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Abstract

Factors, obtained by correspondence analysis, are used to find biclustering of a
contingency table such that the row–column cluster pairs are regular, i.e., they
have small discrepancy. In our main theorem, the constant of the so-called volume-
regularity is related to the SVD of the normalized contingency table. This result is
applicable to two-way cuts when both the rows and columns are divided into the
same number of clusters, thus extending partly the result of Butler for estimating
the discrepancy of a contingency table by the largest non-trivial singular value of
the normalized table (one-cluster, rectangular case), and partly the result of Bolla
for estimating the constant of volume-regularity by the structural eigenvalues and
the distances of the corresponding eigen-subspaces of the normalized modularity
matrix of an edge-weighted graph (several clusters, symmetric case).
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1 Introduction

A typical problem of contemporary cluster analysis is to find relatively small
number of groups of objects, belonging to rows and columns of a contingency
table which exhibit homogeneous behavior with respect to each other and do
not differ significantly in size. To make inferences on the separation that can
be achieved for a given number of clusters, minimum normalized two-way cuts
and discrepancies of the cluster pairs are investigated and related to the SVD
of the normalized contingency table.
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Contingency tables are rectangular arrays with nonnegative, real entries, e.g.,
the keyword–document matrix or microarray gene expression data. In the
former one, the matrix entries are associations between documents and words,
whereas in the latter one, they are expression levels of genes under different
conditions. We also look for a bipartition of the genes and conditions such that
genes in the same cluster equally influence conditions of the same cluster.
To find so-called biclustering, i.e., simultaneous clustering of the rows and
columns, a great variety of algorithms are used.

The first algorithm of this flavor is due to Hartigan [17], who used two-way
analysis of variance techniques to find constant valued submatrices within
the rectangular array. In [24], applications to microarrays is presented, where
biclusters identify subsets of genes sharing similar expression patterns across
subsets of conditions, but the authors do not use spectral methods. We will
rather concentrate on methods that use the SVD of the original or normalized
contingency table.

The Latent Semantic Indexing offers an SVD-based algorithm, which can be
generalized in many different ways. For example, in [15], the authors find
scoring systems simultaneously for the keywords and documents with respect
to the most important topics or factors, and use the singular vector pairs
corresponding to the k outstanding singular values of the table.

If a scoring system is endowed with the marginal measures, the problem can
be formulated in terms of the correspondence analysis, based on the SVD
of the normalized table, see [4,13,16]. We will show, how in possession of
the correspondence factor pairs a biclustering can be performed that finds
simultaneous clustering of the rows and columns of the table such that certain
regularity requirements are met.

A survey of biclustering algorithms in data mining, especially in biological data
analysis is given in [8,24]. To find biclustering of a binary table via the k-means
algorithm is also discussed in [10], where the author embeds the contingency
table into a bipartite graph and uses normalized cut objectives and SVD
to obtain the convenient biclustering. To find the SVD for large rectangular
matrices, randomized algorithms are favored. A randomized, so-called fast
Monte Carlo algorithm for the SVD and its application for clustering large
graphs via the k-means algorithm is presented in [12].

The problem is also related to the Page-rank (see [19]). As for the microarray
analysis, the authors of [20] use the leading singular values and vector pairs of
the normalized contingency table to find a so-called checkerboard pattern in
it, but they do not give estimation how this pattern approaches the original
table. Some authors, e.g., [21], impose sparsity inducing conditions on the
leading singular vector pairs, so that they have piecewise constant structure
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with many zero coordinates, and so, produce a checkerboard structure.

Though, many papers deal with the SVD-based biclustering of the underlying
contingency table (see also [18,22,26]), they just introduce numerical algo-
rithms, possibly with some constraints, which utilize the well-known favorable
properties of low-rank approximations. After finding the checkerboard pat-
terns, no inference is made on the homogeneity of the so obtained biclusters
by means of the SVD of the table. It is also a drawback that the low-rank
approximation, unlike the original table, may have negative entries.

In Section 2, we relate the biclustering problem to normalized two-way cuts of
contingency tables, akin to the way normalized cuts of edge-weighted graphs
are estimated by the normalized Laplacian spectra, see [10]. The minimiza-
tion of this objective function favors biclusterings with dense diagonal, and
sparse off-diagonal blocks. In terms of microarrays, it finds partition of genes
and conditions into the same number of clusters such that to each cluster of
conditions we can find a collection of genes responsible for this condition, and
vice versa.

