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1. Introduction

When performing correspondence analysis on a contingency table, we use the singular 
value decomposition of the normalized table. The sum of the squares of these singular 
values (apart from the trivial 1) multiplied with the sample size (which is lost during 
the normalization) gives the value of the χ2 statistic for testing independence of the two 
underlying categorical variables, see [4]. A symmetric table of zero diagonal corresponds 
to an undirected weighted graph, where the non-negative entries are pairwise similari-
ties between the vertices. In [3] we introduced the normalized modularity matrix which 
is, in fact, the matrix of the normalized symmetric table deprived of the trivial factor. 
The spectral norm of this matrix bounds the discrepancy of the underlying weighted 
graph in the sense of the Expander Mixing Lemma, see [5,7]. By this lemma, a ‘small’ 
spectral norm indicates that the actual connections between the vertices are close to 
what is expected under independent vertex attachment, a fact that is in accord with 
a ‘small’ value of the χ2 statistic. We are interested in the case of a relatively ‘high’ 
spectral norm and χ2 value, when the number and the sign of the structural eigenvalues 
(separated from zero), together with some classification properties of the correspond-
ing eigenvectors, will determine the so-called community (or anti-community) structure 
of the graph, see [3]. More precisely, based on the spectra we can count the clusters 
and, using the eigenvectors, find the clusters themselves, so that the intercluster rela-
tions within the clusters are higher (or lower) than expected under the null-model of 
independence.

The unnormalized version of the modularity matrix was introduced in [8] for the 
purposes of social network analysis. In [8,9] Newman and Girvan also defined their mod-
ularity as a nonparametric statistic, akin to the normalized or multiway cuts, measuring 
the community structure in a network. For a given positive integer k, the k-way Newman–
Girvan modularity favors k-partitions of the vertices into k disjoint clusters (modules) 
within which the actual connections are higher than expected in a random graph. Even 
for given k, the optimal k-partition cannot be found in polynomial time in the num-
ber of vertices. One possibility is to first divide the vertices into two clusters, and if 
the two-way modularity of the optimal two-partition is positive, then further divide the 
clusters. However, it sometimes happens that the maximal two-way Newman–Girvan 
modularity is negative, and in this case there is no use of looking for further modules; 
the network is called indivisible, see [9]. In [10] a spectral method is proposed to divide 
the vertices into two parts based on the signs of the coordinates of the eigenvector corre-
sponding to the largest eigenvalue of the modularity matrix. It can be done only if this 
eigenvalue is strictly positive, so the corresponding eigenvector has both positive and 
negative coordinates, being orthogonal to the all 1’s vector (eigenvector belonging to 
the zero eigenvalue). On the contrary, if the largest eigenvalue is zero (zero is inevitably 
an eigenvalue), the network is indivisible in the above sense. We will show that having 
zero as the largest eigenvalue of the modularity matrix is a sufficient but not necessary 
condition for the network to be indivisible.
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When the network is not indivisible, we can compute the modularity matrices of 
the subgraphs induced by the clusters of vertices giving the optimal two-partition and 
investigate their largest eigenvalues. If one of them is zero, that component is indivis-
ible; otherwise, we proceed with finding the two-partition of it in the same way, and 
so forth. If we only want to test the largest eigenvalue of the subgraph for zero, then 
it suffices to find certain patterns in it, as we will see. Sometimes we are looking for a 
balanced partition of the vertices (with similar sizes or volumes), for which purpose the 
eigendecomposition of the normalized modularity matrix is used, see [3]. In [3] we also 
proved that the existence of k−1 positive eigenvalues of this matrix is an indication of a 
k-module structure and to approximate it we proposed the weighted k-means algorithm 
for the vertex representatives based on the corresponding eigenvectors. However, when 
the network is large, it suffices to use the upper end of the positive modularity spectrum 
separated from the bulk of the eigenvalues.

Since the allocation of the positive modularity eigenvalues plays an important role 
in the community detection problem, first we have to clarify when there are positive 
eigenvalues at all. In some examples of [3] we discussed that the modularity spectra of 
complete and complete multipartite graphs have no positive eigenvalues, exhibiting a 
one-module and anti-community structure, respectively. In the present paper, we will 
prove that both the modularity and the normalized modularity matrix of an unweighted 
graph is negative semidefinite if and only if the graph is complete or complete multi-
partite. We will also extend the above notions to weighted graphs and call a weighted 
graph soft-core multipartite if there is a partition of its vertices into clusters with edges 
of zero weight within, and positive weight between them. It is proved that whenever 
our graph is not soft-core multipartite, its modularity and normalized modularity ma-
trix has a positive eigenvalue. The proof relies on the appearance of a special triangle 
in the graph, one that is quite common in real-life networks. The above characteriza-
tion has many important implications for the symmetric maximal correlation and the 
isoperimetric inequality, see [2].

