
Extrema of Sums of Heterogeneous Quadratic Forms* 

Marianna Bolla 
Department of Mathematics 
Technical University 
Budapest, Hunga y 

Gyijrgy Michaletzky 
Department of Probability Theo y and Statistics 
E&x% Lo&d University 
Budapest, Hunga y 

Giber Tusnidy 
Mathematical Institute 
Hungarian Aca&my of Sciences 
Budapest, Hunga y 

Mar@ Ziermann 
Institute of Mathematics and Computer Sciences 
University of Economics 
Budapest, Hunga y 

ABSTRACT 

We analyze the following problem arising in various situations in multivariate 
statistical analysis. We are given k symmetric, positive definite n X n matrices, 
A,, A 2, . . . , Ak (k < n), and we would like to maximize the function Cfi= 1 xrAixi 
under the constraint that x1, x2, . . . , xk E 6X” form an orthonormal system. Some 
theoretical results as well as an algorithm are presented. 0 1998 Elsevier Science 
Inc. 

*This work was supported by the Hungarian Scientific Research Foundation, OTKA grant 

No. 2042 and No. T105668. 

LINEAR ALGEBRA AND ITS APPLlCATlONS 269:331-365 (1998) 

0 1998 Elsevier Science Inc. All rights reserved. 0024-3795/98/$19.00 

655 Avenue of the Americas, New York, NY 10010 PII sOO24-3795(97)00230-9 



332 MARIANNA BOLLA ET AL. 

1. INTRODUCTION 

It is well known that, given a symmetric, positive definite n X n matrix A, 
an orthonormal system of k elements in F!” (k < n) for which the functional 
C~=,x~Axi attains its maximum is given by a system of k orthonormal 
eigenvectors corresponding to the k largest eigenvalues of the matrix A. The 
subspace spanned by the system is uniquely determined if there is a gap in 
the spectrum of A between the kth and (k + 0th eigenvalues in descending 
order. Actually, any orthonormal system consisting of k vectors spanning the 
same subspace as the eigenvectors corresponding to the k largest eigenvec- 
tors gives the same value, because 

i xTAxi = trAXXT, 
i=l 

where 

x = [xl,...,xJ; 

thus the functional depends only on the subspace spanned by the vectors 
Xi’. * * 7 xk. So the functional can be considered as being defined on the 
Grassmannian manifold .F(k, R”) consisting of the k-dimensional subspaces 
of the Euclidean space [w”. The structure of this functional is analyzed in 
detail in Byrnes and Willems [5]. The behavior of the matrix power method 
applied to this problem is investigated in Martin and Ammar [l]. 

The question naturally arises: what can be said about the maximum if the 
sum of the quadratic forms is generated by different matrices? Naturally, 
each of the quadratic forms xTAixi tends to be large (close to the maximal 
eigenvalue of Ai), but in most cases it cannot be as large as AT”“, because the 
eigenvectors corresponding to the maximal eigenvalues of A,‘s are usually 
not pair-wise orthogonal. 

It will be shown that any system xi,. . . , xk giving the extremum must 
satisfy the matrix equation 

[A l~l,...,Ak~k] = XS, (l-1) 

where S is a symmetric k X k matrix, and the n X k matrices 
[A ixi,. . . ,A,x,] and X = [xi,. . . , xk] contain the enumerated vectors as 
their columns. The set of orthonormal k-tuples in [w” is called as Stiefel 
manifold and denoted by V,,, k. Slightly abusing the notation, we shall write 
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x E VII k when the set of column vectors of the n X k matrix X is an 
element of V,, k (cf. James [7]). Obviously this is equivalent to XTX = I,. 
The equation (1.1) is linear in X, so for the corresponding matrix S the 
determinant of the nk X nk matrix A - I,, 8 S must be zero, where the 
nk X nk block matrix A contains the matrices A,, . . . , A, in its diagonal 
blocks and zeros otherwise. 

In this paper, an iteration is proposed and its convergence to a local 
maximum of the objective function is analyzed. Choosing an arbitrary initial 
orthonormal system X(O), the sequence X(l), X@), . . . is constructed in the 
following way: if X (m) is already known, the polar decomposition of the matrix 
[Alxlm) I..., A,x’,“‘] is performed, i.e., it is decomposed as the product of an 
II X k matrix with orthonormal columns and a k X k symmetrical positive 
semidefinite one (m = 0, 1,2,. . . ). [This polar decomposition is unique if 
Alx\“‘) ..> A,x(,““’ are linearly independent. Cf. (3.7j.l In the next step let 
X”” + lY be the first factor in this decomposition, etc. 

2. THE OPTIMIZATION PROBLEM 

We are given k symmetrical, positive definite n X n matrices 
A,,&,..., A, (k < n). Find the maximum of 

under the constraints 

xrxj = 6. 'J (1 < i, j < k), 

whereX= [x,,..., 
manifold and fquad 

xk], and aij is the Kronecker delta. As V,, k is a compact 
is continuous on V, k a finite global maximum exists and it 

is attained at some point. Obviously’this maximum is at most CF= lALax, 
where Amax denotes the maximal eigenvalue of Ai. 

To characterize the critical points of the functional, let us denote by 
A(X) = [A,xl, . . . ,Akxk] and X = [x1,. . . , xk] the n X k matrices containing 
the enumerated vectors as their columns. It will be shown below that for an 
optimal orthonormal system [x1,. . . , xk] E V,, k 

[AA,. . . ,A,x,] = XS (2.2) 
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holds, where the multipliers are entries of the k X k symmetrical matrix S. 
Together with the system of equations 

XTX = I,, (24 

where Ik is the k X k identity matrix, this makes nk + k(k + 1)/2 equa- 
tions. As the total number of unknowns in X and S is also nk + k(k + 1)/2, 
in the generic case only a finite number of solutions is expected. 