In Section 3, more generally, we are looking for so-called volume-regular row–
column clusters pairs, such that the association between their row and column
subsets is homogeneous, but not necessarily dense or sparse. The minimum of
the pairwise discrepancies is related to the so-called structural singular values
and corresponding eigen-functions of the normalized table. We use the one-
cluster estimation of Butler [9], who estimates the discrepancy of the whole
contingency table by the largest non-trivial singular value of the normalized
table (one-cluster, rectangular case); moreover, he proves a two-sided relation
between this singular value and the discrepancy. Here we extend the forward
direction of this estimation for the k-cluster case, where our results also indi-
cate the optimal choice of k. For this purpose, we use the result of Bolla [5]
for estimating the constant of volume-regularity by the structural eigenval-
ues and the distances of the corresponding eigen-subspaces of the normalized
modularity matrix of an edge-weighted graph. Since there are several eigen-
values (singular values) responsible for this versatile property, together with
the corresponding eigenvectors (singular vector pairs), this statement is more
complicated to prove and cannot be simply inverted, akin to the one-cluster
case. Nonetheless, this problem has not yet been treated in the literature.

Section 4 is devoted to discussion and possible extension to directed graphs.
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2 Normalized two-way cuts of contingency tables

Let C be a contingency table on row set Row = {1, . . . , n} and column set
Col = {1, . . . ,m}, where C is n×m matrix of entries cij ≥ 0. Without loss of
generality, we suppose that there are no identically zero rows or columns. Here
cij is some kind of association between the objects behind row i and column
j, where 0 means no interaction at all.

Let the row- and column-sums of C be

drow,i =
m∑
j=1

cij (i = 1, . . . , n) and dcol,j =
n∑
i=1

cij (j = 1, . . . ,m)

which are collected in the main diagonals of the n × n and m ×m diagonal
matrices Drow and Dcol, respectively. The matrix

Ccorr = D−1/2row CD
−1/2
col (1)

is called the correspondence matrix (normalized contingency table) belonging
to the table C, see [4]. If we multiply all the entries of C with the same positive
constant, the correspondence matrix Ccorr will not change. Therefore, without
the loss of generality,

∑n
i=1

∑m
j=1 cij = 1 will be assumed in the sequel.

Given an integer k (0 < k ≤ rank (C)), we want to simultaneously partition
the rows and columns of C into disjoint, nonempty subsets

Row = R1 ∪ · · · ∪Rk, Col = C1 ∪ · · · ∪ Ck

such that we impose conditions on the cuts c(Ra, Cb) =
∑
i∈Ra

∑
j∈Cb

cij (a, b =
1, . . . , k) between the row-column cluster pairs. For this purpose, the following
so-called normalized two-way cut of the contingency table with respect to the
above k-partitions Prow = (R1, . . . , Rk) and Pcol = (C1, . . . , Ck) of its rows and
columns and the collection of signs σ is defined as follows:

νk(Prow, Pcol, σ) =
k∑
a=1

k∑
b=1

 1

Vol(Ra)
+

1

Vol(Cb)
+

2σabδab√
Vol(Ra)Vol(Cb)

 c(Ra, Cb),

where

Vol(Ra) =
∑
i∈Ra

drow,i =
∑
i∈Ra

m∑
j=1

cij, Vol(Cb) =
∑
j∈Cb

dcol,j =
∑
j∈Cb

n∑
i=1

cij

are volumes of the clusters, δab is the Kronecker delta-symbol, and the sign
σab is equal to 1 or -1 (it only has relevance in the a = b case, when it helps
balancing between the volumes of the same index row and column clusters),
σ := (σ11, . . . , σkk). We want to minimize the above normalized two-way cut
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with respect to all possible k-partitions Prow,k and Pcol,k of the rows and
columns, further, to σ, simultaneously. The objective function penalizes row-
and column clusters of extremely different volumes in the a 6= b case, whereas
in the a = b case σaa moderates the balance between Vol(Ra) and Vol(Ca).

Definition 1 The normalized two-way cut of the contingency table C is

νk(C) = min
Prow,Pcol,σ

νk(Prow, Pcol, σ).

Theorem 2 Let 1 = s1 > s2 · · · ≥ sr be the positive singular values of the
correspondence matrix belonging to the contingency table C of rank r (we
assume that CCT is irreducible). For any positive integer k ≤ r,

νk(C) ≥ 2k −
k∑
i=1

si.