The paper is organized as follows. In Section 2 notation and some important facts 
about the modularity eigenvalues and the χ2 statistic are introduced. In Section 3 modu-
larity spectra of complete and complete multipartite graphs are derived. In Section 4 we 
state and prove the main results about the characterization of unweighted graphs with 
zero as the largest modularity eigenvalue and the extension to weighted graphs. In Sec-
tion 5 we discuss some other applications of our main Theorems 10, 12, and 13, concern-
ing the Newman–Girvan modularity, isoperimetric number, and maximal correlation.

2. Preliminaries

In [8] Newman and Girvan defined the modularity matrix of an unweighted graph on n

vertices with the n × n symmetric adjacency matrix A as

M = A − 1 ddT , (1)
2e
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where d = (d1, . . . , dn)T is the so-called degree-vector comprised of the vertex-degrees 
di’s and 2e =

∑n
i=1 di is twice the number of edges. We denote column vectors by 

lower-case bold letters; row vectors are written as transposes of column vectors. In [3]
we formulated the modularity matrix of a weighted graph G = (V, W) on the n-element 
vertex-set V with the n ×n symmetric weight-matrix W, the entries of which are pairwise 
similarities between the vertices and satisfy wij = wji ≥ 0, wii = 0, as follows:

M = W − ddT , (2)

where the entries of d are the generalized vertex-degrees di =
∑n

j=1 wij (i = 1, . . . , n). 
Here W is normalized in such a way that 

∑n
i=1

∑n
j=1 wij = 1, an assumption that does 

not hurt the generality, but simplifies further notation and makes it possible to con-
sider W as a symmetric joint distribution of two identically distributed discrete random 
variables taking on n different values. However, with this normalization, we lose the 
sample size N in the case when we start with a symmetric contingency table of upper-
diagonal counts corresponding to pairwise relations between the vertices. For example, 
the vertices may correspond to Facebook users and the counts indicate the number of 
pairwise communications between them; or the vertices may correspond to synopses 
of the brain and the counts indicate the number of signals transmitted between them 
(there are no self-communications). The sample size N is twice the sum of the counts, 
i.e., the total number of communications or transmissions. Then the null-hypothesis of 
wij = didj (which means that the communications or transmissions happen indepen-
dently, with probabilities proportional to the generalized degrees) is tested by the χ2

statistic written in the following convenient form:

χ2 = N

n∑
i=1

n∑
j=1

(wij − didj)2

didj
= N

n∑
i=1

n∑
j=1

m2
ij

didj
, (3)

where mij ’s are the entries of the modularity matrix. Here they are squared, but 
in the subsequent formula of the Newman–Girvan modularity they are not. The 
Newman–Girvan modularity introduced in [8] directly focuses on modules of higher intra-
community connections than expected based on the model of independence.

Definition 1. The Newman–Girvan modularity corresponding to the k-partition Pk =
(V1, . . . , Vk) of the vertex-set of the weighted graph G = (V, W), where the entries of W
sum to 1, is

M(Pk, G) =
k∑

a=1

∑
i,j∈Va

(wij − didj).

For given integer 1 ≤ k ≤ n, the k-module Newman–Girvan modularity of the weighted 
graph G is
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Mk(G) = max
Pk∈Pk

M(Pk, G),

where Pk denotes the set of all k-partitions.

For given k, maximizing M(Pk, G) is equivalent to looking for k modules of the ver-
tices with intra-community connections higher than expected under the null-hypothesis. 
Likewise, minimizing M(Pk, G) is equivalent to looking for k modules of the vertices 
with intra-community connections lower than expected under the null-hypothesis. It is 
clear that a ‘small’ χ2 value is an indication of a small modularity even in the k = 1
case. Therefore, it is worth looking for a modularity structure only after the hypothesis 
of independence is rejected.

We call a weighted graph connected if its vertices cannot be divided into two clusters 
with all zero between-cluster weights. This is equivalent to the weight matrix being 
irreducible (consequently, all generalized degrees are positive). The modularity matrix M
of (2) always has a zero eigenvalue with eigenvector 1 = 1n = (1, . . . , 1)T , since its rows 
sum to zero. Because tr(M) < 0, M must have at least one negative eigenvalue, and it 
is usually indefinite. The normalized modularity matrix introduced in [3] is

MD = D−1/2MD−1/2,

where D = diag(d1, . . . , dn) is the diagonal degree-matrix. The eigenvalues of MD are 
the same, irrespective of whether we start with the adjacency or normalized edge-weight 
matrix of an unweighted graph, and they are in the [−1, 1] interval; 1 cannot be an 
eigenvalue if G is connected.

There are important relations between the eigenvalues of the above matrices, as far 
as their signs are concerned. The following proposition intensively uses the Sylvester’s 
inertia theorem: if A is an n × n symmetric and B is an n × n nonsingular matrix, then 
BTAB and A have the same number pos of positive, neg of negative, and zero of zero 
eigenvalues, i.e., they have the same inertia (pos, neg, zero), where pos + neg + zero = n.

