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a b s t r a c t

The minimum k-way discrepancy mdk(C) of a rectangular matrix C of nonnegative entries
is the minimum of the maxima of the within- and between-cluster discrepancies that can
be obtained by simultaneous k-clusterings (proper partitions) of its rows and columns. In
Theorem 2, irrespective of the size of C, we give the following estimate for the kth largest
nontrivial singular value of the normalized matrix: sk ≤ 9mdk(C)(k + 2 − 9k lnmdk(C)),
provided 0 < mdk(C) < 1 and k < rank(C). This statement is a certain converse of
Theorem 7 of Bolla (2014), and the proof uses some lemmas and ideas of Butler (2006),
where the k = 1 case is treated. The result naturally extends to the singular values of the
normalized adjacency matrix of a weighted undirected or directed graph.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In many applications, for example when microarrays are analyzed, our data are collected in the form of an m × n
rectangular matrix C = (cij) of nonnegative real entries. We assume that C is non-decomposable (see Definition A.3.28
of [6]), i.e., CCT (when m ≤ n) or CTC (when m > n) is irreducible. Consequently, the row-sums drow,i =

n
j=1 cij and

column-sums dcol,j =
m

i=1 cij of C are strictly positive, and the diagonal matrices Drow = diag(drow,1, . . . , drow,m) and
Dcol = diag(dcol,1, . . . , dcol,n) are regular. Without loss of generality, we also assume that

n
i=1
m

j=1 cij = 1, since neither
our main object, the normalized matrix

CD = D−1/2
row CD−1/2

col , (1)

nor the multiway discrepancies to be introduced are affected by the scaling of the entries of C. It is known that the singular
values of CD are in the [0, 1] interval. The positive ones, enumerated in non-increasing order, are the real numbers

1 = s0 > s1 ≥ · · · ≥ sr−1 > 0,

where r = rank(CD) = rank(C). Provided C is non-decomposable, 1 is a single singular value; it will be called trivial and
denoted by s0, since it corresponds to the trivial singular vector pair, which are disregarded in the clustering problems. This
is a well-known fact of correspondence analysis, for further explanation see [6,7] and Section 3.

In Theorem2,wewill estimate the kth nontrivial singular value sk of CD from abovewith a (near zero, increasing) function
of the minimum k-way discrepancy of C defined herein.
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Definition 1. The multiway discrepancy of the rectangular matrix C of nonnegative entries in the proper k-partition
R1, . . . , Rk of its rows and C1, . . . , Ck of its columns is

md(C; R1, . . . , Rk, C1, . . . , Ck) = max
1≤a,b≤k

X⊂Ra, Y⊂Cb

|c(X, Y ) − ρ(Ra, Cb)Vol(X)Vol(Y )|
√
Vol(X)Vol(Y )

, (2)

where c(X, Y ) =


i∈X


j∈Y cij is the cut between X ⊂ Ra and Y ⊂ Cb, Vol(X) =


i∈X drow,i is the volume of the row-subset
X , Vol(Y ) =


j∈Y dcol,j is the volume of the column-subset Y , whereas ρ(Ra, Cb) =

c(Ra,Cb)
Vol(Ra)Vol(Cb)

denotes the relative density
between Ra and Cb. The minimum k-way discrepancy of C itself is

mdk(C) = min
R1,...,Rk
C1,...,Ck

md(C; R1, . . . , Rk, C1, . . . , Ck).

In Section 3, we will extend this notion to an edge-weighted graph G and denote it by mdk(G). In that setup, C plays the role
of the weighted adjacency matrix (symmetric in the undirected; quadratic, but usually not symmetric in the directed case),
when the eigenvalues of the normalized adjacency matrix enter into the estimates, in their decreasing absolute values.

