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Introduction
A general (usually not linear) statistical model of the latent variable approach of PLS is stated in terms of joint
distributions, and solved by the spectral or singular value decomposition (SD or SVD) of the Hilbert–Schmidt
operator taking conditional expectation between the margins. In the possession of an i.i.d. sample from a
multivariate distribution, the components of which are divided into two parts (in a symmetric or asymmetric way),
we make inference via the empirical covariance and cross-covariance matrices (in the multivariate Gaussian case)
or the normalized contingency table (in the case of categorical data). Compromise factors of several data sets are
also looked for, based on a novel algorithm for maximizing the sum of heterogeneous quadratic forms.

1 Representation of joint distributions
Let (ξ,η) be a pair of random variables defined over the product space X ×Y and having joint distribution W with
margins P and Q, respectively. Assume that the dependence between ξ and η is regular, i.e., their joint distribution
W is absolutely continuous with respect to the product measure P×Q, w denotes the Radon–Nikodym derivative
(notation of A. Rényi1, see [1]). In the spirit of [2], H = L2(ξ) and H ′ = L2(η) denote the sets of random variables
which are functions of ξ and η, and have zero expectation and finite variance with respect to P and Q. Both H
and H ′ are Hilbert spaces with the covariance as inner product; further, they are embedded as subspaces into the
L2 space defined likewise by the (ξ,η) pair over the product space.

Let PX : H ′→ H and PY : H → H ′ be the integral operators taking conditional expectation between the two
margins, P∗X = PY . Provided

R
X

R
Y w2(x,y)Q(dy)P(dx) < ∞, PX and PY are Hilbert–Schmidt operators with SVD

PX =
∞

∑
i=1

si〈.,φi〉H ′ψi, PY =
∞

∑
i=1

si〈.,ψi〉Hφi, PX φi = siψi, PY ψi = siφi (i = 1,2, . . .), (1)

where for the singular values 1 > s1 ≥ s2 ≥ ·· · ≥ 0 holds, since the operators PX and PY are in fact orthogonal
projections from one margin onto the other, and ψi ∈ H, φi ∈ H ′ are the corresponding function pairs.
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1.1 When the role of the two spaces is symmetric
The pair (X,Y) of k-dimensional random vectors with components in H and H ′, respectively, is called k-dimensional
representation of the product space endowed with the measure W if EPXXT = Ik and EQYYT = Ik.
Theorem 1. With the notation of (1), the minimum of the cost EW‖X−Y‖2 of this representation is 2∑

k
i=1(1−si),

and it is attained with the k-dimensional representation X∗ = (ψ1, . . . ,ψk) and Y∗ = (φ1, . . . ,φk).
If k = 1, Theorem 1 gives the solution of the maximal correlation problem of A. Rényi: maxψ∈H,φ∈H ′ CorrW(ψ,φ)=

max‖ψ‖=‖φ‖=1 CovW(ψ,φ) = s1; or equivalently, min‖ψ‖=‖φ‖=1 ‖ψ−φ‖2 = 2(1− s1), and both are attained on the
ψ1,φ1 pair. When X and Y are finite sets, the solution corresponds to the SVD of the normalized contingency
table P−1/2WQ−1/2, and the representatives are obtained by the correspondence vector pairs. Since numerical
algorithms are capable to find singular vector pairs orthogonal in Euclidean norm, when performing correspondence
analysis, we have to normalize the underlying contingency table W with the diagonal matrices P and Q containing
the probabilities, corresponding to P and Q, in their main diagonals. If ξ and η are multivariate Gaussian, then
their maximum correlation is the largest canonical correlation, realized by appropriate linear combinations of
them. We can find canonical correlations successively; the procedure relies on the SVD of the matrix C−1/2

11 C12C−1/2
22 ,

where the covariance- and cross-covariance matrices C11, C22, and C12 are estimated from a sample.

1.2 When the role of the two spaces is asymmetric
Let ψ be the response, and φ be the predictor, and only ‖ψ‖ = 1 is assumed when ‖ψ−φ‖2 is minimized. Now
the minimum is 1− s2

1, attained with the ψ1,s1φ1 pair. This is the nonlinear regression problem, and based on a
sample, the iteration of the ACE (Alternating Conditional Expectation) algorithm of [2] converges to the solution.

1.3 The case of a symmetric joint distribution
Here W is a symmetric measure with margin P, H and H ′ are isomorphic, and PX is selfadjoint with SD PX =
∑

∞
i=1 λi〈.,ψ′i〉H ′ψi, where |λi| ≤ 1, and PX ψ′i = λiψi, where ψi and ψ′i are identically distributed (i = 1,2, . . .).

Theorem 2. Assume that 1 > λ1≥ λ2≥ ·· · ≥ λk > 0. Then the minimum of EW‖X−X′‖2 subject to EPXXT = Ik,
where X and X′ are identically distributed, is 2∑

k
i=1(1−λi), and it is attained with X∗ = (ψ1, . . . ,ψk).

A finite X belongs to the vertex-set of a weighted graph, with edge-weights wii = 0, wi j = w ji ≥ 0 (i 6= j)
summing to 1. The operator PX corresponds to the normalized modularity matrix of the graph, and based on the
low-dimensional representatives of the vertices, spectral clustering techniques are to be used, see [1].

2 Compromise factors of independent samples and conclusions
Having k independent samples with underlying n-dimensional random vectors X1, . . . ,Xk (k≤ n), we are looking
for compromise factors, i.e., linear combinations aT

i Xi that maximize Var(∑k
i=1 aT

i Xi) = ∑
k
i=1 aT

i Ciai subject to
aT

i a j = δi j (i, j = 1, . . . ,k), where Ci is the covariance matrix of the i-th sample. In [3], we introduced a novel
algorithm to find the compromise vectors ai’s, the coordinates of which are loadings characterizing the samples in
relation to the others; an application for finding compromise factors of three nephrotic stages will be presented.

To sum up, via the above representations we are modeling the relations between two or more sets of observed
variables. Our theory extends to the non-Gaussian case, and the number of latent variables depends on the spectral
properties of the underlying operators. Sometimes we use preliminary regularization to treat non-linearities in the
data. This theory has applications in non-parametric regression (see [2]), correspondence analysis, and spectral
clustering of social networks (see [1]). For the SD or SVD, fast numerical algorithms are at our disposal (e.g., the
Lánczos method), which usually make use of the conjugate gradient method, a well-known PLS technique.
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