PROOF. We will show that νk(Prow, Pcol, σ) is the value of the quadratic
objective function Qk, introduced below, taken on partition vectors belonging
to Prow and Pcol, respectively.

For a given integer 1 ≤ k ≤ min{n,m}, we are looking for k-dimensional
representatives r1, . . . , rn of the rows and c1, . . . , cm of the columns such that
they minimize the objective function

Qk =
n∑
i=1

m∑
j=1

cij‖ri − cj‖2 (2)

subject to
n∑
i=1

drow,irir
T
i = Ik,

m∑
j=1

dcol,jcjc
T
j = Ik. (3)

When minimized, the objective function Qk favors k-dimensional placement
of the rows and columns such that representatives of highly associated rows
and columns are forced to be close to each other. This is equivalent to the
problem of correspondence analysis. Indeed, let us put both the objective
function and the constraints in a more favorable form. Let X be the n × k
matrix of rows rT1 , . . . , r

T
n ; let x1, . . . ,xk ∈ Rn denote the columns of X, for

which fact we use the notation X = (x1, . . . ,xk). Similarly, let Y be the m×k
matrix of rows cT1 , . . . , c

T
m; let y1, . . . ,yk ∈ Rm denote the columns of Y, i.e.,

Y = (y1, . . . ,yk). Hence, the constraints (3) can be formulated like

XTDrowX = Ik, YTDcolY = Ik.
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With this notation, the objective function (2) is

Qk =
n∑
i=1

m∑
j=1

cij‖ri − cj‖2 =
n∑
i=1

drow,i‖ri‖2 +
m∑
j=1

dcol,j‖cj‖2 −
n∑
i=1

m∑
j=1

cijr
T
i cj

= 2k − trXTCY = 2k − tr (D1/2
rowX)TCcorr(D

1/2
col Y).

(4)

The correspondence matrix (1) has SVD

Ccorr =
r∑
i=1

siviu
T
i , (5)

where r ≤ min{n,m} is the rank of Ccorr, or equivalently (since there are not
identically zero rows or columns), the rank of C. Here 1 = s1 > s2 ≥ · · · ≥
sr > 0 are the non-zero singular values of Ccorr, and 1 is a single singular value

if the matrix CCT is irreducible. In this case, v1 = (
√
drow,1, . . . ,

√
drow,n)T

and u1 = (
√
dcol,1, . . . ,

√
dcol,m)T .

In view of (4), we have to maximize

tr (D1/2
rowX)TCcorr(D

1/2
col Y)

under the given constraints. By a simple linear algebra (see [1,25]) it follows
that the minimum of (2) subject to (3) is 2k−∑k

i=1 si and it is attained with the
optimum row representatives r∗1, . . . , r

∗
n and column representatives c∗1, . . . , c

∗
m,

the transposes of which are row vectors of X∗ = D−1/2row (v1, . . . ,vk) and Y∗ =

D
−1/2
col (u1, . . . ,uk), respectively. Since 1 is a single singular value, the first

vector components are the constantly 1 vectors in Rn and Rm, respectively,
and hence, the k-dimensional representation is realized in a (k−1)-dimensional
hyperplane of Rk.

Therefore, the statement of the theorem follows, as the overall minimum
of Qk is 2k − ∑k

i=1 si, whereas the following special representation yields
νk(Prow, Pcol, σ) with given Prow = (R1, . . . , Rk), Pcol = (C1, . . . , Ck), and σ.
Indeed, let the ith coordinate of the left vector component xa be

xia :=
1√

Vol(Ra)
if i ∈ Ra, a = 1, . . . k;

similarly, let the jth coordinate of the right vector component yb be

yjb = σbb
1√

Vol(Cb)
if j ∈ Cb, b = 1, . . . , k,

otherwise the coordinates are zeros. With this, the matrices X and Y satisfy
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the conditions imposed on the representatives, further

‖ri − cj‖2 =
1

Vol(Ra)
+

1

Vol(Cb)
+

2σbbδab√
Vol(Ra)Vol(Cb)

, if i ∈ Ra, j ∈ Cb.

Therefore, the objective function (2) becomes νk(Prow, Pcol, σ), which is at least
2k −∑k

i=1 si. Consequently, νk(C) ≥ 2k −∑k
i=1 si.