Proposition 2. Let G = (V, W) be a connected weighted graph. Its edge-weight matrix W
and normalized edge-weight matrix D−1/2WD−1/2 have the same inertia (pos, neg, zero)
with pos ≥ 1, whereas its modularity and normalized modularity matrices have inertia 
(pos − 1, neg, zero + 1).

Proof. W and D−1/2WD−1/2 have the same inertia, since D−1/2 is nonsingular. Like-
wise, M and MD have the same inertia. Between the inertias of the normalized matrices 
the following can be established. The spectrum of D−1/2WD−1/2 is 1 = μ0 ≥ μ1 ≥
· · · ≥ μn−1 ≥ −1 with corresponding unit-norm eigenvectors u0, u1, . . . , un−1 (see [4]), 
therefore pos ≥ 1. Observe that

MD = D−1/2WD−1/2 −
√

d
√

d
T
,
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where 
√

d := (
√
d1, . . . , 

√
dn)T . The eigenvalue 1 of the first term above has multiplicity 

one with corresponding unit-norm eigenvector u0 =
√

d whenever W is irreducible. The 
only non-zero eigenvalue of the rank 1 second term is also 1 with the same eigenvec-
tor. Therefore, if we start with an irreducible W, the spectrum of the matrix MD is 
comprised of μ1 ≥ · · · ≥ μn−1 ≥ −1 and the number μn = 0 (with eigenvector 

√
d). 

Consequently, the number of the positive eigenvalues is decreased, while the number of 
the zero eigenvalues is increased by one. �

The χ2 statistic of (3) can be written as well in terms of the entries m̃ij’s and the 
eigenvalues μi’s of the normalized modularity matrix:

χ2 = N

n∑
i=1

n∑
j=1

m̃2
ij = N

n∑
i=1

μ2
i = N

n−1∑
i=1

μ2
i ,

where N is the sample size.
We introduce some further notions. The unweighted graph on n vertices is complete

if the entries of its adjacency matrix are

aij :=
{

1 if i �= j

0 if i = j.

This graph is denoted by Kn.
The unweighted graph on the n-element vertex-set V is complete multipartite with 

2 ≤ k ≤ n clusters V1, . . . , Vk (they form a partition of the vertices) if the entries of its 
adjacency matrix are

aij :=
{

1 if c(i) �= c(j)
0 if c(i) = c(j),

where c(i) is the cluster membership of vertex i. Here the non-empty, disjoint vertex-
subsets form so-called maximal independent sets of the vertices. If |Vi| = ni (i = 1, . . . , k), ∑k

i=1 ni = n, then this graph is denoted by Kn1,...,nk
.

Note that Kn is also complete multipartite with n singleton clusters, i.e., it is the 
K1,...,1 graph. Hence, in the case of k = n, the results for complete graphs follow from 
those for complete multipartites. Therefore, in the sequel, whenever we speak of complete 
multipartite graphs, complete graphs are also understood, and we always assume that 
k ≥ 2. (In the case of k = 1, the only cluster would be the empty graph with zero 
adjacency matrix all zero eigenvalues; further, the notation Kn1 would be misleading in 
this case.)

A weighted graph is called soft-core if all its edge-weights are strictly positive (see [6]). 
Analogously, we will call a weighted graph soft-core k-partite with 2 ≤ k ≤ n clusters 
V1, . . . , Vk (they form a partition of the vertices) if its edge-weights are



M. Bolla et al. / Linear Algebra and its Applications 473 (2015) 359–376 365
wij =
{

positive if c(i) �= c(j)
0 if c(i) = c(j),

where c(i) is the cluster membership of vertex i. Here the non-empty, disjoint vertex-
subsets also form maximal independent sets of the vertices with zero-weighted edges 
within, and positively weighted edges between them.

In Section 5 we will also use the normalized Laplacian of G = (V, W) which is defined 
as LD = I − D−1/2WD−1/2. With the notation used in the proof of Proposition 2, the 
eigenvalues of LD are the numbers λi = 1 − μi (i = 1, . . . , n − 1) and λ0 = 1 − μ0 = 0. 
Therefore, the spectrum of LD is in [0, 2] and 0 is a single eigenvalue if and only if G
is connected. The next proposition further characterizes the bottom of the spectrum 
0 = λ0 < λ1 ≤ · · · ≤ λn−1 ≤ 2, or equivalently, the top of the spectrum 1 = μ0 > μ1 ≥
· · · ≥ μn−1 ≥ −1 for some special weighted graphs.

Proposition 3. If the connected weighted graph G = (V, W) has an independent vertex-set 
of size 1 < k < n, then its μk−1 ≥ 0, or equivalently, λk−1 ≤ 1.