Before analyzing the structural behavior of this functional, let us consider 
an algorithm to maximize it. 

3. THE ALGORITHM 

In order to construct an algorithm, let us return to the equations 
determining the critical point of the functional. 

THEOREM 3.1. X E V,,, is a critical point of fquad if and only if 
S = A(X)TX is symmetric, i.e., 

A(X) = XS (3-I) 

holds, with a symmetric S. 

Proof. Assume that X E V, k is a critical point of fquad. Thus the 
derivatives- along V%k--of f,“.d vanish at X. Hence, considering a small 
perturbation X, of X which is tangential to V,,, k (i.e., it satisfies the equation 

XTX, + xix = 0, 

in other words, XrX, is skew-symmetric), the difference 

fquadcx + x,) -fquad(x> 

must be zero in the first order as X, -+ 0. But 

fquad(X + XA ) - fquad(X) = tr (x + XA > TA(X + XA) - trXTA(X) 

= 2 trA(X)TX, + trA(X,)TX,. 
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Consequently the equation 

trA(X)rX, = 0 (3.2) 

when XTX, is skew-symmetric characterizes the critical points of f&,d. We 
have 

trA(X)rX,, = ttr [A(X)TX - XTA(X)]XTX, 

+ tr [(I - XXT)A(X)lT[(I - XX~)X,]. 

Observe that A(X)TX - XTA(X) is skew-symmetric, and 

XT[(I - JE’)A(X)] = 0. 

On the other hand, for any skew-symmetric k X k matrix Z and for any 
n X k matrix V satisfying the identity XTV = 0, there exists obviously a 
perturbation X, for which 

and 

xrx* = z 

(I - XXT)X* = v. 

Consequently (3.2) implies that the set of equations 

A(X)TX = XTA(X). (3.3) 

A(X) = XXTA(X) (3.4) 

characterizes the critical points of fquad, concluding the proof. ??

At an arbitrary critical point the matrix S = XTA(X> is not necessarily 
positive semidefinite. The next lemma shows that this is necessary at the 
global maximum points of fquad. 

LEMMA 3.1. Zf X E V,,, is u global maximum of the functional fc,,,z,d, 
then the corresponding matrix 

S = XrA(X) 

is positive semi&finite. 
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Proof. Consider the decomposition 

A(X) = XS, 

and assume to the contrary that S is not positive semidefinite. Writing 

S = CACT 

where A is a diagonal and C is an orthogonal matrix, according to our 
assumption there is at least one negative element on the diagonal of A. 
Choosing an appropriate diagonal matrix D with values + 1 or - 1 on the 
diagonal, we can achieve that DA has only nonnegative elements in its 
diagonal. Obviously 

trDA > trA. 

With the notation 

Y = XCDCr 

one can write A(X) in the form 

A(X) = Y(CDACr). 

Observe that the column vectors of Y are orthogonal and 

2 xTAixi = trS = trd, 
i=l 

2 yTAixj = trDA. 
i=l 

Consequently 

The inequality 

k k 

c yiTAix, > c x;Aixi. 
i=l i=l 

i (yi - xJTAi(yj - xi) 2 0 
i=l 

(3.5) 

(3.6) 
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together with (3.5) gives that 

so X is not a global maximum. a 

Theorem 3.1 and Lemma 3.1 together yield that at global maximum 
points 

A(X) = XS, 

where S is a positive semidefinite matrix. Let us remark that a factorization of 
the form XS where XTX = I, and S > 0 is called a polar decomposition. 
(See [6].) Observe that 

A(X) = (A~x)([A~x)‘A(X)]~‘~)X)([A~X~~A~X~]”~) (3.7) 

determines a polar decomposition, where # denotes the generalized inverse. 
Consequently, S is always unique as the positive semidefinite square root of 
A(X)TA(X>, but the decomposition itself is unique only if S > 0.) 

Let us briefly analyze the connection between the singular value decon- 
position and the polar decomposition of the same matrix. More generally, we 
consider two types of decomposition of an n X k matrix B: 

B = XS, (3.8) 

where X is an n X k, S is a k X k matrix, X“X = I,, S is symmetric; and 

B = PVQ’, (3.9) 

where P is an n X k, Q,V are k X k matrices, P“P = Q“Q = I,, and V is a 
diagonal matrix. 

In the polar decomposition S > 0; in the singular value decomposition 
v 2 0. 

PROPOSITION 3.1. Let B be an arbitrary n X k matrix. The f&-mula~~ 

V,Q,P ---f S = QVQ’, X = PQ’ 
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and 

S,X + SQ = QV, P = XQ 

provide a correspondence between the decompositions of B of types (3.8) 
and (3.9). 

Proof. If B = PVQT is of type (3.91, then 

B = PQ’QVQ’ 

and X = PQT satisfies the equation XTX = I. Also S = QVQT > 0, so 
B = XS is a decomposition of type (3.8). 

Converselv, if B = XS is a decomposition of type (3.8), then considering 
the principal ‘&is transformation of S ieading 

S = QVQT 

to the equation 

and defining P = XQ. we get that 

B = PVQT 

is a decomposition of type (3.9). 

REMARK. Obviously V > 0 if and only if S > 0. Also, if B = XS is a 
decomposition of type (3.8), S = QVQT, then 

BQ = (XQ)Y 

BT(XQ) = QV. 

Observe that the columns of Q and those of XQ are orthonormal, so the 
absolute values of the diagonal elements of V, i.e. the absolute values of 
the eigenvalues of S, are the singular values of B. Consequently, if v,(B) > 
. . . > a,(B) denote the singular values of B, then 

and we have equality if and only if S > 0. 
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The considerations before this proposition suggest the algorithm outlined 
in the Introduction. From an arbitrary initial set of orthonormal k-tuples we 
define recursively a sequence in V,, k as follows: from the mth element of this 
sequence X’“’ E V, k 
the matrix A(X(“‘)) as 

the next one is obtained by a polar decomposition of 

A@(d) = X(m+ l)S(,,t+ 1) (3.10) 

Let us consider one single step in this iteration. To ease the notation let 
us denote the corresponding elements in V,,, k by X and Y, i.e. 