We remark that Ding et al. [11] treat this problem for two row- and column-
clusters and minimize another objective function such that it favors 2-partitions
where c(R1, C2) and c(R2, C1) are small compared to c(R1, C1) and c(R2, C2).
The solution is also given by the transformed v2,u2 pair. However, it is the
objective function νk(C) which best complies with the SVD of the correspon-
dence matrix, and hence, gives the continuous relaxation of the normalized cut
minimization problem. Dhillon [10] also suggests a multipartition algorithm
that runs the k-means algorithm simultaneously for the row and column rep-
resentatives.

3 Regular row-column cluster pairs

Let us start with the one-cluster case. Let C be an n ×m contingency table
and Ccorr be the correspondence matrix belonging to it. The Expander Mixing
Lemma for edge-weighted graphs naturally extends to this situation, see the
following result of [9].

Proposition 3 Let C be a contingency table (CCT is irreducible) on row set
Row and column set Col, and of total volume 1. Then for all R ⊂ Row and
C ⊂ Col

|c(R,C)− Vol(R)Vol(C)| ≤ s2
√
Vol(R)Vol(C),

where s2 is the largest but 1 singular value of the normalized contingency table
Ccorr.

Since the spectral gap of Ccorr is 1−s2, in view of the above Expander Mixing
Lemma, ‘large’ spectral gap is an indication that the weighted cut between any
row and column subset of the contingency table is near to what is expected in a
random table. The following notion of discrepancy just measures the deviation
from this random situation. The discrepancy (see [9]) of the contingency table
C of total volume 1 is the smallest α > 0 such that for all R ⊂ Row and
C ⊂ Col

|c(R,C)− Vol(R)Vol(C)| ≤ α
√
Vol(R)Vol(C).

In view of this, the result of Proposition 3 can be interpreted as follows: α
singular value separation causes α discrepancy, where the singular value sepa-
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ration is the second largest singular value of the normalized contingency table,
which is the smaller, the bigger the separation between the largest singular
value (the 1) of the normalized contingency table and the other singular val-
ues is. Based on the ideas of [2] and [6], Butler [9] proves the converse of the
Expander Mixing Lemma for contingency tables, namely that

s2 ≤ 150α(1− 8 logα).

Now we extend the notion of discrepancy to volume-regular cluster pairs.

Definition 4 The row–column cluster pair R ⊂ Row, C ⊂ Col of the con-
tingency table C of total volume 1 is γ-volume regular if for all X ⊂ R and
Y ⊂ C the relation

|c(X, Y )− ρ(R,C)Vol(X)Vol(Y )| ≤ γ
√
Vol(R)Vol(C) (6)

holds, where ρ(R,C) = c(R,C)
Vol(R)Vol(C)

is the relative inter-cluster density of the
row–column pair R,C.

We will show that for given k, if the clusters are formed via applying the
weighted k-means algorithm for the optimal row- and column representatives,
respectively, then the so obtained row–column cluster pairs are homogeneous
in the sense that they form equally dense parts of the contingency table. More
precisely, the constant γ of the volume regularity of the pairs will be related
to the SVD of Ccorr. To this end, we introduce the following notion.

The weighted k-variance of the k-dimensional row representatives is defined
by

S2
k(X) = min

(R1,...,Rk)

k∑
a=1

∑
j∈Ra

drow,j‖rj − r̄a‖2, (7)

where r̄a = 1
Vol(Ra)

∑
j∈Ra

drow,jrj is the weighted center of cluster Ra (a =

1, . . . , k). Similarly, the weighted k-variance of the k-dimensional column rep-
resentatives is

S2
k(Y) = min

(C1,...,Ck)

k∑
a=1

∑
j∈Ca

dcol,j‖cj − c̄a‖2, (8)

where c̄a = 1
Vol(Ca)

∑
j∈Ca

dcol,jcj is the weighted center of cluster Ca (a =

1, . . . , k). Observe, that the trivial vector components can be omitted, and the
k-variance of the so obtained (k − 1)-dimensional representatives will be the
same.

We need the following definition of the cut-norm of a matrix (see [7,14,23]).

Definition 5 The cut-norm of the rectangular real matrix A with row-set
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Row and column-set Col is

‖A‖� = max
R⊂Row,C⊂Col

∣∣∣∣∣∣
∑
i∈R

∑
j∈C

aij

∣∣∣∣∣∣ .
Lemma 6 For the cut-norm of the n×m real matrix A

‖A‖� ≤
√
nm‖A‖

holds, where the right hand side contains its spectral norm, i.e., the largest
singular value of A.

