density of G .
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Minimum weighted multiway cut densities

We want to penalize extremely different cluster volumes.

µk(G ) := min
P∈Pk

k−1∑
i=1

k∑
j=i+1

1

αVi
· αVj

· eG (Vi ,Vj)

minimum weighted k-way cut density of G .

µc
k(G ) := min

P∈Pc
k

k−1∑
i=1

k∑
j=i+1

1

αVi
· αVj

· eG (Vi ,Vj)

minimum weighted c-balanced k-way cut density of G , where
0 < c ≤ 1/k.
Remark:

µk(G ) = min
P∈Pk

k−1∑
i=1

k∑
j=i+1

βij(G/P),

where the weighted graph G/P is the k-quotient of G with respect
to P.
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Factor graph

The factor graph or k-quotient of G with respect to the k-partition
P is denoted by G/P and it is defined as the weighted graph on k
vertices with vertex- and edge-weights

αi (G/P) =
αVi

αG
(i = 1, . . . , k)

and

βij(G/P) =
eG (Vi ,Vj)

αVi
αVj

(i , j = 1, . . . , k),

respectively.
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Relation to the ground state energies

Given the real symmetric k × k matrix J and the vector h ∈ Rk ,
the partitions P ∈ Pk also define a spin system on the weighted
graph G . The so-called ground state energy of such a spin
configuration is

Ek(G , J,h) =

− max
P∈Pk

 k∑
i=1

αi (G/P)hi +
k∑

i ,j=1

αi (G/P)αj(G/P)βij(G/P)Jij

 .

Here J is the so-called coupling-constant matrix, where Jij

represents the strength of interaction between states i and j , and h
is the magnetic field. They carry physical meaning. We shall use
only special J and h, especially h = 0.
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The microcanonical ground state energy of G given a and J
(h = 0) is

Ea
k (G , J) = − max

P∈Pa
k

k∑
i ,j=1

αi (G/P)αj(G/P)βij(G/P)Jij .

In a theorem Lovász et al. it is proved that the convergence of the
weighted graph sequence (Gn) with no dominant vertex-weights is
equivalent to the convergence of its microcanonical ground state
energies for any k, a, and J.
Under the same conditions, the convergence of the above (Gn)
implies the convergence of its ground state energies for any k, J,
and h; further the convergence of the spectrum of (Gn).
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Testability of the minimum multiway cut densities

fk(G ) is testable, though fk(Gn) → 0 if there is no dominant
node-weight. So, this is of not much use.
f a
k (G ) is testable for any k ≤ |V (G )| and and distribution a over
{1, . . . , k}.
f c
k (G ) is testable for any k ≤ |V (G )| and c ≤ 1/k.
The Newman–Girvan modularity is a special ground state energy,
hence, its balanced versions are testable.
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Testability of the weighted minimum multiway cut
densities

µk is not testable:
We can show an example where µk(Gn) → 0, but randomizing a
sufficiently large part of Gn, the weighted minimum k-way cut
density of that part is constant.
The testability of µc

k can be proved in the same way as that of f c
k .

The testability of µa
k(G ) also follows from the equivalent

statements of testability.
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Application of testability for fuzzy clustering

We proved that f c
k is a testable weighted graph parameter. Now,

we extend it to graphons.

f̃ c
k (W ) := inf

S1,...Sk

k−1∑
i=1

k∑
j=i+1

∫∫
Si×Sj

W (x , y) dx dy ,

where the infimum is taken over all the c-balanced
Lebesgue-measurable partitions (S1, . . . ,Sk) of [0,1]:∑k

i=1 λ(Si ) = 1 and λ(Si ) ≥ c, where λ denotes the
Lebesgue-measure.
f̃ c
k is the extension of f c

k in the following sense: If (Gn) is a
convergent weighted graph sequence with uniformly bounded
edge-weights and no dominant vertex-weights, then denoting by W
the limit graphon of the sequence, f c

k (Gn)− f̃ c
k (W ) as n →∞.
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The equivalent statements of testability use an essentially unique
extension of a testable graph parameter to graphons. Therefore,
the above f̃ c

k is the desired extension of f c
k and by the Equivalence

Theorem: for a weighted graph sequence (Gn) with

maxi
αi (Gn)
αGn

→ 0, the limit relation f̃ c
k (WGn)− f c

k (Gn) → 0 also

holds as n →∞.
This gives rise to approximate the minimum c-balanced k-way cut
density of a weighted graph on“many”vertices with no dominant
vertex weights by the extended c-balanced k-way cut density of the
stepfunction graphon assigned to the graph. In this way, the
discrete optimization problem can be formulated as a quadratic
programming task with linear equality and inequality constraints.
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To this end, let us investigate a fixed weighted graph G on n
vertices (n is large). As f c

k (G ) is invariant under the scale of the
vertices, we can suppose that αG =

∑n
i=1 αi = 1. As βij ∈ [0, 1],

WG is uniformly bounded by 1. Recall that WG (x , y) = βij , if
x ∈ Ii , y ∈ Ij , where λ(Ij) = αj (j = 1, . . . , n) and I1, . . . , In are
consecutive intervals of [0,1].
f̃k(WG ;S1, . . . ,Sk) is a continuous function over c-balanced
k-partitions of [0,1] in the variables

x = (x11, . . . , x1n, x21, . . . , x2n, . . . , xk1, . . . , xkn)
T ∈ Rnk

where the coordinate indexed by ij is

xij = λ(Si ∩ Ij), j = 1, . . . , n; i = 1, . . . k.
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f̃k(WG ;S1, . . . ,Sk) =
1