A(X) = YS. (3.11) 

Let us recall a theorem which was proved by Bolla [2] and, in a slightly more 
general form, by Brockett [4]. 

THEOREM 3.2. Assume that X E V,, k is a fixed orthonormal k-tuple. 
Then the solution of the minimization pro&em 

i llA,x, - yi]]’ -+ min, (3.12) 
i=l 

where yl, . . . , yk are orthonormal vectors is provided by the column vectors 
of Y in the polar decomposition of A(X) given by 

A(X) = YS, 

REMARK. In [4] the so-called matching problem A asks for the solution 
of the minimization problem 

5 )(zi - +(yi) (1’ += min, 
i=l 

where zi,yi, i = 1,. . . , k, are fixed vectors, and 4 is an element of a Lie 
group acting on Iw”. 
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REMARK. Since 

6 llAixi - yj112 = i IIAjxil12 + k - 2 i y&xi, 
i=l i=l i=l 

the problem (3.12) is equivalent to 

where xi,. . . ,xk and yl,. . . ,yk are orthonormal vectors. In other words, the 
algorithm described above is a partial optimization of the functional fbilin. 
Similar argument to the one which was used in the proof of Theorem 3.1 
yields that the critical points of the functional 

for fixed X E V,, k are characterized by the equations 

YTA(X) = A(X)TY, (3.14) 

A(X) = YYTA(X). (3.15) 

The inequality (3.6) can be now written as 

_fq~ad(~) + fq~ad(~) a 2 ftdin(x, ‘) (3.16) 

for any X,Y E V,,,; moreover, we have equality here if and only if X = Y. 
We shall exploit this elementary observation several times. It may be instruc- 
tive to write the inequality in form 

_ftAin(X~ Y> - fqu,d(X) Q_fquad(‘) - fbihn(Xp ‘17 (3.17) 

and to read it in the following way: if the substitution of one X for Y in 
fbili,(X, X) increases the value of the bilinear form, then the use of the same 
substitution as a second step also increases it. 
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4. STRUCTURAL PROPERTIES OF THE FUNCTIONALS 

First we determine the Hessian form of fqllad and fbilin at critical points. 

PROPOSITION 4.1. Consider a critical point X E V,>, of fquad. Let g he 
the derivative at X of a curve lying on the su$ace V,, k and going through the 
critical point X, i.e., let 4 be such that XTg is a skew-symmetric matrix. 
Then the quadratic form determined by the Hessian of fqrlad at X evaluated at 
S has the value 

tr iIj*A( ij) - tr eXTA(X)ijT. (4.1) 

Proof. Consider a curve X(t) E V,,, with continuous second derivative. 
and assume that X(0) = X, X’(O) = 6. Then 

= 2 2 x,(d)l‘A,x:(t) = 2 i Xi(t)TAiXl(t) 
i=l i=l 

= 2trA[X(t)lTX”(t) + trAIX’(t)lTX’(t). 

On the other hand, taking the second derivative of the identity 

x’(t)x(t) = I: 

we get that 

x’(t)xyt) + 2xyq’xyq + r(t)‘x(t) = 0; 

be., 

X’( t)X” (t) + X’( t)X’(t) is a skew-symmetric matrix. 

Evaluating these derivatives at t = 0, using the identity 

A(X) = XXTA(X) j 
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we obtain that 

&q”,a(xw) t=O = 2trA(X)%XTX”(0) = 2trA($)Tf. 

But A(XjTX is a symmetric matrix, and consequently 

trA(X)TXIXTX”(0) + 4’81 = 0, 

giving that the Hessian at 5 is (4.Q and concluding the proof. 

PROPOSITION 4.2. Assume that the pair X, Y E V,, k is a critical point of 
fbilin. Let 6,~ be the o!e rivatives (at X, Y) of such cukes in V,, k which go 
through X and Y, respectively. Then the Hessian offbilin at X, Y evaluated at 
f,q isgiven by 

tr&rA(n) - i[tr[XrA(Y)tr + trr]YrA(X)qr]. (4.2) 

Proof, Since the proof is similar to that of the previous proposition, we 
only outline it. Let X(t), Y(t) E V,, k be two curves with continuous second 
derivative for which 

X(0) = x, Y(0) = Y, X’(0) = E, Y(0) = q. 

Then 

$fbih(xO~ ‘@>I 
t=o 

= trA(X)rY”(O) + trA(Y)rX”(O) + 2trtrA(r)). 

Using that 

A(X) = WTA(X), A(Y) = XXTA(Y) 

and 

YTA(X), XTA(Y) are symmetric, 

XrX”(0) + gTg,YTY”(0) + qTq are skew-symmetric, 

we obtain that the value of the Hessian at 5, n is (4.2). ??
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If X is a local maximum of fquad, then the Hessian is negative semidefi- 
nite, i.e., 

tr gA(X)XgT >/ tr $rA( 5). (4.3) 

Although the inequality (4.3) 
proved that 

reflects the local properties of fquad, it can be 

fqucid(x> 2fquad(y> 

even in the case when Y is not necessarily in the neighborhood of X. 

DEFINITION 4.1. Consider an orthonormal set of vectors x1,. . . , xk in 
R”. We say that yl,. . . , yk is an elementary transform of x1, . . . , xk if one of 
the following two properties holds: 

(i) there exist 1 < i < j < lc such that 

Yi = xj> Yj = xi> Yl = Xl if 1 #i,j, 

(ii) there exists 1 < i < k such that 

yE is a unit vector orthogonal to x , , . . . , x k 

and 

Yl = Xl iflii. 