Proof. Without loss of generality, assume that wij = 0 when 1 ≤ i, j ≤ k. Since μk−1 is 
the kth largest eigenvalue (including the trivial μ0 = 1) of D−1/2WD−1/2, the Courant–
Fischer–Weyl minimax principle yields that

μk−1 = max
F⊂R

n

dim(F )=k

min
x∈F
‖x‖=1

xTD−1/2WD−1/2x.

Therefore, to prove that μk−1 ≥ 0, it suffices to find a k-dimensional subspace F ⊂ R
n

such that min x∈F
‖x‖=1

xTD−1/2WD−1/2x = 0. Set F := {x : x = (x1, . . . , xk, 0, . . . , 0) ∈

R
n}. Clearly, for every x ∈ F : xTD−1/2WD−1/2x = 0, and this also holds true for 

unit-norm x’s. Therefore, the above minimum is also 0. This, together with the relation 
λk−1 = 1 − μk−1, finishes the proof. �

By Proposition 3, the case k = 2 implies that μ1 ≥ 0, or equivalently, λ1 ≤ 1 when-
ever G is not a soft-core weighted graph, i.e., it has at least one 0 weight. On the other 
hand, μ1 < 0 (and so λ1 > 1) when there are not two independent vertices in the 
graph; particularly, among unweighted graphs, in the case of Kn (see the forthcoming 
Proposition 5).

Actually, in the case of Kn1,...,nk
(k < n), the nonnegative μi’s, guaranteed by Propo-

sition 3, are all zeros, or equivalently, the smallest positive eigenvalue of its normalized 
Laplacian is 1 with multiplicity n − k, see Table 3.1 of [4]. In Section 4 we will prove 
that, among unweighted graphs, equality is attained (μ1 = 0, λ1 = 1) only for Kn1,...,nk

(k < n). We will also prove that whenever a weighted graph is not soft-core multipartite, 
it must have μ1 > 0, or equivalently, λ1 < 1.
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Since the investigated matrices are closely related, the statements of some theorems 
of Sections 3 and 4 occasionally follow from others, and vice versa. However, if the proofs 
contain different ideas, we include them both and allow the reader to decide which is of 
greater concern to him or her. In this way we intend to give a deeper insight into the 
investigated graphs and the related matrices.

3. Modularity spectra of complete and complete multipartite graphs

Now we derive the modularity spectra of the graphs introduced in the previous section.

Proposition 4. The spectrum of M(Kn) consists of the single eigenvalue 0 with eigenvec-
tor 1n and the number −1 with multiplicity n − 1 and eigen-subspace 1⊥

n .

Proof. The adjacency matrix of Kn is A(Kn) = 1n1T
n − In; further, d = (n − 1)1n and 

2e = n(n − 1). Hence, in view of (1),

M(Kn) = 1n1T
n − In − n− 1

n
1n1T

n = 1
n
1n1T

n − In

=
(

1√
n

)(
1√
n

)T

−
[(

1√
n

)(
1√
n

)T

+
n∑

i=2
1 · uiuT

i

]

=
n∑

i=2
(−1) · uiuT

i ,

where u2, . . . , un is an arbitrary orthonormal set in 1⊥
n . Therefore, the unique spectral 

decomposition of M(Kn) is as stated in the proposition. �
Proposition 5. The spectrum of MD(Kn) consists of the single eigenvalue 0 with eigen-
vector 1n and the number − 1

n−1 with multiplicity n − 1 and eigen-subspace 1⊥
n .

This proposition follows from the fact that MD(Kn) = 1
n−1M(Kn).

Proposition 6. The modularity spectrum of the complete multipartite graph Kn1,...,nk

consists of k − 1 strictly negative eigenvalues and zero with multiplicity n − k + 1.

Proof. The adjacency matrix of Kn1,...,nk
is a block-matrix with diagonal blocks of all 

zeros and off-diagonal blocks of all 1’s. Let V1, . . . , Vk denote the independent, disjoint 
vertex-subsets (clusters), |Vi| = ni, i = 1, . . . , k; dj = n − ni if j ∈ Vi; 2e =

∑n
j=1 dj =∑k

i=1 ni(n − ni) = n2 −
∑k

i=1 n
2
i . Therefore, M = M(Kn1,...,nk

) is also a block-matrix, 
where the entries in the block of size ni × nj are all equal to the following number pij :

pij = (1 − δij) −
(n− ni)(n− nj)

, i, j = 1, . . . , k.
2e
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Here δij stands for the Kronecker delta-symbol. With the wording of [4], M is a blown-
up matrix with blow-up sizes n1, . . . , nk of the k × k symmetric pattern matrix P of 
entries pij ’s. Consequently, rank(M) = rank(P) ≤ k. We will prove that P has rank 
exactly k − 1, and all its nonzero eigenvalues are strictly negative.