Note that md(C; R1, . . . , Rk, C1, . . . , Ck) of (2) is the smallest α such that for every Ra, Cb pair and for every X ⊂ Ra,
Y ⊂ Cb,

|c(X, Y ) − ρ(Ra, Cb)Vol(X)Vol(Y )| ≤ α

Vol(X)Vol(Y ) (3)

holds. Consequently, in the k-partitions of the rows and columns, giving the minimum k-way discrepancy (say, α∗) of C,
every Ra, Cb pair is α∗-regular in terms of the volumes, and α∗ is the smallest possible discrepancy that can be attained with
proper k-partitions. In the graph case, it resembles the notion of ϵ-regular pairs in the Szemerédi regularity lemma [18],
albeit with given number of vertex-clusters, which are usually not equitable; further, with volumes, instead of cardinalities.

Though it is not always called discrepancy, this notion has intensively been used since the 1970s, e.g., in [9] and [18–20].
Thomason [19,20] introduced it in the context of what he called (p, α)-jumbled graphs and proved relations between this
and similar notions, related to pseudo-random graphs. Expander graphs and the expander mixing lemma for simple regular
graphs are also closely related to this notion, e.g., Alon, Spencer, Hoory, Linial, Widgerson [3,15]. Bollobás and Nikiforov [10]
extended the notion of discrepancy to Hermitian matrices. Then they defined two types of discrepancy for graphs and
showed that their estimate is valid to both, with due regard to a theorem of Thomason [20]. They also proved that for a large
graph G, one type of these discrepancies closely approximates the discrepancy of its adjacency matrix (as a real Hermitian
matrix). In Chung, Graham, Wilson [13], the authors used the term quasi-random for simple graphs that satisfy any of some
equivalent properties, some of which closely related to discrepancy and eigenvalue separation.

Here we rather extend the notion of discrepancy used by Chung and Graham for simple graphs with given degree
sequences. In [12], the authors proved that for simple graphs ‘small’ discrepancy disc(G) (with our notation, md1(G))
is caused by eigenvalue ‘separation’: the second largest singular value (which is also the second largest absolute value
eigenvalue), s1, of the normalized adjacency matrix is ‘small’, i.e., separated from the trivial singular value s0 = 1, which is
the edge of the spectrum. More exactly, they proved disc(G) ≤ s1, hence giving some kind of generalization of the expander
mixing lemma for irregular graphs.

In the backward direction, Bollobás and Nikiforov [10] estimated the second largest singular value of an n× n Hermitian
matrix A by Cdisc(A) log n, and showed that this is best possible up to a multiplicative constant. Bilu and Linial [4] proved
the converse of the expander mixing lemma for simple regular graphs, but their key lemma, producing this statement, goes
beyond regular graphs, see Section 3.1 for details. In Alon et al. [2], the authors relaxed the notion of eigenvalue separation to
essential eigenvalue separation (by introducing a parameter for it, and requiring the separation only for the eigenvalues of
a relatively large part of the graph). Then they proved relations between the constants of this kind of eigenvalue separation
and discrepancy.

For a general rectangular matrix C of nonnegative entries, Butler [11] proved the following forward and backward
statement in the k = 1 case:

disc(C) ≤ s1 ≤ 150disc(C)(1 − 8 ln disc(C)), (4)

where disc(C) is our md1(C) and, with our notation, s1 is the largest nontrivial singular value of CD (he denoted it with σ2).
Since s1 < 1, the upper estimate makes sense for very small discrepancy, in particular, for disc(C) ≤ 8.868 × 10−5. The
lower estimate further generalizes the expander mixing lemma to rectangular matrices.

So far, the overall discrepancy has been considered in the sense, that disc(C) or disc(G) measures the largest possible
deviation between the actual and expected connectedness of arbitrary (sometimes disjoint) subsets X, Y , where under
expected the hypothesis of independence is understood (which corresponds to the rank 1 approximation of the underlying
matrix). Our purpose is, in the multicluster scenario, to find similar relations between the minimum k-way discrepancy and
the SVD of the normalized matrix, for given k. In the backward direction, in Section 2, we will prove the following.
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Theorem 2. For every non-decomposable real matrix C of nonnegative entries and integer 1 ≤ k < rank(C),

sk ≤ 9mdk(C)(k + 2 − 9k lnmdk(C)),

provided 0 < mdk(C) < 1, where sk is the kth largest nontrivial singular value of the normalized matrix CD introduced in (1).