COROLLARY 4.1. Assume that X = [x1,. . . , xk] defines a local maximum 

of fqwrl. nm 

f,“dX> 2 fquadm~ 

where Y = [yl,...,yk] is an elementa y transform of [x 1, . . . , x k 1. 

Proof. First consider the case when y1 = x1 except for 1 = i and yi is 
orthogonal to x1,. . . ,xk. Consider the matrix 6 having zero columns except 
the ith one, which is y,. We can apply (4.3) because ErX = 0, which leads to 
the inequality 

tr g’EA(X)‘X > yFA,y,. 
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But the left hand side is exactly xrAixi. So the change xi + yi does not 
increase the value of fquad. 

Now consider the case when yr, . . . , yk is defined by interchanging the 
vectors xi and xj. In this case let the ith column of g be xj, the jth one be 
-xi, and the others be zero. Then the (i,j)th element of (‘X is 1, the 
(j, i)th element is - 1, the others are zero, so it is a skew-symmetric matrix; 
thus the inequality (4.3) should hold. But now 

tr eTA( f) = xTAixj + xrAjxi 

and 

tr tTi.jA(X)TX = xTAixi + xTAjxj. 

Consequently, the change xi + xj does not increase the functional fquad. ??

COROLLARY 4.2. Assume that fquad has a local maximum at X E V,> k. 
Then 

(i) if k < n, then the matrix A(XjTX is positive definite; in particular, 
the vectors A,x,, . . . , A k x k are linearly independent; 

(ii) if k = n, then the matrix A(X)TX can have only one negative 
eigenvalue, and its trace on the two dimensional subspaces is positive. 

Proof. Consider first the case when k < n. Then there exists a unit 
vector z E IR” which is orthogonal to x1,. . . ,xk. Let a = [al,. . . , akIT E Rk 
be an arbitrary nonzero vector. Define the matrix 5 as follows: 

6 = [alz,. . . , akz] = zaT. 

Obviously Xr& = 0, so we can apply (4.3). But 

tr QA(X)‘XgT = aTA(X)TXa, 

and 

tr gA( ij) = i afzTAiz > 0. 
k=l 

This implies that 

aTA(X)TXa > 0 

if a # 0, i.e., A(X)TX is positive definite. 
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If k = n, then the previous method cannot be applied directly. Since in 
this case XXT = XrX = I,, consequently 

tr cA(X)‘Xg’ = tr cTXXTtA(X)I‘X. 

Let us recall [9] that any real skew-symmetric matrix B is similar (under 
real orthogonal transformation) to a block-diagonal matrix, where the blocks 
are of order one or two. The blocks are skew-symmetric matrices, so those of 
order one are zero matrices. This implies that every nonzero eigenvalue of 
the negative semidefinite symmetric matrix B” is of even multiplicity. 

Conversely, if a symmetric matrix C has the representation 

c = - i A;DiDJ?‘, (4.4) 
j=l 

where 

Dj = Ix]'Yjl> j=l ,...,Z, 

and the vectors xj, yj, j = 1,. . . ,I, are orthogonal unit vectors, then the 
matrix 

B = 2 c Aj(xjy; - yjxl‘) 
j=l 

is skew-symmetric and 

C = B’. 

Returning to the inequality (4.3), we have tr cTA(EJ > 0 if 5 + 0; thus 

tr gTXXTgA(X)?‘X > 0 if f # 0. (4.5) 

Since the left hand side is linear in ~‘XX“~, which can be written in the 
form of (4.4), it is enough to check it for each summand in (4.5). Conse- 
quently, (4.5) is equivalent to 

tr [x,y][x, y]*A(X)‘X > 0 
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for any pair of orthonormal unit vectors x, y. Thus 

x?‘A(X)~X.X + Y~A(X)~XY > 0, 

proving part (ii) of the corollary. 

REMARK. If h, > ... > h, denote the eigenvalues of A(X>TX, then we 
obtain that h, _ r > 0, and if h, < 0 then h, _ 1 > 1 A,(. 

COROLLARY 4.3. Assuww that fbilin has a local maximum at (X, Y), where 
X, Y E V,, k. Then 

(i) if k < n, then the matrices XTA(Y) and YTA(X) are positive semidefi- 
nite; 

(ii) ifk = n, th en the traces of the matrices XTA(Y) and YTA(X) on any 
two dimensional subspace are nonnegative. 

Proof. The Hessian at a local maximum must be negative semidefinite, 
in particular-choosing q = O-we obtain that 

tr gXTA(Y)&r > 0 

if tTX is skew-symmetric, and similarly-if 5 = 0-- 

tr rlYrA(X)qT 2 0 

if qT Y is skew-symmetric. Consequently, the proof of the previous corollary 
can be repeated here. ??

THEOREM 4.1. 

(i) Zf X E V,, k is a local maximum of Squad, then (X, X> is a local 
maximum off bilin, 

(ii) Zf k < n and (X, Y) (X, Y E V,, k) is a local maximum of fbilin, then 
X = Y and X is a local maximum of fquad. 

Proof. We start with (ii). If (X, Y) is a local maximum of fbilin, then Y is a 
local maximum of the functional Z + fbilin(X, Z), where X is fued. Corollary 
4.3 gives that YTA(X> > 0, so according to the Remark after Theorem 3.2 it is 
a global maximum. Consequently 

trZTA(X) < trYTA(X) 
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for every n X k matrix Z with orthonormed column vectors. In particular 

trXTA(X) < trYTA(X). 

Similarly, 

trYTA(Y) < trYTA(X). 

Comparing this with (3.17), we obtain that X = Y. 
(i): Let X E V,, k be a local maximum of fquad. If Y and Z are in a small 

neighbourhood of X, then 

The inequality (3.16) gives that 

proving part (il. 

Now we study the set of critical points of fquad. Denote 

29 = {x E Vn,kJX is a critical point of f;,,,d}. 

