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Abstract: Given a weakly stationary, multivariate time series with absolutely summable autocovariances,
asymptotic relation is proved between the eigenvalues of the block Toeplitz matrix of the �rst n autocovari-
ances and the union of spectra of the spectral density matrices at the n Fourier frequencies, as n → ∞. For
the proof, eigenvalues and eigenvectors of block circulant matrices are used. The proved theorem has impor-
tant consequences as for the analogies between the time and frequency domain calculations. In particular,
the complex principal components are used for low-rank approximation of the process; whereas, the block
Cholesky decomposition of the block Toeplitz matrix gives rise to dimension reduction within the innovation
subspaces. The results are illustrated on a �nancial time series.
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1 Introduction
Let {Xt} be a weakly stationary, real-valued time series (t ∈ Z). Assume that E(Xt) = 0, c(0) = E(X2t ) > 0,
and the sequence of autocovariances c(h), (h = 1, 2, . . . ) is absolutely summable; obviously, c(h) = c(−h).
Then it is known that the Toeplitz matrix Cn = [c(i − j)]ni,j=1, that is the covariance matrix of the random
vector (X1, . . . , Xn)T , is positive de�nite for all n ∈ N (the vectors are column vectors and T denotes the
transposition). Under the absolute summability condition, the spectral density function f of theprocess exists
and it is continuous. We can as well use [−π, π] or [0, 2π] for a complete period of f , and in view of f (ω) =
f (−ω) = f (2π −ω), it su�ces to con�ne ourselves to the [0, π] interval. In [1], an asymptotic relation between
the eigenvalues of Cn and the values f (ωj) is proved as n → ∞, where ωj = j 2πn is the jth Fourier frequency,
j = 0, 1, . . . , n − 1.

In the present paper we prove a similar, albeit more complicated, result in the multivariate case. Let {Xt}
be a weakly stationary d-dimensional time series, t ∈ Z and the state space is Rd. Again, E(Xt) = 0 and the
sequence of the d × d autocovariance matrices C(0), C(1), C(2), . . . is absolutely summable (entrywise); also
C(−h) = CT(h) and C(0) is the usual covariance matrix of Xt. Now the nd × nd covariance matrix Cn of the
compounded random vector (XT1 , . . . ,XTn )T is the following symmetric, positive semide�nite block-Toeplitz
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matrix:

Cn :=


C(0) C(1) C(2) · · · C(n − 1)
CT(1) C(0) C(1) · · · C(n − 2)
CT(2) CT(1) C(0) · · · C(n − 3)
...

...
...

. . .
...

CT(n − 1) CT(n − 2) CT(n − 3) · · · C(0)

 , (1)

the (i, j) block of which is C(j − i). The symmetry comes from the fact, that the (j, i) block is C(i − j) = CT(j − i).
At the same time, we consider the (under our conditions, existing) spectral density matrix f of the pro-

cess. This is a self-adjoint, positive semide�nite, d × d matrix, which is, in fact, the Fourier transform of the
autocovariance matrices:

f (ω) = 1
2π

∞∑
h=−∞

C(h)e−ihω , ω ∈ [0, 2π].

It has real diagonal, but usually complex o�-diagonal entries. In view of f (−ω) = f (ω), it su�ces to con�ne
ourselves to the [0, π] interval (here · denotes the complex, entrywise conjugation).

In our main theorem, we state that for ‘large’ n, the eigenvalues of Cn asymptotically comprise the union
of the spectra of the spectral density matrices f (ωj), j = 0, 1, . . . , n − 1. (We use spectra in two di�erent
meanings here: for the eigenvalues and for the spectral representation of weakly stationary processes.) The
theorem also has the computational bene�t that instead of �nding the eigenvalues of an nd × ndmatrix (that
needsO(n3d3) operations) we can �nd the eigenvalues of number n of d×dmatrices (thatmeans onlyO(nd3)
operations).

Under our conditions, the rank r of f (ω) is almost surely constant on [0, π], but it can be less than d.
It is true for sliding summations (two-sided moving average processes), in particular, for regular ones (one-
sided moving average processes). Processes of rational spectral density, e.g., VARMA processes, are such. At
the same time, the dimension of the innovation subspaces, which equals to r, can be concluded from the
diagonal blocks of the block Cholesky decomposition of Cn, and it can also be reduced in the time domain
with usual principal component (PC) analysis techniques. In parallel, in the frequency domain, an m-rank
approximationwithm ≤ r is also possible by using PC transformationwithm complex PCs, wherem depends
on the gap of the spectrum of f , see also [2].

The organization of the paper is as follows. In Section 2, we introduce block circulant matrices and show
how existing results for their spectra are applicable in our situation. It is important, that because of the du-
plication of the eigenvalues, eigenvectors of both real and complex coordinates are available. Both kinds of
eigenvectors are intensively studied. After this preparation,we prove ourmain theorem in Section 3. Section 4
discusses consequences of this theorem, like bounds for the spectra, complex PC transformation, low rank
approximation of the process, illustrated on real-life �nancial data. Eventually, in Section 5, conclusions are
drawn.