PROOF.

‖A‖� = max
x∈{0,1}n,y∈{0,1}m

|xTAy| = max
x∈{0,1}n,y∈{0,1}m

|( x

‖x‖
)TA(

y

‖y‖
)| · ‖x‖ · ‖y‖

≤
√
nm max

‖x‖=1, ‖y‖=1
|xTAy| =

√
nm‖A‖,

since for x ∈ {0, 1}n, ‖x‖ ≤
√
n; and for y ∈ {0, 1}m, ‖y‖ ≤

√
m.

Theorem 7 Let C be a contingency table of n-element row set Row and m-
element column set Col, with row- and column sums drow,1, . . . , drow,n and
dcol,1, . . . , dcol,m, respectively. Assume that CCT is irreducible,

∑n
i=1

∑m
j=1 cij =

1, and there are no dominant rows and columns, i.e., drow,i = Θ(1/n), (i =
1, . . . , n) and dcol,j = Θ(1/m), (j = 1, . . . ,m) as n,m → ∞. Let the singular
values of Ccorr be

1 = s1 > s2 ≥ · · · ≥ sk > ε ≥ si, i ≥ k + 1.

The partition (R1, . . . , Rk) of Row and (C1, . . . , Ck) of Col are defined so
that they minimize the weighted k-variances S2

k(X) and S2
k(Y) of the row and

column representatives defined in (7) and (8), respectively. Suppose that there
are constants 0 < K1, K2 ≤ 1

k
such that |Ri| ≥ K1n and |Ci| ≥ K2m (i =

1, . . . , k), respectively. Then the Ri, Cj pairs are O(
√

2k(Sk(X)Sk(Y)) + ε)-
volume regular (i, j = 1, . . . , k).

PROOF. Recall that, provided CCT is irreducible, the largest singular value
s1 = 1 of Ccorr is single with corresponding singular vector pair v1 = D1/2

row1

and u1 = D
1/2
col 1 with the constantly 1 vectors of appropriate size. The optimal

k-dimensional representatives of the rows and columns are row vectors of the
matrices X = (x1, . . . ,xk) and Y = (y1, . . . ,yk), where xi = D−1/2row vi and

yi = D
−1/2
col ui, respectively (i = 1, . . . , k), using the SVD (5) of Ccorr. Assume

that the minimum k-variance is attained on the k-partition (R1, . . . , Rk) of
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the rows and (C1, . . . , Ck) of the columns. By an easy analysis of variance
argument of [3] it follows that

S2
k(X) =

k∑
i=1

dist2(vi, F ), S2
k(Y) =

k∑
i=1

dist2(ui, G),

where F = Span {D1/2
roww1, . . . ,D

1/2
rowwk} and G = Span {D1/2

col z1, . . . ,D
1/2
col zk}

with the so-called normalized row partition vectors w1, . . . ,wk of coordinates
wji = 1√

Vol(Ri)
if j ∈ Ri and 0, otherwise; and column partition vectors

z1, . . . , zk of coordinates zji = 1√
Vol(Ci)

if j ∈ Ci and 0, otherwise (i = 1, . . . , k).

Note that the vectors D1/2
roww1, . . . ,D

1/2
rowwk and D

1/2
col z1, . . . ,D

1/2
col zk form or-

thonormal systems in Rn and Rm, respectively (but they are, usually, not com-
plete). Using a statement of [3], we can find orthonormal systems ṽ1, . . . , ṽk ∈
F and ũ1, . . . , ũk ∈ G such that

S2
k(X) ≤

k∑
i=1

‖vi − ṽi‖2 ≤ 2S2
k(X), S2

k(Y) ≤
k∑
i=1

‖ui − ũi‖2 ≤ 2S2
k(Y).