We have proved that the equations 

A(X)TX = XTA(X), 

A(X) = XXTA(X) 

characterize the critical points. Since these are polynomials in the elements of 
X, the set $5’ can be written as 

E’= ;,, 
j=l 

whereejcVVn,k,j=l ,..., N, are connected submanifolds. 
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PROPOSITION 4.3. Let X E g be a critical point. Denote by SZx the 
Hessian of fquad at X. Then the n X k matrix 6 is an eigenvedor of Zx if and 
only if there exists a A E [w such that 

A(t) - eA(X)TX - XA(&)TX - XA(X)Tg = A(1 + XX’)g (4.6) 

and XT6 is skew-symmetric. 

Proof. According to Proposition 4.1 the quadratic form determined by 
Zx at 5 is given by (4.1). Consequently the bilinear form determined by this 
quadratic form is 

Xx(5,rl) = trrlA(g) - trrlXTA(X)tT 

- tr qT(I - XXT)A( f) + tr qTXXTA( 6) 

- tr(I - XXT)qXTA(X)tT - trXXTqXTA(X)tT. 

Using that qTX and tTX are skew-symmetric and XTA(X)XT = A(XjT, we 
obtain that 

= tr qT(I - XX’)[A(&) - &A(X)TX] 

+i tr qTX[XTA(g) - A(g)‘X - XTdjA(X)TX - XTA(X)XTe] 

If g is an eigenvector with the eigenvalue h, then 

This implies that 6 is characterized by the equations 

(1 - =‘)[A(0 - 6A(X)TX] = A(1 - XX’)& 

XT[A(g) - XA(#X - tA(X)TX - XA(X)Tg] = 2hXTij. 
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Multiplying the second equation by X and adding them together, we obtain 
that 

A(S) - SA(X)TX - XA(QTX - XA(X)Tc = A(1 + XX’)&, 

which is obviously equivalent to the pair of equation above. ??

PHOPOSITION 4.4. 
KerZx if and only if !j 

Let X E ej he a critical point. Then e belongs to 
is a tangent sector of the manifold gj. 

Proof. Obviously any tangent vector of % at X lies in Ker2Zx. Con- 
versely, in view of Theorem 3.1, the tangent vectors of F1 at X are 
characterized by the equations 

e“x + xrg = 0, (4.7) 

$rA(X) + XTA(t) = A(c)7‘X + A(X)‘& (4.8) 

A(c) = tA(X)rX + XA(&)‘X + XA(X)r& (4.9) 

Now if 5 E KerZx, then &‘X is skew-symmetric and (4.8) holds. Multiplying 
(4.8) by XT ’ d dn using that X’s = - g“X, XA(X)TX = A(X), we get that (4.9) 
holds as well. Thus, 5 is a tangent vector of gj. ??

REMARK. Without going into the details, we remark that this proposition 
implies that over Z, the function fri,,~~, is a so-called Morse-Bott function, so 
the Morse-Bott inequalities hold connecting the Betti numbers of the Stiefel 
manifold V,,. k 
Willems [S].) 

with the indices of the functional f,luacl. (Cf. Bymes and 

5 THE CRITICAL POINTS OF THE QUADRATIC FUNCTIONAL 
IN SOME SPECIAL CASES 

In this section we study the structure of frl,,~,~i assuming some relations 
between the matrices A,, . . . , A,. 

Assume that A, = ... = A, = A > 0. Then 

fquad(X) = trXX7“, 
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and XXr is a projection, dim Range@Xr) = k. This functional arises also in 
the so-called total least squares problem, and it was analyzed in detail in [5]. 
In this case the value of this functional depends only on the subspace 
generated by the column vectors of X. This is an element of the Grassman- 
nian manifold G, k. It was proved that there is a unique global maximum (in 
G,,, k) if and only if A, > A,, 1, where A, z A, > ..a 2 A, > 0 are the 
eigenvalues of A. Also, fquad over Z, is a perfect Morse-Bott function, i.e., 
there are equalities among the Morse-Bott inequalities. An immediate conse- 
quence of this statement that every local maximum is also a global maximum 
and the set of global maxima is a connected submanifold. It is a so-called 
Schubert subvariety of G,,, k. 

II. 
The matrices A 1,. . . , A, commute, so there exists a common eigenvector 

system. In this case we may assume that they are diagonal matrices 

Aj = diag(A{,...,A{). (5.1) 

It is natural to look for a global maximum in the set of matrices X having 
eigenvectors as their columns. Under the previous condition the functional 
fquad has the form 

f&(X) = i 5 A$$. (5.2) 
j=l i=l 

Let us remark that the special case k = n was analyzed by Brockett [4]. To 
see this, note that he considered the problem of minimizing 

k 

c trXrQjXRj, 
j=l 

(5.3) 

where Qj, Rj, are diagonal matrices. Denote Qj = diag(qi, . . . , qi), Rj = 
diag(r{, . . . , r;l>. This function can also be written as 
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where h;l = Cf+qfri. This latter identity is just a diad decomposition of a 
matrix with elements 

Since every matrix can be written in this form, we see that any functional of 
the form (5.1) can be written as (5.3). Brockett analyzed this problem in 
connection with matching two sets of vectors in the n-dimensional space by 
permuting the coordinate axis. 

(The special case of (5.3) when k = 1 was analyzed by von Neumann [S].) 
Returning to the functional (5.1), first we show using linear programming 

methods that the global maximum is taken on a subset of the common 
eigenvectors of the matrices A,, . . . , A,. 

DEFINITION 5.1. An n X k matrix II = [bij] is called a permutation 
matrix if there exists an injection 

r{l,..., k} + {I,..., n} 

such that 

bjj = 
1 if i=rr(j), 
0 otherwise. 

THEOREM 5.1. Assume that the matrices A,, . . _ , A, commute. Then the 
global maximum of fquad is attained on a subset of the commn eigenvectors. 