Let us look for an eigenvector u of M, belonging to a nonzero eigenvalue λ, of piecewise 
constant coordinates over the partition corresponding to V1, . . . , Vk of {1, . . . , n}, i.e., 
let ni coordinates be equal to yi, i = 1, . . . , k. With these, the eigenvalue–eigenvector 
equation yields that

k∑
j=1

pijnjyj = λyi. (4)

Therefore, λ is an eigenvalue of the k × k matrix PN with eigenvector (y1, . . . , yk)T , 
where N = diag(n1, . . . , nk). The matrix PN is not symmetric, but its eigenvalues are 
real because they are originally eigenvalues of an n × n symmetric matrix, or else, its 
eigenvalues are also eigenvalues of the k× k symmetric matrix N1/2PN1/2. It is easy to 
see that the row sums of PN are zeros, since

k∑
j=1

pijnj =
k∑

j=1

[
(1 − δij) −

(n− ni)(n− nj)
2e

]
nj = 0. (5)

Therefore, zero is an eigenvalue of PN with eigenvector 1k, which results in another zero 
eigenvalue of M with eigenvector 1n. Thus, zero is an eigenvalue of M with multiplicity 
at least n − k + 1.

Now we will prove that all the nonzero eigenvalues of PN are negative. Let λ �= 0 be 
an eigenvalue of PN. In view of (4) and (5),

λ
k∑

i=1
niyi =

k∑
i=1

ni(λyi) =
k∑

j=1
njyj

k∑
i=1

nipij = 0.

Consequently, if λ �= 0, then 
∑k

i=1 niyi = 0. Now consider

λ
k∑

i=1
niy

2
i =

k∑
i=1

(niyi)(λyi) =
k∑

i=1
niyi

k∑
j=1

pijnjyj

=
k∑

i=1

k∑
j=1

pij(niyi)(njyj).

We will show that the right hand side is negative, and therefore, by 
∑k

i=1 niy
2
i > 0, we 

get that λ < 0. Indeed,
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k∑
i=1

k∑
j=1

pij(niyi)(njyj) =
k∑

i=1

k∑
j=1

[
(1 − δij) −

(n− ni)(n− nj)
2e

]
(niyi)(njyj)

=
k∑

i=1

k∑
j=1

(1 − δij)(niyi)(njyj)

− 1
2e

[
k∑

i=1
(n− ni)niyi

][
k∑

j=1
(n− nj)njyj

]

=
(

k∑
i=1

niyi

)(
k∑

j=1
njyj

)
−

k∑
i=1

(niyi)2

− 1
2e

[
k∑

i=1
(n− ni)niyi

]2

< 0,

where we used that 
∑k

i=1 niyi = 0.
Since the piecewise constant vectors (over V1, . . . , Vk), which are also orthogonal to 

the 1n vector, constitute a (k − 1)-dimensional subspace of Rn, there should be k − 1
strictly negative eigenvalues of Kn1,...,nk

. Consequently, the eigenvalue zero of M has 
multiplicity exactly n − k + 1 with corresponding eigen-subspace

{
x :

∑
j∈Vi

xj = 0, i = 1, . . . , k
}
,

which includes the vector 1n as well. Thus, we proved that M(Kn1,...,nk
) is negative 

semidefinite. �
Remark 7. In the proof of Proposition 6 we described the eigenvectors and eigen-
subspaces of M = M(Kn1,...,nk

) too. The inertia of M itself can be concluded with 
the following simple argument, suggested by the anonymous referee of this paper. Ob-
serve that the adjacency matrix of Kn1,...,nk

, with independent vertex-sets V1, . . . , Vk

and 
∑k

i=1 ni = n, can be decomposed as

A(Kn1,...,nk
) = (1V1 , . . . ,1Vk

) · A(Kk) · (1V1 , . . . ,1Vk
)T ,

where 1Vi
∈ R

n is the indicator vector of Vi (i = 1, . . . , k), and A(Kk) is the ad-
jacency matrix of the complete graph on k vertices (with the wording of the pre-
vious proof, we blow it up). The vectors b1, . . . , bn−k are chosen so that together 
with the indicator vectors they form a complete orthogonal basis in Rn. Then, with 
B = (1V1 , . . . , 1Vk

, b1, . . . , bn−k), the matrix A is congruent to the following:

(
A(Kk) Ok×(n−k)

)
, (6)
O(n−k)×k Ok×k
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where O denotes the matrix of all zeros, and the inertia of A(Kk) = 1k1T
k − Ik is 

(1, k− 1, 0), which can easily be seen from the proof of Proposition 4. Consequently, the 
inertia of the matrix in (6) and that of the adjacency matrix of Kn1,...,nk

is (1, k−1, n −k). 
In view of Proposition 2, the inertia of the modularity matrix of Kn1,...,nk

is therefore 
(0, k − 1, n − k + 1).

Proposition 8. MD(Kn1,...,nk
) is also negative semidefinite.