We approximate the matrix Ccorr =
∑r
i=1 siviu

T
i by the rank k matrix

∑k
i=1 siṽiũ

T
i

with the following accuracy (in spectral norm):

∥∥∥∥∥
r∑
i=1

siviu
T
i −

k∑
i=1

siṽiũ
T
i

∥∥∥∥∥ ≤
k∑
i=1

si
∥∥∥viuTi − ṽiũ

T
i

∥∥∥+

∥∥∥∥∥∥
r∑

i=k+1

siviu
T
i

∥∥∥∥∥∥ , (9)

where the spectral norm of the last term is at most ε, and the the individual
terms of the first one are estimated from above in the following way.

si‖viuTi − ṽiũ
T
i ‖ ≤ ‖(viuTi − ṽiu

T
i ) + (ṽiu

T
i − ṽiũ

T
i )‖

≤ ‖(vi − ṽi)u
T
i ‖+ ‖ṽi(ui − ũi)

T‖

=
√
‖(vi − ṽi)uTi ui(vi − ṽi)T‖+

√
‖(ui − ũi)ṽTi ṽi(ui − ũi)T‖

=
√

(vi − ṽi)T (vi − ṽi) +
√

(ui − ũi)T (ui − ũi)

= ‖vi − ṽi‖+ ‖ui − ũi‖,

where we exploited that the spectral norm (i.e., the largest singular value) of an
n×m matrix A is equal to either the squareroot of the largest eigenvalue of the
matrix AAT or equivalently, that of ATA. In the above calculations all of these
matrices are of rank 1, hence, the largest eigenvalue of the symmetric, positive
semidefinite matrix under the squareroot is the only non-zero eigenvalue of it,
therefore, it is equal to its trace; finally, we used the commutativity of the
trace, and in the last line we have the usual vector norm.
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Therefore the first term in (9) can be estimated from above by

k∑
i=1

‖viuTi − ṽiũ
T
i ‖ ≤

√
k

√√√√ k∑
i=1

‖vi − ṽi‖2 +
√
k

√√√√ k∑
i=1

‖ui − ũi‖2

≤
√
k(
√

2S2
k(X) +

√
2S2

k(Y)) =
√

2k(Sk(X) + Sk(Y)).

Based on these considerations and relation between the cut norm and the
spectral norm (see Lemma 6), the densities to be estimated in the defining for-
mula (6) of volume regularity can be written in terms of stepwise constant vec-
tors in the following way. The vectors v̂i := D−1/2row ṽi are stepwise constants on

the partition (R1, . . . , Rk) of the rows; whereas the vectors ûi := D
−1/2
col ũi are

stepwise constants on the partition (C1, . . . , Ck) of the columns, i = 1, . . . , k.
The matrix

k∑
i=1

siv̂iû
T
i

is therefore an n × m block-matrix on k × k blocks belonging to the above
partition of the rows and columns. Let ĉab denote its entries in the a, b block
(a, b = 1, . . . , k). Using (9), the rank k approximation of the matrix C is
performed with the following accuracy of the perturbation E in spectral norm:

‖E‖ =

∥∥∥∥∥C−Drow(
k∑
i=1

siv̂iû
T
i )Dcol

∥∥∥∥∥ =

∥∥∥∥∥D1/2
row(Ccorr −

k∑
i=1

siṽiũ
T
i )D

1/2
col

∥∥∥∥∥ .
Therefore, the entries of C – for i ∈ Ra, j ∈ Cb – can be decomposed as

cij = drow,idcol,j ĉab + ηij,

where the cut norm of the n×m error matrix E = (ηij) restricted to Ra×Cb
(otherwise it contains entries all zeroes) and denoted by Eab, is estimated as
follows:

‖Eab‖� ≤
√
mn‖Eab‖ ≤

√
nm · ‖D1/2

row,a‖ · (
√

2k(Sk(X) + Sk(Y)) + ε) · ‖D1/2
col,b‖

≤
√
nm

√√√√c1Vol(Ra)

|Ra|
·

√√√√c2Vol(Cb)

|Cb|
(
√

2k(Sk(X) + Sk(Y)) + ε)

=
√
c1c2 ·

√
n

|Ra|
·
√

m

|Cb|
·
√
Vol(Ra)

√
Vol(Cb)(

√
2k(Sk(X) + Sk(Y)) + ε)

≤
√

c1c2
K1K2

√
Vol(Ra)

√
Vol(Cb)(

√
2ks+ ε)

= c
√
Vol(Ra)

√
Vol(Cb)(

√
2k(Sk(X) + Sk(Y)) + ε),

where the n × n diagonal matrix Drow,a inherits Drow’s diagonal entries over
Ra; whereas the m×m diagonal matrix Dcol,b inherits Dcol’s diagonal entries
over Cb, otherwise they are zeros. Further, the constants c1, c2 are due to the
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fact that there are no dominant rows and columns, while K1, K2 are derived
from the cluster size balancing conditions. Hence, the constant c does not
depend on n and m. Consequently, for a, b = 1, . . . , k and X ⊂ Ra, Y ⊂ Cb:

|c(X, Y )− ρ(Ra, Cb)Vol(X)Vol(Y )| =∣∣∣∣∣∣
∑
i∈X

∑
j∈Y

(drow,idcol,j ĉab + ηij)−
Vol(X)Vol(Y )