Note that mdk(C) = 0 if C has a block structure with k row- and column-blocks or if rank(C) = 1 (case of an independent
table, see Section 3.3), in which cases sk = 0 also holds. Likewise, mdk(C) < 1 is not a peculiar requirement, since in
view of sk < 1, the upper bound of the theorem has relevance only for mdk(C) much smaller than 1; for example, for
md1(C) ≤ 1.866 × 10−3, md2(C) ≤ 8.459 × 10−4, md3(C) ≤ 5.329 × 10−4, etc.

Earlier, in the forward direction, in [7] we estimated an alternative version of mdk(C) bymeans of sk and another quantity
from above, see Section 3.3 for details. Roughly speaking, the two directions together imply that if sk is ‘small’ and ‘much
smaller’ than sk−1, then one may expect a simultaneous k-clustering of the rows and columns of C with small k-way
discrepancy.

2. Proof of Theorem 2

Before proving the theorem, we encounter some lemmas of other authors that will be used, possibly with some modifi-
cations.

Lemma 3 of Bollobás and Nikiforov [10] is the key to prove their main result. This lemma states that to every 0 < ε < 1
and vector x ∈ Cn, ∥x∥ = 1, there exists a vector y ∈ Cn such that its coordinates take nomore than

 8π
ε

  4
ε
log 2n

ε


distinct

values and ∥x − y∥ ≤ ε. We will rather use the construction of the following lemma, which is indeed a consequence of
Lemma 3 of [10].

Lemma 3 (Lemma 3 of Butler [11]). To any vector x ∈ Cn, ∥x∥ = 1 and diagonal matrix D of positive real diagonal entries, one
can construct a step-vector y ∈ Cn such that ∥x − Dy∥ ≤

1
3 , ∥Dy∥ ≤ 1, and the nonzero entries of y are of the form

 4
5

j
e

ℓ
29 2π i

with appropriate integers j (taking on O(log n) distinct values) and ℓ (0 ≤ ℓ ≤ 28).

Note that starting with an x of real coordinates, we do not need all the 29 values of ℓ, only two of them will show up,
as it follows from a better understanding of the construction of [11]. In fact, by the idea of [10], j’s come from dividing
the coordinates of D−1x/∥D−1x∥ in decreasing absolute values into groups, where the cut-points are powers of 4

5 . With
the notation x = (xs)ns=1, if xs is in the jth group, then the corresponding coordinate of the approximating complex vector

y = (ys)ns=1 is as follows. If xs = 0, then ys = 0, otherwise ys =
 4
5

j
e

⌊
29θ
2π ⌋/29


2π i, where θ is the argument of xs, 0 ≤ θ < 2π ,

and therefore, ℓ = ⌊
29θ
2π ⌋ is an integer between 0 and 28. However, when the coordinates of x are real numbers, then only

the values 0 and 14 of ℓ can occur, since θ can take only one of the values 0 or π , depending on whether xs is positive or
negative. We will intensively use this observation in our proof.

Lemma 4 (Lemma 4 of Butler [11]). Let M be a matrix with largest singular value σ and corresponding unit-norm singular vector
pair v,u. If x and y are vectors such that ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥v − x∥ ≤

1
3 , ∥u − y∥ ≤

1
3 , then σ ≤

9
2 ⟨x,My⟩.

Lemma 5 (Theorem 3 of Thompson [21]). Let the n × n matrix have singular values α1 ≥ · · · ≥ αn and 1 ≤ k ≤ n be a fixed
integer. Then an n × n matrix X exists with rank(X) ≤ k such that B = A + X has singular values β1 ≥ · · · ≥ βn if and only if

αi+k ≤ βi ≤ αi−k, i = 1, . . . , n

with the understanding that αj = +∞ if j ≤ 0 and αj = 0 if j ≥ n.