The proof follows by Proposition 2.

4. The main statements

To prove our main statements, we will extensively use the following well-known char-
acterization of the complete multipartite graphs (including the complete graphs): an 
unweighted connected graph is complete multipartite if and only if it has no three-vertex 
induced subgraph with exactly one edge. More generally, we are able to give a similar 
characterization for weighted soft-core multipartite graphs.

Lemma 9. A weighted graph is soft-core multipartite if and only if it has no triangle with 
exactly one positively weighted edge.

Proof. We will call the above triangle forbidden pattern, which looks like

(the solid line means an edge of positive weight, whereas the dashed one means an edge 
of zero weight).

• In the forward direction, a soft-core multipartite graph can have the following types 
of triangles (not all of them appear necessarily, only if the size of clusters allows it):
(1) the three vertices are from the same cluster, in which case the triangle has edges 

of zero weight;

(2) the three vertices are from three different clusters, in which case the triangle is 
a soft-core graph of all positive edges;

(3) two of the vertices are from the same, and the third from a different cluster, in 
which case the triangle has exactly two edges of positive weight (cherry).

None of them is the forbidden pattern.
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• Conversely, suppose that our weighted graph does not have the forbidden pattern. 
The following procedure shows that it is then soft-core multipartite. Let the first 
cluster be a maximal independent set of the vertices, say V1. We claim that each 
vertex in V 1 is connected with a positively weighted edge to each vertex of V1. 
Indeed, let c ∈ V 1 be a vertex; there must be a vertex (say, a) of V1 with wca > 0, 
since if not, it could be joined to V1, which contradicts the maximality of V1 as an 
independent set. If c were not connected to another b ∈ V1 with a positively weighted 
edge, then a, b, c would form a forbidden pattern, but our graph does not contain 
such in view of our starting assumption.
Then let V2 be a maximal independent set of vertices within V 1, say V2. We claim 
that each vertex in V1 ∪ V2 is connected to each vertex of V1 and V2 with a posi-
tively weighted edge. The connectedness to vertices of V1 is already settled. By the 
maximality of V2 as an independent set, any vertex of V1 ∪ V2 must be connected 
to at least one vertex of V2 with a positively weighted edge. If we found a vertex 
c ∈ V1 ∪ V2 such that for some a ∈ V2: wac > 0, and for another b ∈ V2: wbc = 0, 
then a, b, c would form a forbidden pattern, which is excluded.
Advancing in this way, one can see that the procedure produces maximal disjoint in-
dependent sets of the vertices such that the independent vertices of Vk are connected 
to every vertex in V1, . . . , Vk−1. At each step we can select a maximal independent 
set out of the remaining vertices; in the worst case it contains only one vertex. The 
absence of the forbidden pattern guarantees that we can always continue our algo-
rithm until all vertices are placed into a cluster. This procedure will exhaust the 
set of vertices and result in a soft-core multipartite graph. The point is that in the 
absence of the forbidden pattern we can divide the vertices into independent sets 
which are fully connected. �

Note that if we proceed with non-increasing cardinalities of Vi’s, then one-vertex 
independent sets may emerge at the end of the process. Moreover, up to the labeling of the 
vertices and the numbering of the independent sets, the resulting soft-core multipartite 
structure is unique. In fact, the above procedure just recovers this unique structure in 
the absence of the forbidden pattern.

Now, we are able to prove the following.

Theorem 10. If the connected weighted graph G = (V, W) is not soft-core multipartite, 
then the largest eigenvalue of its modularity matrix is strictly positive.

Proof. By Lemma 9, a weighted graph is not soft-core multipartite if and only if it 
contains the forbidden pattern. Let us consider such a graph. Since the modularity 
spectrum does not depend on the labeling of the vertices, assume that the first three 
vertices form the forbidden pattern, i.e., the upper left corner of the edge-weight ma-
trix is
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⎛
⎝ 0 w12 0

w21 0 0
0 0 0

⎞
⎠

with w12 = w21 > 0. Based on (2), this graph’s modularity matrix is

M = 1
c2

(
cW − ddT

)
,

where d = (d1, . . . , dn)T , di =
∑n

j=1 wij (i = 1, . . . , n), and c =
∑n

i=1 di (not necessarily 
an integer).

It is known that a matrix is negative semidefinite if and only if its every principal minor 
of odd order is non-positive, and every principal minor of even order is non-negative. 
The principal minor of order 3 of M is

(
1
c2

)3

det

⎛
⎝ −d2

1 cw12 − d1d2 −d1d3
cw12 − d1d2 −d2

2 −d2d3
−d1d3 −d2d3 −d2

3

⎞
⎠

= 1
c6

c2w2
12d

2
3 = w2

12d
2
3

c4
> 0.