Vol(Ra)Vol(Cb)

∑
i∈Ra

∑
j∈Cb

(drow,idcol,j ĉab + ηij)

∣∣∣∣∣∣ =∣∣∣∣∣∣
∑
i∈X

∑
j∈Y

ηij −
Vol(X)Vol(Y )

Vol(Ra)Vol(Cb)

∑
i∈Ra

∑
j∈Cb

ηij

∣∣∣∣∣∣ ≤ 2‖Eab‖�

≤ 2c(
√

2k(Sk(X) + Sk(Y)) + ε)
√
Vol(Ra)Vol(Cb),

that gives the required statement for a, b = 1, . . . , k.

Note that when we use Definition 4 of γ-volume regularity for the row–column
cluster pairs Ri, Cj (i, j = 1, . . . , k), then we may say that the k-way discrep-
ancy of the underlying contingency table is the minimum γ for which all
the row–column cluster pairs are γ-volume regular. With this nomenclature,
Theorem 7 states that the k-way discrepancy of a contingency table can be
estimated from above by the the kth largest non-trivial singular value of the
correspondence matrix and the k-variance of the clusters obtained by the left
and right singular vectors corresponding to the k largest singular values of this
matrix. Hence, SVD based representation is applicable to find volume regular
cluster pairs for a k, where k is the number of structural (protruding) singular
values. Unfortunately, we are not able to invert this statement, as there are
too many elements to be taken into consideration, not just one non-trivial
singular value and corresponding vector pair.

We also remark that when we perform a low-rank approximation of a contin-
gency table of nonnegative entries, the entries of this approximating matrix
will usually have both positive or negative entries. Nonetheless, the entries
ĉij’s of the block-matrix constructed in the proof of Theorem 7 will already
be positive provided the weighted k-variances S2

k(X) and S2
k(Y) are ‘small’

enough. Indeed, with the notation used in the proof, denote by ab in the lower
index the matrix restricted to the Ra × Cb block (otherwise it has zero en-
tries). Then for the squared Frobenius norm of the rank k approximation of
D−1rowCD−1col , restricted to the ab block, we have that

∥∥∥∥∥D−1row,aCabD
−1
col,b − (

k∑
i=1

siv̂iû
T
i )ab

∥∥∥∥∥
2

2

=
∑
i∈Ra

∑
j∈Cb

(
cij

drow,idcol,j
− ĉab)2

=
∑
i∈Ra

∑
j∈Cb

(
cij

drow,idcol,j
− c̄ab)2 + |Ra||Cb|(c̄ab − ĉab)2

(10)
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where we used the Steiner equality with the average c̄ab of the entries of
D−1rowCD−1col in the ab block. Now we estimate the above Frobenius norm by a
constant multiple of the spectral norm, where for the spectral norm∥∥∥∥∥D−1row,aCabD

−1
col,b − (

k∑
i=1

siv̂iû
T
i )ab

∥∥∥∥∥ =

∥∥∥∥∥D−1/2row,a(Ccorr −
k∑
i=1

siṽiũ
T
i )abD

−1/2
col,b

∥∥∥∥∥
≤ max

i∈Ra

1√
drow,i

·max
j∈Cb

1√
dcol,j

· [
√

2k(Sk(X) + Sk(Y)) + ε]

holds. Therefore,

∥∥∥∥∥D−1row,aCabD
−1
col,b − (

k∑
i=1

siv̂iû
T
i )ab

∥∥∥∥∥
2

2

≤ min{|Ra|, |Cb|} ·max
i∈Ra

1

drow,i
·max
j∈Cb

1

dcol,j
· [
√

2k(Sk(X) + Sk(Y)) + ε]2.

Consequently, in view of (10),

(c̄ab−ĉab)2 ≤
1

max{|Ra|, |Cb|}
·max
i∈Ra

1

drow,i
·max
j∈Cb

1

dcol,j
·[
√

2k(Sk(X)+Sk(Y))+ε]2.