Proof. Diagonalizing the matrices A,, . . . , A,, we can write 

k n 

fquad(X) = c c /I+;. 
j=l i=l 

After this transformation the common eigenvectors of A,, . . . , A, are just the 
unit vectors e,, . . . , e,. 

Introducing the new variables 
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we see that fquad is linear in zij, i = 1,. . . ,n, j = 1,. . . , k. Instead of using 
that the vectors xl,...,xk are orthogonal, we relax the conditions by maxi- 
mizing 

under the conditions 

5 zij = 1, 2 zij Q l, zij > 0. 
i=l i=l 

This is a special form of linear programming (LP) problem-the so-called 
transportation problem. 

Since the extremal points of the condition set are given by permutation 
matrices, the global maximum is attained on a permutation matrix II. 
Although we have maximized the functional over a larger (convex) set, if the 
matrix [ zijli j is a permutation matrix, its square root taken elementwise, 

X=IID 

[D = diag(cw,,..., ok>, cri = + l], is a matrix with orthonormal column 
vectors. In other words, 

proving the theorem. ??

The next proposition describes the Hessian matrix 3x when X = IID, II 
is a permutation matrix, and D is diagonal with f 1 diagonal entries. As we 
have seen, these are the elementwise square roots of the extremal points of 
the larger set considered in the LP problem. 

PROPOSITION 5.1. Assume that A i, . . . , A, are diagonal matrices, X = 
DD, where II is a permutation matrix determined by the injection 
IT : (1, . . . , k} + (1, . . . , n}, D = diag( ai, . . . , CQ), cq = + 1. Denote J = 
Range(D). Consider the following matrices: 

(1) if 1 Q 1 Q k, j E J, then let the (j, 0th element of the matrix @I ’ be 
equal to 1, the others be zero; 



HETEROGENEOUS QUADRATIC FORMS 353 

(2) i$ 1 < j < 1 < k, then let the (r(j), 1 )th element of I$,’ be equal to 
1, the CT(~), j)th element be equal to - 1, the others be zero. 

Then the matrices Qx’, 1 G 1 f k, j E], I$.‘, 1 <j < 1 G k, form a com- 
plete system of orthogonal eigenvectors of xx with the eigenvalues 

and 

respectively. 

Proof. It is an elementary calculation to show that the matrices Q, ‘, nJ ’ 
satisfy the eigenvector equation. Since they are orthogonal and their number 
(n - k)k + [k(k - 1)1//2 coincides with the size of Zx, they form a com- 
plete orthogonal eigenvector system, concluding the proof. ??

COROLLARY 5.1. Assume that A L, . . . , A, are commuting matrices, and 
let (x,,..., x,,) be their common eigenvector system. Consider a subset 

XT(l)> . . . 7 %(k) of these eigenvectors, where TT : {1, . . . , k} + (1, . . . , n} is an 
injection. Then X = [x~(~), . . . , xnckj ] determines a local maximum of fcJuad if 
the elementary transforms of x~(,), . . . ,xpckj decrease the value of this 
functional. 

Proof. First diagonahze the matrices A,, . . . , A,. Now observe that an 
elementary transformation xrrCjj -+ xrClj changes the value of fqrlad by 

(A&, + hi,(,)) - (A’,(,, + 

and the change xTClj + xj, j @ J, changes fquad 

A: - A&,,. 

hi,(j))) 

bY 

According to our assumption these are negative; thus the Hessian at X, Zx, is 
negative definite, proving that X is a strict local maximum. ??



354 

EXAMPLE. Let n = k = 3, and define 
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A, = diag(9,7,0), A, = diag(0,5,4), A, = diag(3,0, l), 

The previous proposition and corollary give that the set 

e,,e,,e, 

determines a global maximum of fquad, while 

e2,e3,e1 

provides a strict local maximum of fquad, because the elementary transforma- 
tions always decrease the value of fquad: 

fquad(el~ e2, ea) = 15, 

fquad(e2~e3~el) = 14. 

EXAMPLE. Let n = k = 3, and define 

A, = diag(9,7,0), A, = diag(O, 5,5.5), A, = diag(2.5,0,1). 

Then e,, e2, ea and e2, ea, e, are strict global maxima of fquad, so in this case 
the maximum is attained on two different isolated points. 

6. THE BEHAVIOR OF THE ALGORITHM 

Let us return to the algorithm defined in (3.10). Choose an arbitrary 
initial point X(O) = [xi’), . . . , x’,~‘]. 

THEOREM 6.1. Define the sequence XC”‘), m > 0, using the polar decom- 
position 

$X(d) = X(m+ l)$m+ 1) 
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Then fquad(X(“‘)) is a nor&creasing sequence and 
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dist(X’“‘, if?‘> ---f 0 as in + m. 

Proof. As we pointed out, XCm+ ‘) is obtained by maximizing fbjlin(XCm), Y) 
in Y. In particular 

fbilin(x+), X”” + 1’) 2 fq”,d(X(n’)). 

The inequality (3.16) implies that 

f,,,d(X (m+ 1’) > f’$“(X@), X’” + I)), 

proving that fquad(XCm)) is nondecreasing. Since V,, k is a compact set, this 
sequence is bounded; thus it is a convergent sequence. 

Since the matrices A,, . . . , A, are positive definite, there exists a constant 
c such that 

for any systems of orthonormal vectors x1,. . . , xk and yi, . . . , yk. The preti- 
ous inequalities show that 

fquad(X 
(nl+ 1) - X’““‘) + 0; 

thus IEC”’ + i) - X(“‘l( + 0. Furthermore, since 

fquad( x’“’ + ‘) - xc”“) = fquad( x cm + 1’) + fc,,lad( X’““) - Bfbli”( X’“’ + ‘), X”“‘) 

G fquad(X (“I+ 1’) - fquad(Xy, 

we obtain that 

.g IIx(nl+I) _ pq(” < x. 

m=O 
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At the same time, if X is a limit point of the sequence Xc”‘, m > 0, then 
obviously 

A(X) = XS, xTx=&., s>o; 

thus X is a critical point. The compactness of FF implies that 

dist(X’“‘, ,8) -+ 0. H 

REMARK. In the case when fquad has isolated critical points, the previous 
theorem shows that the algorithm converges to one of the critical points. But, 
in general, when in the decomposition g = U gj the submanifolds gj are 
not zero dimensional, a more sophisticated analysis is required. 