Because G is connected, both d3 and c are strictly positive, akin to the above odd-order 
minor. Consequently, the modularity matrix cannot be negative semidefinite, hence it 
must contain at least one positive eigenvalue. �

Theorem 10 together with Proposition 6 gives a necessary and sufficient condition for 
an unweighted graph to have the zero as the largest eigenvalue of its modularity matrix.

Theorem 11. The modularity matrix of an unweighted connected graph is negative 
semidefinite if and only if it is complete multipartite.

By Proposition 2, the same statement holds for the normalized modularity matrix. 
Although it follows from Theorem 10, we will give an alternative proof of the forthcoming 
Theorem 12, since it contains fewer calculations and may be more alluring for the reader. 
The reader may also note that Theorem 12 could be stated first, in which case Theorem 10
is implied by Theorem 12.

Theorem 12. If the connected weighted graph G = (V, W) is not soft-core multipartite, 
then the largest eigenvalue of its normalized modularity matrix is strictly positive.

Proof. Referring to Section 2, the largest eigenvalue μ1 of MD is the second largest 
eigenvalue of D−1/2WD−1/2, whose largest eigenvalue is 1 with corresponding eigenvec-
tor 

√
d (this is unique if our graph is connected). Therefore, we think in terms of the two 

largest eigenvalues of D−1/2WD−1/2. We can again assume that the first three vertices 
form the forbidden pattern and so, the upper left corner of this matrix looks like
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⎛
⎝ 0 w12√

d1d2
0

w21√
d1d2

0 0
0 0 0

⎞
⎠

with w12 = w21 > 0.
Then the Courant–Fischer–Weyl minimax principle yields

μ1 = max
‖x‖=1

xT
√

d=0

xTD−1/2WD−1/2x.

Therefore, to prove that μ1 > 0, it suffices to find an x ∈ R
n that satisfies conditions 

‖x‖ = 1, xT
√

d = 0, and for which, xTD−1/2WD−1/2x > 0. (The unit norm condition 
can be relaxed here, because x can later be normalized, without changing the sign of the 
above quadratic form.)

Indeed, let us look for x of the form x = (x1, x2, x3, 0, . . . , 0)T such that

√
d1x1 +

√
d2x2 +

√
d3x3 = 0. (7)

Then the inequality

xTD−1/2WD−1/2x = 2x1x2w12√
d1d2

> 0

can be satisfied with any x = (x1, x2, x3, 0, . . . , 0)T such that x1 and x2 are both positive 
or both negative, in which case, due to (7),

x3 = −
√
d1x1 +

√
d2x2√

d3

is a good choice, and will have the opposite sign. (Note that all the di’s are positive, 
since we deal with connected weighted graphs.) �

Theorem 12 together with Proposition 8 gives the following statement of equivalence.

Theorem 13. The normalized modularity matrix of an unweighted connected graph is 
negative semidefinite if and only if it is complete multipartite.

5. Applications

The results of Theorems 10, 12, and 13 have important implications in the following, 
seemingly unrelated areas.
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5.1. The Newman–Girvan modularity

Based on Definition 1, the two-way Newman–Girvan modularity of G = (V, W) is

M2(G) = max
U⊂V

U �=∅, U �=V

M2
(
(U,U), G

)
,

where the modularity of the proper two-partition (U, U) of V can be written in terms of 
the entries mij ’s (summing to 0) of the modularity matrix of G as follows:

M2
(
(U,U), G

)
=

∑
i,j∈U

mij +
∑
i,j∈U

mij = −2
∑

i∈U, j∈U

mij

= −2
[
w(U,U) − Vol(U) Vol(U)

]
, (8)

where w(U, U) =
∑

i∈U

∑
j∈U wij is the weighted cut between U and U , and Vol(U) =∑

i∈U di is the volume of the vertex-subset U . These formulas are valid under the con-
dition Vol(V ) = 1.

Now we use the idea of the proof of the Expander Mixing Lemma (see [7]) extended 
to weighted graphs (see [5]).

Lemma 14. Let G = (V, W) be a weighted graph with Vol(V ) = 1. Then for all X, Y ⊂ V :

∣∣w(X,Y ) − Vol(X) Vol(Y )
∣∣ ≤ ‖MD‖ ·

√
Vol(X) Vol(Y ),

where ‖MD‖ is the spectral norm (the largest absolute value of the eigenvalues) of the 
normalized modularity matrix of G.

With the notation of the proof of this lemma (see [5]), and introducing μ0 = 1, 
u0 =

√
d,

D−1/2WD−1/2 =
n−1∑
i=0

μiuiuT
i

is a spectral decomposition.
Let U ⊂ V be arbitrary and the indicator vector of U is denoted by 1U ∈ R

n. Further, 
set x := D1/21U and y := D1/21U , and let x =

∑n−1
i=0 aiui and y =

∑n−1
i=0 biui be the 

expansions of x and y in the orthonormal basis u0, . . . , un−1 with coordinates ai = xTui

and bi = yTui, respectively. Observe that w(U, U) = 1T
UW1U = xT (D−1/2WD−1/2)yT

and 1U = 1n − 1U ; therefore,

bi = yTui = D1/2(1 − 1U )ui

= uT
0 ui − xTui = −ai (i = 1, 2, . . . , n− 1);
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further, a0 = Vol(U) and b0 = Vol(U). Based on these observations,

w(U,U) − Vol(U) Vol(U) =
n−1∑
i=1

μiaibi = −
n−1∑
i=1

μia
2
i .