2 Preliminaries

To characterize the eigenvalues of the block-Toeplitz matrix Cn, we need the symmetric block circulant
matrixC(s)n that we consider for odd n, say n = 2k+1 here (for even n, the calculations are similar); for the def-
inition, see [3]. In fact, the rows of a circulant matrix are cyclic permutations of the preceding ones; whereas,
in the block circulant case, when permuting, we take transposes of the blocks if those are not symmetric
themselves, see the example of Equation (2). Spectra of block circulant matrices are well characterized, but
Cn is not block circulant, in general; this is why C(s)n is constructed, by disregarding the autocovariances of
order greater than n

2 . This can be done only on the assumption that the sequences of autocovariances are (en-
trywise) absolutely summable. It is crucial that k is the integer part of n2 , as the constructed block circulant
matrix is symmetric only with this choice of k. (In case of even n, the choice n

2 is perfect, and it causes only
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minor changes in the spectrum, as will be discussed later.) This choice also has bene�ts when the autoco-
variance matrices are estimated based on an n-length long time series X1, . . . ,Xn:

Ĉ(h) = Ĉ∗(−h) =
n−h∑
t=1

Xt+hX∗t , h = 0, 1, . . . , bn2 c

if EXt = 0, otherwise the estimated mean is subtracted. Here at least n2 sample entries are used for each Ĉ(h)
with h ≤ n

2 that makes the estimate more accurate. (Note that the above estimate is asymptotically unbiased
even though its ergodicity is guaranteed only if h = o(n) as n → ∞. Though n

2 is obviously not o(n), as the
proof of the main theoremwill show, disregarding the last n2 autocovariances will guarantee the convergence
of the spectrum.)

The (i, j) block of C(s)n for 1 ≤ i ≤ j ≤ n is

C(s)n (blocki , blockj) =
{
C(j − i), j − i ≤ k
C(n − (j − i)), j − i > k;

whereas, for i > j, it is

C(s)n (blocki , blockj) =
{
CT(i − j), i − j ≤ k
CT(n − (i − j)), i − j > k.

In this way, C(s)n is a symmetric block Toeplitz matrix, like Cn, and it is the same as Cn within the blocks (i, j)s
for which |j − i| ≤ k holds. However, C(s)n is also a block circulant matrix that �ts our purposes. For example,
if n = 7 and k = 3, then we have

C(s)7 :=



C(0) C(1) C(2) C(3) C(3) C(2) C(1)
CT(1) C(0) C(1) C(2) C(3) C(3) C(2)
CT(2) CT(1) C(0) C(1) C(2) C(3) C(3)
CT(3) CT(2) CT(1) C(0) C(1) C(2) C(3)
CT(3) CT(3) CT(2) CT(1) C(0) C(1) C(2)
CT(2) CT(3) CT(3) CT(2) CT(1) C(0) C(1)
CT(1) CT(2) CT(3) CT(3) CT(2) CT(1) C(0)


. (2)

In the univariate (d = 1) case, when n = 2k + 1, by Kronecker products (with permutation matrices) it is
well known, see e.g., [1, 3, 4], that the jth (real) eigenvalue of C(s)n is

k∑
h=−k

c(h)ρhj = c(0) + 2
k∑
h=1

c(h) cos(hωj),

where ρj = eiωj is the jth primitive (complex) nth root of 1 and ωj = 2πj
n is the jth Fourier frequency (j =

0, 1, . . . , n−1). Further, the eigenvector corresponding to the jth eigenvalue is (1, ρj , . . . , ρn−1j )T ; it has norm√
n. After normalizing with 1√

n , we get a complete orthonormal set of eigenvectors (of complex coordinates).
When C(h)s are d × d matrices, by in�ation techniques and applying Kronecker products, we use blocks

instead of entries and the eigenvectors also followablock structure. In [3, 4], the eigenvalues and eigenvectors
of a general symmetric block circulant matrix are characterized. We apply this result in our situation, when
n = 2k + 1 is odd. In view of this, the spectrum of C(s)n is the union of spectra of the matrices

Mj = C(0) +
k∑
h=1

[C(h)ρhj + CT(h)ρ−hj ] = C(0) +
k∑
h=1

[C(h)eiωjh + CT(h)e−iωjh]

for j = 0, 1, . . . , n−1; whereas, the eigenvectors are obtained by compounding the eigenvectors of these d×d
matrices. So we need the spectral decomposition of the matricesM0 = C(0) +

∑k
h=1[C(h) + C

T(h)] and

Mj = C(0) +
k∑
h=1

[(C(h) + CT(h)) cos(ωjh) + i(C(h) − CT(h)) sin(ωjh)]
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for j = 1, 2, . . . , n−1. Since C(h)+CT(h) is symmetric and C(h)−CT(h) is anti-symmetricwith 0 diagonal,Mj is
self-adjoint for each j andhas real eigenvalueswith corresponding orthonormal set of eigenvectors of possibly
complex coordinates. Indeed,Mj may have complex entries if j ≠ 0; actually,

∑k
h=1(C(h) + C

T(h)) cos(ωjh) is
the real and

∑k
h=1(C(h) − C

T(h)) sin(ωjh) is the imaginary part ofMj.
It is easy to see thatMn−j = Mj (entrywise conjugate), therefore, it has the same (real) eigenvalues asMj,

but its (complex) eigenvectors are the (componentwise) complex conjugates of the eigenvectors of Mj. We
also need the following form of this matrix:

Mn−j = C(0) +
k∑
h=1

[(C(h) + CT(h)) cos(ωjh) − i(C(h) − CT(h)) sin(ωjh)]

= C(0) +
k∑
h=1

[C(h)e−iωjh + CT(h)eiωjh], j = 1, . . . , n − 1.