But using the conditions on the block sizes and the row- and column-sums of
Theorem 7, provided

√
2k(Sk(X) + Sk(Y)) + ε) = O

(
1

(min{m,n}) 1
2
+τ

)

holds with some ‘small’ τ > 0, the relation c̄ab− ĉab → 0 also holds as n,m→
∞. Therefore, both ĉab and ĉabdrow,idcol,j are positive over blocks that are not
constantly zero in the original table when m and n are large enough.

4 Discussion and extension to directed graphs

In the ideal k-cluster case, we consider the following generalized random bi-
nary contingency table model: given the partition (R1, . . . , Rk) of the rows
and (C1, . . . , Ck) of the columns, the entry in the row i ∈ Ra and column
j ∈ Cb is 1 with probability pab, and 0 otherwise, independently of other
rows of Ra and columns of Cb, 1 ≤ a, b ≤ k. We can think of the probability
pab as the inter-cluster density of the row–column cluster pair Ra, Cb. Since
generalized contingency tables can be viewed as block-matrices (with k × k
blocks) burdened with a general random noise, in [4], we gave the following
spectral characterization of them. Fixing k, and tending with n and m to in-
finity in such a way that the cluster sizes grow at the same rate and also n

13



and m subpolynomially, there exists a positive number θ ≤ 1, independent
of n and m, such that for every 0 < τ < 1/2 there are exactly k singular
values of Ccorr greater than θ − max{n−τ ,m−τ}, while all the others are at
most max{n−τ ,m−τ}; further, the weighted k-variance of the row and column
representatives constructed by the k transformed structural left and right sin-
gular vectors is O(max{n−τ ,m−τ}), respectively. For non-random contingency
tables, our results imply that the existence of k singular values of Ccorr, sep-
arated from 0 by ε, is indication of a k-cluster structure, while the singular
values accumulating around 0 are responsible for the pairwise regularities. The
clusters themselves can be recovered by applying the k-means algorithm for
the row and column representatives obtained via the left and right singular
vectors corresponding to the structural singular values. In [4], we allowed the
number of row- and column-clusters to be larger than k and not necessarily
be the same when making inferences on the residual spectral norm. However,
in the context of the discrepancy, we cannot see a direct way how the proof
of Theorem 7 could be adopted to this situation.

We can consider quadratic, but not symmetric contingency tables with zero
diagonal as edge-weight matrices of directed graphs. The n × n edge-weight
matrix W of a directed graph has zero diagonal, but is usually not symmetric:
wij is the weight of the i → j edge (i, j = 1, . . . , n; i 6= j). In this setup, the
generalized in- and out-degrees are

dout,i =
n∑
j=1

wij (i = 1, . . . , n) and din,j =
n∑
i=1

wij (j = 1, . . . , n);

further, Din = diag (din,1, . . . , din,n) and Dout = diag (dout,1, . . . , dout,n) are
the in- and out-degree matrices. Suppose that there are no sources and sinks
(i.e. no zero out- and in-degrees), further, that WWT is irreducible. Then the
correspondence matrix belonging to W is

Wcorr = D
−1/2
out WD

−1/2
in ,

and its SVD is used to minimize the normalized two-way cut of W as a
contingency table, see Section 2. Butler [9] generalized the Expander Mixing
Lemma for this situation. We can further generalize it to obtain regular in-
and out-vertex cluster pairs, for a given k, in the following sense. The Vin, Vout
in- and out-vertex cluster pair of the directed graph (with sum of the weights
of directed edges 1) is γ-volume regular if for all X ⊂ Vout and Y ⊂ Vin the
relation

|w(X, Y )− ρ(Vout, Vin)Volout(X)Volin(Y )| ≤ γ
√
Volout(Vout)Volin(Vin)

holds, where the directed cut w(X, Y ) is the sum the weights of the X →
Y edges, Volout(X) =

∑
i∈X dout,i, Volin(Y ) =

∑
j∈Y din,j, and ρ(Vout, Vin) =

w(Vout,Vin)
Volout(Vout)Volin(Vin)

is the relative inter-cluster density of the out–in cluster pair
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Vout, Vin. The clustering (Vin,1, . . . , Vin,k) and (Vout,1, . . . , Vout,k) of the columns
and rows – guaranteed by Theorem 7 – corresponds to in- and out-clusters of
the same vertex set such that the directed information flow Vout,a → Vin,b is
as homogeneous as possible for all a, b = 1, . . . , k pairs.
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