Consequently, by (8), M2((U, U), G) = 2 
∑n−1

i=1 μia
2
i . Therefore, provided that the 

normalized modularity matrix of the underlying weighted graph is negative semidef-
inite (or equivalently, our graph is complete multipartite when it is unweighted), 
M2((U, U), G) ≤ 0 for all two-partitions of the vertices, and hence, the two-way Newman–
Girvan modularity, M2(G), is also non-positive (in most cases, it is negative). Nonethe-
less, this property does not characterize the complete multipartite graphs. There are 
graphs with positive μ1 that have zero or sometimes negative two-way Newman–Girvan 
modularity. Therefore, the negative semidefiniteness of the modularity matrix is not 
necessary for a graph to be indivisible. For example, consider the following unweighted 
graph obtained by deleting 5 edges from the complete graph on 8 vertices:

The largest eigenvalue of the corresponding modularity matrix is positive (0.6725), 
but the corresponding maximum two-way modularity is negative: M2(G) = −0.0076; 
therefore, our graph is indivisible. Note that here the spectrum is shifted to the negative 
direction (the smallest eigenvalue is −2.3324, and there are four additional negative 
eigenvalues, while the zero eigenvalue has multiplicity two).

In [4] we discuss how the balance of the negative and positive eigenvalues with large 
absolute value determines a community, anti-community, or just a regular structure.

5.2. The isoperimetric number

Due to Theorem 13 and the relation between the normalized Laplacian and modularity 
spectra, the smallest positive normalized Laplacian eigenvalue, λ1, is slightly greater 
than 1 for complete, equal to 1 for complete multipartite (but not complete), and strictly 
less than 1 for other unweighted graphs. In the weighted case, in view of Theorem 12, 
λ1 < 1 whenever our graph is not soft-core multipartite. In [2] we gave the following 

upper and lower estimate for the Cheeger constant h(G) = minVol(U)≤ 1
2

w(U,U)
Vol(U) of the 

weighted graph G = (V, W) by its smallest positive normalized Laplacian eigenvalue:
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λ1

2 ≤ h(G) ≤
√

λ1(2 − λ1)

whenever λ1 ≤ 1. Therefore, if λ1 is separated from zero but less than 1, then it is an 
indication of the high edge-expansion of a not soft-core multipartite graph. The upper 
estimate is not valid for complete graphs (for which the lower bound is attained), and it 
gives the trivial upper bound 1 for complete bipartite or multipartite (but not complete) 
graphs. Indeed, the former are, in fact, super-expanders, while the latter are so-called 
bipartite or multipartite expanders, see [1]. For large n, the situation can be even more 
complicated and also influenced by the large absolute value negative eigenvalues of the 
normalized modularity matrix. More generally, one may look for so-called volume-regular 
cluster pairs of small discrepancy by means of the eigenvectors corresponding to the 
structural (large absolute value) eigenvalues of MD (see [5]).

5.3. The symmetric maximal correlation

The largest eigenvalue of MD, μ1, is called symmetric maximal correlation in the 
setting of correspondence analysis on the symmetric contingency table W (see [2]). In-
deed, the weight matrix W (with sum of its entries 1) defines a symmetric discrete 
joint distribution W with equal margins D = {d1, . . . , dn}. Let H denote the Hilbert 
space of V → R random variables taking on at most n different values with probabilities 
d1, . . . , dn, further, having zero expectation. Let us take two identically distributed (i.d.) 
copies ψ, ψ′ ∈ H with joint distribution W. The symmetric maximal correlation with 
respect to W is the following:

r1 = max
ψ,ψ′∈H i.d.

CorrW
(
ψ,ψ′) = max

ψ,ψ′∈H i.d.
VarDψ=1

CovW

(
ψ,ψ′).

In [2] we proved that r1 = 1 − λ1, i.e., r1 = μ1.
Then Theorem 12 implies that r1 is strictly positive if the joint distribution is not 

of a soft-core multipartite structure, i.e., it contains the forbidden pattern. Note that 
the existence of such a pattern is not a particular requirement. In the setting of social 
networks, it can be interpreted in the following way: there is a set of three people such 
that two among them are connected, while the third is not connected to either of the 
other two people.

In the case of a binary table, the converse is also true, and hence, the symmetric 
maximal correlation is positive if and only if the joint distribution is not of a complete 
multipartite structure.
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