(3)

Summarizing, for odd n = 2k+1, the nd eigenvalues of C(s)n are obtained as the union of the (real) eigenvalues
ofM0 and those ofMj (j = 1, . . . , k) duplicated. Note that for even n, similar arguments hold with the di�er-
ence that there the spectrum of C(s)n is the union of the eigenvalues ofM0 andMn−1, whereas the eigenvalues
ofM1, . . . ,M n

2 −1 are duplicated.
The eigenvectors of C(s)n are obtainable by compounding the d (usually complex) orthonormal eigenvec-

tors of the d × d self-adjoint matrices M0,M1, . . . ,Mn−1 as follows. For j = 1, . . . , k: if v is a unit-length
eigenvector ofMj with eigenvalue λ, then in [3] it is proved that the compound vector

(vT , ρjvT , ρ2j vT , . . . , ρn−1j vT)T ∈ Cnd

is an eigenvector of C(s)n with the same eigenvalue λ. It has squared norm

v∗v(1 + ρjρ−1j + ρ2j ρ−2j + · · · + ρn−1j ρ−(n−1)j ) = n.

Therefore, the vector
w = 1√

n
(vT , ρjvT , ρ2j vT , . . . , ρn−1j vT)T ∈ Cnd (4)

is a unit-norm eigenvector (of complex coordinates) of C(s)n .
Further, if

z = 1√
n
(tT , ρ`tT , ρ2` tT , . . . , ρn−1` tT)T ∈ Cnd

is another unit-norm eigenvector of C(s)n compounded from a unit-norm eigenvector t of another M` (` ≠ j),
then w and z are orthogonal, irrespective whether M` has the same eigenvalue λ as Mj or not. Similar con-
struction holds starting with the eigenvectors ofM0.

Here for each j = 0, 1, . . . , n − 1, there are d pairwise orthonormal eigenvectors (potential vs) ofMj, and
the so obtainedws are also pairwise orthonormal. Assume that the eigenvectors ofMj are enumerated in non-
increasing order of its (real) eigenvalues, and the in�atedws also follow this ordering, for j = 0, 1, . . . , n −1.

Choose a unit-norm eigenvector v ∈ Cd ofMj with (real) eigenvalue λ. Then v ∈ Cd is the corresponding
unit-norm eigenvector ofMn−j with the same eigenvalue λ. Consider the compoundedw ∈ Cnd andw ∈ Cnd

obtained from them by (4). We learned that they are orthonormal eigenvectors of C(s)n corresponding to the
eigenvalue λ with multiplicity (at least) two. From them, corresponding to this double eigenvalue λ, the new
orthonormal pair of eigenvectors

w +w√
2

and − iw −w√
2

(5)

is constructed, but they, in this order, occupy the original positions of w and w. They have real coordinates
and unit norm. (Actually, their coordinates are the

√
2multiples of the real and imaginary parts of the coordi-

nates ofw.) It is in accord with the fact that a real symmetric matrix, as C(s)n , must have an orthogonal system
of eigenvectors with real coordinates too. We do not go in details, neither discuss defective cases.
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Consider u1, . . . , und, the so obtained orthonormal set of eigenvectors (of real coordinates) of C(s)n (in
the above ordering), and denote by U = (u1, . . . , und) the nd × nd (real) orthogonal matrix containing them
columnwise. Let

C(s)n = UΛ(s)UT (6)

be the corresponding spectral decomposition. After this preparation, we are able to prove the following the-
orem.

3 The main theorem
Theorem 1. Let {Xt} be d-dimensional weakly stationary time series of real components. Denoting by C(h) =
[cij(h)] the d × d autocovariance matrices (C(−h) = CT(h), h ∈ Z) in the time domain, assume that their entries
are absolutely summable, i.e.,

∑∞
h=0 |cpq(h)| < ∞ for p, q = 1, . . . , d. Then, the self-adjoint, positive semide�-

nite spectral density matrix f exists in the frequency domain, and it is de�ned by

f (ω) = 1
2π

∞∑
h=−∞

C(h)e−ihω , ω ∈ [0, 2π].

For odd n = 2k + 1, consider X1, . . .Xn and the block Toeplitz matrix Cn of (1); further, the Fourier frequencies
ωj = 2πj

n for j = 0, . . . , n − 1. Let Dn be the dn × dn diagonal matrix that contains the spectra of the matrices
f (0), f (ω1), f (ω2), . . . , f (ωk), f (ωk), . . . , f (ω2), f (ω1) in its main diagonal, i.e.,

Dn = diag(spec f (0), spec f (ω1), . . . , spec f (ωk), spec f (ωk), . . . , spec f (ω1)).

Here spec contains the eigenvalues of the a�ected matrix in non-increasing order if not otherwise stated. (The
duplication is due to the fact that f (ωj) = f (ωn−j), j = 1, . . . , k, for real time series.) Then, with the spectral
decomposition (6),

UTCnU − 2πDn → O, n →∞,

i.e., the entries of the matrix UTCnU − 2πDn tend to 0 uniformly as n →∞.