2
xT (A⊗ B)x,

where – denoting by 1k×k and Ik×k the k × k all 1’s and the
identity matrix, respectively – the eigenvalues of the k × k
symmetric matrix A = 1k×k − Ik×k are the number k − 1 and -1
with multiplicity k − 1, while those of the n × n symmetric matrix
B = (βij) are λ1 ≥ · · · ≥ λn. Latter one being a Frobenius-type
matrix, λ1 > 0. The eigenvalues of the Kronecker-product A⊗ B
are the numbers (k − 1)λi (i = 1, . . . , n) and −λi with multiplicity
k − 1 (i = 1, . . . , n). Therefore the above quadratic form is
indefinite.
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We have the following quadratic programming task:

minimize f̃k(x) =
1

2
xT (A⊗ B)x

subject to x ≥ 0;
k∑

i=1

xij = αj (j ∈ [n]);
n∑

j=1

xij ≥ c (i ∈ [k]).

The feasible region is the closed convex polytope, and it is, in
fact, in an n(k − 1)-dimensional hyperplane of Rnk . The gradient
of the objective function ∇f̃k(x) = (A⊗ B)x cannot be 0 in the
feasible region, provided the weight matrix B, and hence A⊗ B is
not singular.
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The arg-min of the quadratic programming task is one of the
Kuhn–Tucker points (giving relative minima of the indefinite
quadratic form over the feasible region), that can be found by
numerical algorithms (by tracing back the problem to a linear
programming task). In this way, for large n, we also get the
solution of the following fuzzy clustering problem: let xij/λ(Si )
denote the probability/proportion that vertex j belongs to cluster i .
We find the optimum solution via quadratic programming. The
index i giving the largest proportion can be regarded as the cluster
membership of vertex j .
The problem can be solved with other equality or inequality
constraints too.
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Cut-norm of the Wigner-noise

Theorem

For any sequence (GWn) of Wigner-graphs

lim
n→∞

‖WGWn
‖� = 0 (n →∞) almost surely.
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Corollary

Let An := Bn + Wn and n1, . . . , nk →∞ in such a way that
limn→∞

ni
n = ri (i = 1, . . . , k), n =

∑k
i=1 ni ; further, the uniform

bound K of the entries of the“noise”matrix Wn is such that the
entries of An are nonnegative. Under these conditions, the above
Theorem implies that the“noisy”graph sequence (GAn) ⊂ G
converges almost surely in the δ� metric. It is easy to see that the
almost sure limit is the stepfunction WH , where the factor graph
H = GBn/P does not depend on n, as P is the k-partition of the
vertices of GBn with resepect to the blow-up (with cluster sizes
n1, . . . , nk). Actually, the vertex- and edge-weights of the weighted
graph H are

αi (H) = ri (i ∈ [k]), βij(H) =
ninjpij

ninj
= pij (i , j ∈ [k]).



Preliminaries Perturbation Graph convergence Testability Application of testability for fuzzy clustering Perturbations

Generalized quasirandom graphs

H: model graph on k vertices with vertex-weights r1, . . . , rk and
edge-weights pij = pji (i , j = 1, . . . , k).
(Gn) is H-quasirandom if Gn → WH as n →∞.
Lovász and Sós prove that the vertex set V of a generalized
quasirandom graph Gn can be partitioned as V1, . . . ,Vk in such a
way that

|Vi |
|V | → ri (i = 1, . . . , k)

the subgraph of Gn induced by Vi is a quasirandom graph
with edge density pii (i = 1, . . . , k)

the bipartite graphs between Vi and Vj are bipartite
quasirandom with edge-density pij (i 6= j)
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Generalized k-quasirandom properties

The adjacency spectrum of Gn has k structural eigenvalues of
order n and the others are o(n); the k-variance of the
vertex-representatives based on the eigenvectors corresponding
to the structural eigenvalues is O( 1

n ).
There exists a δ ∈ (0, 1) s.t. there are exactly k − 1 structural
eigenvalues of the normalized modularity spectrum greater
than δ − o(1), and all the other eigenvalues are o(1) in
absolute value; the k-variance of the vertex-representatives
based on the structural eigenvectors is o(1).
The vertices can be divided into clusters V1, . . . ,Vk s.t. the
Vi ,Vj (i 6= j) pairs are ε-volume regular, i.e., for all X ⊂ Vi ,
Y ⊂ Vj satisfying Vol (X ) > εVol (Vi ), Vol (Y ) > εVol (Vj):

|e(X ,Y )−
e(Vi ,Vj)

Vol (Vi )Vol (Vj)
Vol (X )Vol (Y )| ≤ εVol (Vi )Vol (Vj).

We found an exact relation between ε and the spectral gap in the
normalized modularity spectrum.
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