THEOREM 6.2. Assume that k < n. If there exists a global maximum X 
among the limit points of the sequence Xc”‘, m > 0, then 

XC”’ + X as m -4 co. 

Proof. The proof is based on the second order approximation of the 
algorithm (3.10). Let X b e such a critical point of fquad for which the vectors 
A,x,, . . . , Akxk are linearly independent. Consider two curves X(t), Z(t) E 
V n, k> three times differentiable and defined in a neighborhood of zero, such 
that X(O) = Z(O) = X. Denote X’(O) = 5, Z’(O) = q. Apply one step of the 
algorithm to each points on the curves X(t), Z(t). In this way we obtain the 
Gives x(c), z(t,,& i.e., 

A(X(t)) = sA(X( t))m 

A(Z(t)) = mA(Z(t))m 

and A(X(t))m > 0, 

and A(Z(t))m > 0. 

Denote the derivatives of these curves at zero by 

h(t) =x(o)‘, 

h(q) = Z(0)‘. 
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We show that 
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and 

trh(g)TA(rl) = trh(q)TA(S) (6.1) 

treTA(q) = trh(c)A(X)rXqT = trgA(X)TXh(q)T. (6.2) 

For this, observe that, differentiating the symmetric matrix A(Z(t))Ta 
at zero, we obtain that 

A(+X + A(X)Th(q) = XTA( q) + h(+A(X). 

Since cTX is skew-symmetric, we get that 

trgTX[A(q)T + huh] = 0. 

Differentiating the identity 

A(X( t)) = mA(X(t))%@ 

at zero, we obtain that 

A(&) = h(g)A(X)TX + XA(QTX + XA(X)Th(Q. 

Similarly , 

A(q) = h(q)A(X)TX + XA(qfX + XA(X)Th(q). 

This gives that 

XA( #X + XA(X)Th( q) = A(q) - h( q)A(X)TX. 

Substituting this into (6.3), we get that 

(6.3) 

tr gTA(q) = trh(q)A(X)TX&T = tr gA(X)TXh(q)T, 
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using that A(XjTX is symmetric. This proves (6.2). Using h(E) in this identity 
instead of E, we conclude that 

trh(&lTA(rl) = trh(q)NX)TWg)T (6.4) 

must hold, proving (6.1) by symmetry. 
Now, if ,$ E KerZZ, then there exists a curve X(t), X(O) = 0, X’(O) = 5, 

such that every element X(t) is a critical point of &_d. Consequently, 

a= X(t), i.e., h(e) = g. This implies that 

tr qTA( 5) = trh( g)TA( q) = trh( q)TA( 5). 

In particular, if 7 is orthogonal to Ker& with respect to the scalar product 
defined by ( 5, q ) = tr qTA( &), then h(q) w-ill also be orthogonal to KerZx . 

Consider now a second order approximation of the functionals 

We have 

X(t) = x + et + $xyo>t” + o(t3), 

?i@ = X + h( $)t + fx”P + o( t3)? 

_&ad(X( t ) ) = &ad(X) + t [tr SrA(X) + tr XrA( S) 1 

+ $[trF(O)‘A(X) + trXTA(X”(0)) + 2trtTA(g)] 

+ o(t3). 

Since X E @, we have that tr tTA(X> = 0 and 

A(X) = XA(X)TX. 

Using that X”(O)X + gTg is skew-symmetric, we obtain that 

fqua@(t)) =fquadX) + t’[tr &(g) - trbWTWT] + o(t3). 
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Similarly 

+ t”(trh(t)rA(g) - f[trcA(X)TXtr + trh(g)A(X)TXh(E;)?‘]) 

+ O( 9) 

and 

.&ad(Gq = fquadm 

+ t2[trh(SlTA(h(S)) - trh(S)NX)TJWS)T] 
+ o(t3). 

But the construction gives that 

so the same inequalities hold for the second derivatives, i.e., 

tr gTA( 6) - tr gA(X)TXtT 

< ~[trh(~)A(X)‘Xh(~)‘. - tr gA(X)‘XeT] 

< trh(t)TA(h(t)) - trh(S)A(QTXh(&)?‘, 
where in the second term we have applied (6.2). 

If X is a global maximum point, then according to Corollary 4.2 the 
vectors Aix,, . . . , Akxk are linearly independent, so the previous considera- 
tions can be applied. But now 

fqu&@) G&ad(X) ) 

so 

trh(S)TA(h(t)) < trh(g)A(X)TXh(g)T = trh(glTA(&) 
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must hold. The inequality (3.16) gives that 
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trh(e)TA(h(e)) < trerA(&) = trgA(X)TXh(Q)T. 

Moreover 

trh(E)TA(h(t)) + trtTA(t) > 2trh(E)TA(S), 

implying that 

0 > trh(oTA(h(&)) - trh(f)A(X)TXh(S)T 

a i[trh(S)TA(h(5)) - trgTA(S)]. 

Now, if f is orthogonal to KerZx in the scalar product introduced above, 
then h(t) is also orthogonal; thus 

trh(tlTA(h(S)) < trSTA(E) if 6 I Ker&. 

Using the compactness of F’, we obtain that 

co := 
sup sup t’w)TA(w)) < 1 

XEP 5 trtTA(5) ’ (6.5) 

where the second sup is taken over the n X k matrices g for which 

5’X is skew-symmetric 

and 

treTA(r)) = 0 for every q E KerZ”, . 