Proof. We saw that UTC(s)n U = Λ(s). Recall that the eigenvalues in the diagonal of Λ(s) comprise the union
of spectra of the matrices M0 and those of M1, . . . ,Mn−1, which are the same as the eigenvalues of M0 and
those ofMn−1, . . . ,Mn−k of (3), duplicated. But these matrices are �nite sub-sums (for |h| ≤ k) of the in�nite
summations

2πf (ωj) =
∞∑

h=−∞
C(h)e−ihω = C(0) +

∞∑
h=1

[C(h)e−iωjh + CT(h)eiωjh].

So, by the absolute summability of the autocovariances, and because the eigenvalues depend continuously
on the underlying matrices, the pairwise distances between the eigenvalues of Mj and the corresponding
eigenvalues of 2πf (ωj) (both in non-increasing order) tend to 0 as n → ∞, for j = 0, 1, . . . , k. Indeed, the
absolute summability of the entries of C(h)s implies that the diagonal entries of the diagonal matrix Λ(s) −
2πDn are bounded in absolute value by

max
p,q∈{1,...,d}

∑
|h|>k

|cpq(h)| → 0, n = 2k + 1→∞.

Consequently, the matrix Λ(s) − 2πDn tends to the zero matrix entrywise uniformly as n → ∞. Therefore, it
remains to show that the entries of UTCnU − UTC(s)n U tend to 0 uniformly as n →∞.

Before doing this, some facts should be clari�ed.
– The pth row sum ofMj is bounded by

d∑
q=1
|cpq(0)| +

d∑
q=1

k∑
h=1
|cpq(h)| +

d∑
q=1

k∑
h=1
|cqp(h)| ≤ dcpp(0) + 2dL,
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for p ∈ {1, . . . , d} with L = maxp,q∈{1,...,d}
∑∞

h=1 |cpq(h)| > 0, independently of n, because of the absolute
summability of the entries of C(h). This is true for any j ∈ {0, 1, . . . , n−1}. For simplicity, consider (any) one
of theMjs, and denote it byM = [mpq]dp,q=1. Then

‖M‖∞ = max
p∈{1,...,d}

d∑
q=1
|mpq| ≤ d max

p∈{1,...,d}
cpp(0) + 2dL = K.

As the spectral radius ofM is at most ‖M‖∞, any eigenvalue λ ofM is bounded in absolute value by K (inde-
pendently of n).

– Recall that u is compounded via (4) and (5) from the primitive roots. Therefore, its coordinates are bounded
by
√

2
n in absolute value.

Now we are ready to show that
|uTi C(s)n uj − uTi Cnuj| → 0, n →∞

uniformly in i, j ∈ {1, . . . , nd}. Recall that in the nd×ndmatrices C(s)n and Cn the (m, `) blocks are the same if
|m−`| ≤ k. Denote byui,m anduj,` themth and `th blocks of the unit-normeigenvectorsui anduj, respectively.
Then

|uTi (C(s)n − Cn)uj| =

∣∣∣∣∣
k∑

m=1

m∑
`=1

[uTi,`(C(m) − C(n − m))uj,n−m+` + uTi,n−m+`(C(n − m) − C(m))uj,`]

∣∣∣∣∣
≤

∣∣∣∣∣
√

2
n

k∑
m=1

1Td (C(m) − C(n − m))
m∑
`=1

uj,n−m+`

∣∣∣∣∣
+

∣∣∣∣∣
√

2
n

k∑
m=1

m∑
`=1

uTi,n−m+`(C(m) − C(n − m))1d

∣∣∣∣∣
≤ 2
√

2
n

√
2
n

∣∣∣∣∣
k∑

m=1
m1Td (C(m) − C(n − m))1d

∣∣∣∣∣
≤ 4n

 k∑
m=1

m
d∑
p=1

d∑
q=1
|cpq(m)| +

k∑
m=1

m
d∑
p=1

d∑
q=1
|cpq(n − m)|


≤ 4d2

(
max

p,q∈{1,...,d}

k∑
m=1

m
n |cpq(m)| + max

p,q∈{1,...,d}

k∑
m=1

m
n |cpq(n − m)|

)

≤ 4d2
(

max
p,q∈{1,...,d}

k∑
m=1

m
n |cpq(m)| + max

p,q∈{1,...,d}

n−1∑
m=n−k

k
n |cpq(m)|

)
,

where 1d ∈ Rd is the vector of all 1 coordinates and so, the quadratic form 1Td (C(m) − C(n − m))1d is the
sum of the entries of C(m) − C(n − m). In the last line, the second term converges to 0, since it is bounded
by
∑∞

m=k |cpq(m)| (indeed,
∑n−1

m=n−k
k
n |cpq(m)| ≤

∑∞
m=k |cpq(m)| as k < n − k), and together with n, k tends to

∞ too; further, it holds uniformly for all p, q ∈ {1, . . . , d}. The �rst term for every p, q pair also tends to 0
as n → ∞ by the discrete version of the dominated convergence theorem (for series), see the forthcoming
Lemma 1. Indeed, the summand is dominated by |cpq(m)| and

∑∞
m=1 |cpq(m)| < ∞; further, mn |cpq(m)| → 0 as

n → ∞, for any �xed m. Consequently,
∑∞

m=1
m
n |cpq(m)| tends to 0, and so does

∑k
m=1

m
n |cpq(m)| as n → ∞.

It holds uniformly for all p, q, and also for all i, j, so the proof is complete.

Lemma 1 (Dominated convergence theorem for sums, discrete version). Consider
∑∞

m=1 fn(m) and assume
that |fn(m)| ≤ g(m) with

∑∞
m=1 g(m) < ∞. If limn→∞ fn(m) = f (m) exists ∀m ∈ N, then

lim
n→∞

∞∑
m=1

fn(m) =
∞∑
m=1

f (m).
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The proof of Theorem 1 suggests that the speed of the convergence depends on how rapidly the tail of the
absolutely summable autocovariances tends to zero. For example, in case of VARMA (vector autoregressive)
processes the autocovariances decrease exponentially, and this implies the convergence at a geometric rate.

4 Relations and consequences of the main theorem

4.1 Bounds for the eigenvalues of Cn

Analogously to the 1D statement (see [1]), for the eigenvalues of the block Toeplitz matrix Cn the following
lower and upper bounds are obtainable.

Proposition 1. Assume that for the spectra of the spectral densities f of the d-dimensional weakly stationary
process {Xt} of real coordinates the following hold:

m := inf
ω∈[0,2π],q∈{1,...,d}

λq(f (ω)) > 0,

M := sup
ω∈[0,2π],q∈{1,...,d}

λq(f (ω)) < ∞.

(Note that under the conditions of Theorem 1, f (ω) > 0 and it is continuous almost everywhere on [0, 2π], so the
above conditions are readily satis�ed.)

Then for the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λnd of the block Toeplitz matrix Cn the following holds:

2πm ≤ λ1 ≤ λnd ≤ 2πM.

Proof. Let λ be an arbitrary eigenvalue of Cn with a corresponding eigenvector x ∈ Cnd (i.e., Cnx = λx), and
denote by xj the jth block of it (j = 1, . . . , n). Take the spectral decomposition of the spectral density matrix
f :

f (ω) =
d∑

`=1
λ`(f (ω)) · u`(f (ω)) · u∗` (f (ω)).

Then we can write that

λ|x|2 = λx∗x = x∗Cnx

= x∗ ·
π∫

−π

[
e−i(j−k)ωf (ω)

]n
j,k=1

dω · x

=
π∫

−π

n∑
j,k=1

e−i(j−k)ωx∗j f (ω)xkd ω

=
π∫

−π

n∑
j,k=1

e−i(j−k)ω
d∑

`=1
λ`(f (ω)) · x∗j · u`(f (ω)) · u∗` (f (ω)) · xk dω

=
π∫

−π

d∑
`=1

λ`(f (ω))
n∑

j,k=1
e−ijωx∗j · u`(f (ω)) · u∗` (f (ω)) · xk · eikω dω

=
π∫

−π

d∑
`=1

λ`(f (ω))

∣∣∣∣∣∣
n∑
j=1

e−ijω · x∗j · u`(f (ω))

∣∣∣∣∣∣
2

dω

≤ M
n∑

j,k=1
x∗j ·

π∫
−π

e−i(j−k)ω
d∑

`=1
u`(f (ω)) · u∗` (f (ω)) dω · xk
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= 2πM
n∑
j=1

x∗j xj = 2πM|x|2.

This proves that λ ≤ 2πM for any eigenvalue of Cn. The proof of the fact that λ ≥ 2πm is similar.

4.2 PC transformation as discrete Fourier transformation

The complex PC transform of the collection of random vectors X = (XT1 , . . .XTn )T of real coordinates is the
random vector Z = (ZT1 , . . . , ZTn )T of complex coordinates obtained by

Z = W∗X.

Here, analogously to (6), C(s)n has the spectral decomposition

C(s)n = WΛ(s)W∗ (7)

with complex eigenvectors too: W = (w1, . . . ,wnd), where ws are the orthonormal eigenvectors of C(s)n (of
complex coordinates), introduced in Section 2.

To relate the PC transformation to a discrete Fourier transformation, we also make PC transformations
within the blocks. For this purpose we use the eigenvectors in the columns of W (of complex coordinates)
in the ordering described in Section 2. We utilize their block structure and also assume that they are already
normalized to have a complete orthonormal system in Cnd.

By Theorem 1, EZZ∗ ∼ 2πDn, so the coordinates of Z are asymptotically uncorrelated, for ‘large’ n. In-
stead, we consider the blocks Zjs of it, and perform a ‘partial principal component transformation’ (in d-
dimension) of them. Let w1j , . . . ,wdj be the columns of W corresponding to the coordinates of Zj. In view
of (4), Zj can be written as

Zj =
1√
n
(V∗j ⊗ r∗)X,

where r∗ = (1, ρ−1j , ρ−2j , . . . , ρ−(n−1)j ) and Vj is the d × d unitary matrix in the spectral decomposition Mj =
VjΛjV∗j . Because of EZjZ∗j = Λj (apparently from the proof of Theorem 1), we have that

E(VjZj)(VjZj)∗ = VjΛjV∗j = Mj .

At the same time,

VjZj =
1√
n
Vj(V∗j ⊗ r∗)X = 1√

n
(Id ⊗ r∗)X = 1√

n

n∑
t=1

Xte−itωj , j = 1, . . . , n.

This is the discrete Fourier transform ofX1, . . . ,Xn. It is in accord with the existence of the orthogonal incre-
ment process {Zω} (see [1]) of which VjZj ∼ Zωj −Zωj−1 is the discrete analogue. Note that a weakly stationary
time series itself can be represented (with probability one) as

Xt =
π∫

−π

eitωdZω , t ∈ Z

with the process Zω of orthogonal increments, where F(ω) = E(ZωZ∗ω), F(ω) =
∫ ω
−π f (θ) dθ, ω ∈ [−π, π]. This

is sometimes called Cramér representation. (It generalizes the case of the superposition of sinusoids, where
the process has point spectrum.)