Now, let us convert V,,, into a Riemannian manifold, introducing the 
quadratic forms of the tangent spaces TX of V,,, k at X defined by 

trfTA(t), 

where E_‘X is skew-symmetric. 
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Consider the sequence of k-tuples of orthonormal vectors X(O), X(l), . . . 
produced by the algorithm. Let X be a limit point of thi: sequence, and 
assume that X is a global maximum of fquad. Denote by ‘Z the connected 
submanifold of G? containing X; Eject a geodesic curve from every element of 
the sequence X(O), X(l), . . . to %?. Assume that the curve are arclength-param- 
etrized, and their value at zero is Z (m). Denote their derivatives at zero by 
g(O). Then 

XC”’ = Z’“’ + podR(x(~~), Z’“‘) + o( d,(X”“‘, Z’“y). 

where d,(X’““‘, Z’“‘) is the Riemannian distance between X’“” and Z’““, and 
the remainder term is uniform over SF. Because of the parametrization of 
these geodesic curves, 

tr @“‘)A( cc’“)) = 1. 

Applying one step of the algorithm to the points on this geodesic, we get that 

x(rn+ J) = ~(“1) + h( ,$(m))d,(x(“‘), z(“‘)) + o( d,(X(“), Z(m))2), 

implying that 

4(X Cm+ 11, z(d) < cod,(x’“‘, Z’““) + ~,(X”“‘, ZcnL))“, 

where K does not depend on the sequence X(O), X(r), . . . . This gives that 
there exists a c < 1 such that if m is large enough, then 

4(X bn+l), z’“+ 1’) < d,$p+‘), Z’““) < c(~,(p’, Z’““). 

Thus 

4(X j Cm+ 1) z(m)) arld d,(X(“‘+l), Z(m+ 1’) 

tend to zero exponentially fast, so Z(“” and likewise X’““’ converge exponen- 
tially fast as well, proving our theorem. H 
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7. POSSIBLE GENERALIZATIONS TO CONVEX FUNCTIONS 
RESTRICTED TO THE STIEFEL MANIFOLD 

Instead of sums of quadratic functions, we might consider convex function 
fi, . . . fk defined on Iw” and study the problem 

under the condition that xi,. . . , xk form an orthonormal system. Let us 
observe that a step of the algorithm considered in Section 3 can be formu- 
lated as maximizing the linear approximation of fquad at X(“) over the Stiefel 
manifold V’, k, i.e. 

trYrA(X) + max . 
(Y~V,,,) 

This idea can be applied to general convex functions as well. Starting with the 
element X(0) E V,, k, this produces a sequence X(l), Xc2), . . . E V,, k. Since 
the supporting hyperplane of a convex function is always below the graph of 
the function, we obtain that 

f( X’“‘) 6 f( xc”+ 1’). 

The compactness of V,,, implies again that this nondecreasing sequence is 
convergent. 

Now we construct an example showing that in general it may happen that 
the sequence X (m) is not convergent although its limit points are global 
maxima of the functional f. Let n = 3, k = 1, i.e., we would like to maximize 
a convex function f(r) on the S-dimensional sphere S’. Every element on 
this surface can be given by its polar coordinates. If y E S2, then cr(y> 
denotes its longitude, p(Y) d enotes its latitude. We define the convex 
function f as the supremum of linear functions in the way that the 
equator-the set of points with zero latitude-will be the set of global 
maxima. To this aim, first choose an increasing sequence of integers kj > 8, 

j >, 1 for which 2&l/ fi < m. Let I, = C7_4~/ A, m, = Cj”zfkj. 
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Define the sequence x0,x1, x2,. . . E S” as follows: 

363 

(Y(Xj) = (j - m,,? if m, <j < m,,,, 
n 

p(x,) = 1, - jT+ if m, <j < mn+,. 
n 

This sequence lies on a spiral curve converging to the equator. Consider the 
function 

where cj > 0 is an appropriate sequence. We are going to show that this 
sequence can be chosen in such a way that the equator is the set of global 
maxima off and if the algorithm starts at x0 then the sequence produced by 
the algorithm is exactly the sequence xj, j 2 0. 

Since the linear function c XT J J+ {x has a unique global maximum on S2 at 
xj+ r, for the last statement it is enough to check that the linear approxima- 
tion at xj is equal to cjxT+ r x-in other words, this is the supporting 
hyperplane at xf. For this the inequalities 

T 
'j'j+l j x >cxT I l+l'jl 1 #j, 

should be fulfilled..Taking first 1 = j - 1, we get 

1 
Cj > cj_l 7' 

xj+ lxj 

But, if m, <j < m,,, then xT+,xj = cos@~r/k.) > 1 
enough to assume that 

(7.1) 

#rr/k,)", so it is 

‘.i 1 
-zz 

‘j-1 1 - +(2v=r/k,,)‘. 
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Now comparing the points x,,,“, x,“+ ,, we have to check the inequality 

cfn,xT, +1%7l ” n ’ %?ln+,XTm,+,+Pm . n (7.2) 

But x’, +ix, ” n = cosGr/k,), XL,+,+ ix,” < xT,“+,x,n = cos(47r/ A). 

Since 

~cos~>[l-~(~)‘l*[l-~(~~] 
c 

>exp[-(F)-(l+i.)]>l-y-y 

we see that (7.2) holds true. Similar calculations show that (7.1) is fulfilled for 
every 1 z j. Observe that the previous calculation gives that c, is an increas- 
ing bounded sequence. Obviously 

f(x) < sup CtI 
n 

for any x E S2. On the other hand, if p(x) = 0, then there exists a subse- 
quence x,~ converging to x; consequently 

CnkXnk+l x+ lime,, 
7x-m 

and thus x is a global maximum point. 
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