Also, Z1, . . . Zn are asymptotically pairwise orthogonal akin to V1Z1, . . . , VnZn. Further,

E(VjZj)(VjZj)∗ ∼ 2πf (ωj),

and it is in accord with the fact that

EZjZ∗j ∼ 2π diag spec f (ωj),

for j = 0, 1, . . . , n − 1 when n is ‘large’.
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4.3 Best low-rank approximation in the frequency domain, and low-dimensional
approximation in the time domain

Let {Xt}nt=1 be the �nite part of a d-dimensional process of real coordinates and constant rank 1 ≤ r ≤ d. Its
discrete Fourier transform, discussed in Section 4.2, is

Tj = VjZj =
1√
n

n∑
t=1

Xte−itωj , j = 0, . . . , n − 1.

More precisely, T0 = 1√
n
∑n

t=1 Xt,

Tj =
1√
n

n∑
t=1

Xt[cos(tωj) − i sin(tωj)],

and Tn−j = Tj, for j = 1, . . . , k (n = 2k + 1). Therefore,

Zj = V−1j Tj = V∗j Tj , j = 0, . . . , n − 1.

It can easily be seen that Zn−j = Zj.
To �nd the best m-rank approximation (1 < m ≤ r) of the process, we project the d-dimensional vec-

tor Tj onto the subspace spanned by the m leading eigenvectors of Vj. Important that the eigenvalues in Λj
are in non-increasing order. Let us denote the eigenvectors corresponding to the m largest eigenvalues by
vj1, . . . , vjm. Then

T̂j := ProjSpan{vj1 ,...,vjm}Tj =
m∑
`=1

(v∗j`VjZj)vj` =
m∑
`=1

Zj`vj`,

and T̂n−j = T̂j, for for j = 1, . . . , k (by the previous considerations), were n = 2k + 1. Further,

T̂0 :=
m∑
`=1

Z0`v0`.

So, for each j, the resulting vector is the linear combination of the vectors vj`s with the corresponding coor-
dinates Zj`s of Zj, ` = 1, . . . ,m.

Eventually, we �nd the m-rank approximation of Xt by inverse Fourier transformation:

X̂t :=
1√
n

n−1∑
j=0

T̂jeitωj =

= 1√
n

T̂0 +
k∑
j=1

[(T̂j + T̂j) cos(tωj) + i(T̂j − T̂j) sin(tωj)]


= 1√

n

T̂0 +
k∑
j=1

[(2Re(T̂j) cos(tωj) + i · 2i · Im(T̂j) sin(tωj)]


= 1√

n

T̂0 + 2
k∑
j=1

[Re(T̂j) cos(tωj) − Im(T̂j) sin(tωj)]

 .

Apparently, the vectors X̂t (t = 1, . . . , n) all have real coordinates (n = 2k + 1).
In this way, we have a lower rank process with spectral density of rank m ≤ r. Note that if the process is

regular (e.g., it has a rational spectral density), then so is its low-rank approximation.
Note that in the static PCA (e.g., [5]), the uncorrelated PCs explain the largest possible proportion of the

total variance of the (usually correlated) components of a random vector, their variances are in decreasing or-
der and those are the the eigenvalues of the covariance matrix. Evenmore is true: for anym, which is at most
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the dimension of the randomvector, the �rstm principal components provide the bestm-rank approximation
of the random vector in mean square. This theory also guarantees that the ‘larger’ the gap between the mth
and (m + 1)th eigenvalues (in non-increasing order) of the spectral density matrix, the ‘smaller’ the approxi-
mation error is. Unlike the static PCA, the complex PCs, i.e. Zjs in the frequency domain make rise to explain
proportions of the complete data variance both cross-sectionally and longitudinally (brie�y, vertically and
horizontally) as follows.

Consider the spectral decomposition of the d × d matrixMj = VjΛjV∗j , and denote by λ(1)j ≥ · · · ≥ λ(d)j the
eigenvalues ofMj, j = 1, . . . , k (n = 2k +1). At frequency ωj. The eigenvalue λ(`)j is the contribution of the `th
PC to the variance of the increment process at frequency ωj. Let

λ(`)cum :=
k∑
j=1

λ(`)j , ` = 1, . . . ,m

be the cumulative contribution of the `th PC to the total variance. The relative contribution of the �rst m PCs
to the total variance is ∑m

`=1 λ
(`)
cum∑d

`=1 λ
(`)
cum

. (8)

Then the number m∗ of the PCs retained is the smallest index for which the above relative contribution ex-
ceeds a certain percent, or else, when it increases drastically. This is the vertical contribution.

As for the horizontal contribution, we investigate the contribution of the Fourier frequencies to the total
variance. For ` = 1, . . . ,m: let ω(`)

j∗ denote the argmax of the �rst local maximum of λ(`)j . Then the corre-
sponding eigenvector ofMj∗ , i.e. the `th column ofVj∗ contains the (complex) factor loadings of the `th PC at
that prominent frequency. Based on the absolute values (which is calculated from the the real and imaginary
parts of these coordinates) we can explain the `th PC, by telling which variables (with the largest loadings)
contribute to it most signi�cantly.

To back-transform the PC process into the time domain, note that

Zj` = v∗j`Tj , ` = 1, . . . m

de�nes the coordinates of anm-dimensional approximation ofTj,m ≤ r ≤ d. This is them-dimensional vector
T̃j = (Zj1, . . . , Zjm)T . I.e., we take the �rst m complex PCs in each block (it is important that the entries in the
diagonal of each Λj are in non-increasing order).

Then the m-dimensional approximation of Xt by the PC process is as follows:

X̃t :=
1√
n

n−1∑
j=0

T̃jeitωj =

= 1√
n

T̃0 +
k∑
j=1

[(T̃j + T̃j) cos(tωj) + i(T̃j − T̃j) sin(tωj)]


= 1√

n

T̃0 +
k∑
j=1

[(2Re(T̃j) cos(tωj) + i · 2i · Im(T̃j) sin(tωj)]


= 1√

n

T̃0 + 2
k∑
j=1

[Re(T̃j) cos(tωj) − Im(T̃j) sin(tωj)]


that again results in real coordinates. Equivalently, the m-dimensional PC process is:

X̃t =
1√
n
(
n−1∑
j=0

Zj1eitωj , . . . ,
n−1∑
j=0

Zjmeitωj )T . (9)



46 | Marianna Bolla et al.

4.4 Numerical example

The previously detailed low-rank approximation is illustrated on a �nancial dataset [6] containing stock ex-
change returns: Istanbul stock exchange national 100 index (ISE), S&P 500 return index (SP), stock market
return index ofGermany (DAX),UK (FTSE), Japan (NIKKEI), Brazil (BOVESPA), theMSCI European index (EU),
and theMSCI emergingmarkets index (EM); ranging from Jan 5, 2009 to Feb 22, 2011. It is a d = 8 dimensional
time-series dataset that we studied up to length n = 535. The days for which the Turkish stock exchange was
closed are excluded, and in case of missing data for the other indices, the previous day’s value was imputed,
see [6].

In Figure 1, the three largest eigenvalue processes of the estimatedMjmatrices are shown in the frequency
domain, the others were close to zero. Based on this, the time-series is (approximately) of rank 3, thus we can
apply the outlined low-rank approximationwithm = 3. In Figure 2, the rank 3 approximation of the individual
variables and the original data is illustrated. There are the calculated RMSE values under each subplot. The
3 leading PCs, back-transformed to the time domain, are to be found in Figure 3.
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Figure 1: The three largest eigenvalue processes of the estimated Mj (j = 0, . . . , 534) matrices over [0, 2π] (symmetric with
respect to π), ordered decreasingly.

However, according to Equation (8), the �rst two PCs explain 90.2% of the total variance vertically, so
m∗ = 2 will be used in the sequel.

The coordinates of the �rst two PCs at the leading Fourier frequencies are shown in Table 1: the absolute
values, further, the real and imaginary parts of the coordinates. As for PC1, the leading frequency is 0.458
that indicates a period 2π/0.458 = 13.718 which is about a biweekly period to which ISE has the largest
contribution. As for PC2, the leading frequency is 2.866 that indicates a period 2π/2.866 = 2.193 which is
about a 2 days period to which BOVESPA has the largest contribution.
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Figure 2: Rank 3 approximation of the variables (blue) on the original data (orange).

4.5 Block Cholesky decomposition in the time domain

It is well known (see e.g., [7]) that a d-dimensional regular process {Xt}with spectral densitymatrix f of rank
r ≤ d has the multidimensional Wold decomposition

Xt =
∞∑
j=0
BjYt−j ,

where Bjs are d × d matrices (like dynamic factor loadings), and {Yt} is d-dimensional white noise, EYt = 0
and EYtYTs = δtsΣ, Σ is d × d positive semide�nite matrix of rank r.

It is important that there is a one-to-one correspondence between f (frequency domain) and the B(z), Σ
pair (time domain), where B(z) is the transfer function

B(z) =
∞∑
j=0
Bjzj , |z| ≤ 1 (10)
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Figure 3: The 3 leading PCs of the stock exchange data in the time domain, colored according to the eigenvalues in Fig. 1.

with impulse responses Bjs. This correspondence is given by

f (z) = 1
2πB(z)ΣB

∗(z), |z| ≤ 1.

So, via the spectral decomposition of f and by performing the expansion (10) at the Fourier frequencies, we
can estimate the transfer function.

In practice, only �nitely many observations X1, . . . ,Xn are available. Then get the recursive equations

Xk =
k−1∑
j=1
BkjYj + Yk , k = 1, 2, . . . , n. (11)

If our process is stationary, the coe�cient matrices are irrespective of the choice of the starting time, and Yj
is the innovation, which is rather considered as the added value of observation j to the process than an error
term. Its covariance matrix is Ej = EYjYTj .

Multiplying the equations in (11) byXTj from the right, and taking expectation, the solution for the matri-
ces Bkj and Ej (k = 1, . . . , n; j = 1, . . . , k − 1) can be obtained via the block Cholesky (LDL) decomposition:

Cn = LnDnLTn , (12)

where Cn is nd × nd positive de�nite block Toeplitz matrix of Section 2, Dn is nd × nd block diagonal and
contains the positive semide�nite prediction error matrices E1, . . . , En in its diagonal blocks, whereas Ln
is nd × nd lower triangular with blocks Bkjs below its diagonal blocks which are d × d identities, so Ln is
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Table 1: The loadings inside the �rst two principal components at the frequency (on scale [0, π]) of the maximal eigenvalue

PC1 PC2
max_freq_at 0.458 2.866

abs. val. real part imag. part abs. val. real part imag. part
ISE 0.498 0.498 0.000 0.529 0.529 -0.000
SP 0.302 0.301 0.019 0.393 -0.383 0.086
DAX 0.372 0.370 -0.040 0.255 -0.160 0.199
FTSE 0.297 0.297 -0.013 0.190 -0.124 0.144
NIKKEI 0.389 0.347 -0.177 0.195 0.130 0.146
BOVESPA 0.316 0.316 -0.016 0.601 -0.573 0.180
EU 0.312 0.311 -0.024 0.246 -0.174 0.174
EM 0.292 0.260 -0.134 0.068 0.049 0.047

non-singular:

Ln =


I O . . . O O
B21 I . . . O O
...

...
...

...
...

Bn1 Bn2 . . . Bn,n−1 I

 , Dn =


E1 O . . . O O
O E2 . . . O O
...

...
...

...
...

O O . . . O En

 .
To �nd the block Cholesky decomposition of (12), the following recursion is at our disposal: for j = 1, . . . , n

Ej := C(0) −
j−1∑
m=1

BjmEmBTjm , j = 1, . . . , n (13)

and for i = j + 1, . . . , n

Bij :=

C(i − j) − j−1∑
k=1
BikEkBTik

 E−j , (14)

where we take generalized inverse − if r < d.
Note that Equation (12) implies the following:

|Cn| = |Dn| =
n∏
j=1
|Ej|.

Here En is the error covariance matrix of the prediction of Xn based on its (n − 1)-length long past. In the
stationary case, if we predict based on the n-length long past, then we project on a richer subspace, therefore
the prediction errors of the linear combinations of the coordinates of Xn are decreased (better to say, not
increased). Consequently, the ranks of the error covariance matrices Ens are also decreased (not increased)
as n →∞.

If the prediction is based on the in�nite past, then with n → ∞ this procedure (which is a nested one)
extends to the multidimensional Wold decomposition. The point is that here t = n, and at time t we look
back only at the t − 1 length long past. Also, if n →∞, the matrix Ln better and better approaches a Toeplitz
one, and the matrices E1, . . . , En are closer and closer to Σ, the covariance matrix of the innovation process.
Consequently, Bnj → Bj as n → ∞. Note that if the autocovariances are absolutely summable, then the
spectral decomposition of Cn is asymptotically closer and closer to that of C(s)n (as n → ∞). Latter one is
described by Equation (7) as C(s)n = WΛ(s)W∗. HereW is a Vandermondematrix, and bothW and Λ(s) contain
primitive nth roots in the succession described in Section 2. Therefore, it is not surprising that the Gram and
block Cholesky decompositions of Cn show the asymptotic Toeplitz phenomenon, as the neighboring entries
in parallel (to the diagonal) lines depend on neighboring primitive roots, which are close to each other as
n →∞.
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Going further, if we want to �nd a lower (m < r) rank approximation of the Ejs, then we �nd a system
ξ1, . . . , ξn by means of projections within the innovation subspaces, Eξjξ Tj = Im. Actually, ξj ∈ Rm is the
principal component factor of Yj obtained from the m-factor model

Yj = Ajξj + εj ,

where the columns of d × m matrix Aj are
√µj`uj` (` = 1, . . . ,m) with the m largest eigenvalues and the

corresponding eigenvectors of Ej; the vector εj is the error comprised of both the idiosyncratic noise and the
error term of the model, but it has a negligible L2-norm. Note that Aj of the decomposition Ej = AjATj is far
not unique, it can be post-multiplied with an m × m orthogonal matrix. With this,

Xk ∼
k∑
j=1
BkjAjξj , k = 1, 2, . . . , n, (15)

where Bkk = Ik. This approaches the following Wold decomposition of the d-dimensional process {Xt} with
a m-dimensional (m ≤ r ≤ d) innovation process {ξt}:

Xt ∼
∞∑
j=0
BjAξt−j ,

where the d×mmatrix A comes from the Gramdecomposition Σ = AAT if thematrix Σ is of rankm; otherwise,
AAT is just the best m-rank approximation of Σ.

Note that hereweuse nd×nd blockmatrices, but the procedure realized by equations (13) and (14) iterates
only with the d × d blocks of it, so the computational complexity of this algorithm isO

((n
2
)
d3
)
. However, this

issue is rather the topic of Dynamic Factor Analysis, see [8].

5 Conclusions
Given a weakly stationary, multivariate time series with absolutely summable entries, we proved asymptotic
relation between the eigenvalues of the block Toeplitz matrix of the �rst n autocovariances and the union of
spectra of the spectral density matrices at the n Fourier frequencies, as n →∞. For the proof, eigenvalues of
block circulant matrices are used, together with eigenvectors of both real and complex coordinates.

The theorem unveils important analogies between the time and frequency domain calculations. For
instance, the complex principal components in the frequency domain are used for low-rank approximation
of the process in the time domain; whereas, the block Cholesky decomposition of the block Toeplitz matrix
gives rise to dimension reduction within the innovation subspaces, see Section 4.5. Above touching upon
the computational bene�ts of our algorithm, the calculations are illustrated on a real-life �nancial time series.
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