Proof. The proof of Theorem 2 is as follows. Assume thatα∗
= mdk(C) ∈ (0, 1) and it is attainedwith the proper k-partition

R1, . . . , Rk of the rows and C1, . . . , Ck of the columns of C; i.e., for every Ra, Cb pair and X ⊂ Ra, Y ⊂ Cb we have

|c(X, Y ) − ρ(Ra, Cb)Vol(X)Vol(Y )| ≤ α∗

Vol(X)Vol(Y ). (5)

Our purpose is to put Inequality (5) in a matrix form by using indicator vectors and introducing them × n auxiliary matrix

F = C − DrowRDcol, (6)

where R = (ρ(Ra, Cb)) is them× n block-matrix of k× k blocks with entries equal to ρ(Ra, Cb) over the block Ra × Cb. With
the indicator vectors 1X and 1Y of X ⊂ Ra and Y ⊂ Cb, Inequality (5) has the following equivalent form:

|⟨1X , F1Y ⟩| ≤ α∗


⟨1X , C1n⟩⟨1m, C1Y ⟩, (7)

where 1n denotes the all 1’s vector of size n. At the same time, Eq. (6) yields

D−1/2
row FD−1/2

col = D−1/2
row CD−1/2

col − D1/2
rowRD

1/2
col = CD − D1/2

rowRD
1/2
col .
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Since the rank of the matrix D1/2
rowRD

1/2
col is at most k, by the upper estimate of Lemma 5 (with the role-cast A = D−1/2

row FD−1/2
col ,

B = CD, X = D1/2
rowRD

1/2
col , and i = k+1)1 we obtain the following upper estimate for sk, that is the (k+1)th largest (including

the trivial 1) singular value of CD:

sk ≤ smax(D−1/2
row FD−1/2

col ) = ∥D−1/2
row FD−1/2

col ∥,

where ∥.∥ denotes the spectral norm.
Let v ∈ Rm be the left and u ∈ Rn be the right unit-norm singular vector corresponding to the maximal singular value of

D−1/2
row FD−1/2

col , i.e.,

|⟨v, (D−1/2
row FD−1/2

col )u⟩| = ∥D−1/2
row FD−1/2

col ∥.

In view of Lemma 3, there are step-vectors x ∈ Cm and y ∈ Cn such that ∥v − D1/2
rowx∥ ≤

1
3 and ∥u − D1/2

col y∥ ≤
1
3 ; further,

∥D1/2
rowx∥ ≤ 1 and ∥D1/2

col y∥ ≤ 1. Then Lemma 4 yields

∥D−1/2
row FD−1/2

col ∥ ≤
9
2

⟨(D1/2
rowx), (D

−1/2
row FD−1/2

col )(D1/2
col y)⟩

 =
9
2
|⟨x, Fy⟩|.

Nowwewill use the construction of the proof of Lemma 3 in the special case when the vectors v = (vs)
m
s=1 and u = (us)

n
s=1,

to be approximated, have real coordinates. Therefore, only the following three types of coordinates of the approximating
complex vectors x = (xs)ms=1 and y = (ys)ns=1 will appear. If vs = 0, then xs = 0; if vs > 0, then xs = ( 4

5 )
j with some

integer j; if vs < 0, then xs = ( 4
5 )

je
28
29 π i with some integer j. Likewise, if us = 0, then ys = 0; if us > 0, then ys = ( 4

5 )
ℓ with

some integer ℓ; if us < 0, then ys = ( 4
5 )

ℓe
28
29 π i with some integer ℓ. With these observations, the step-vectors x and y can be

written as the following finite sums with respect to the integers j and ℓ:

x =


j


4
5

j

x(j), x(j)
=

k
a=1

(1Xja1 + e
28
29 π i1Xja2), where

Xja1 = {s : vs > 0, s ∈ Ra} and Xja2 = {s : vs < 0, s ∈ Ra};

likewise,

y =


ℓ


4
5

ℓ

y(ℓ), y(ℓ)
=

k
b=1

(1Yℓb1 + e
28
29 π i1Yℓb2), where

Yℓb1 = {s : us > 0, s ∈ Cb} and Yℓb2 = {s : us < 0, s ∈ Cb}.

It is important that the 2k indicator vectors appearing in the decomposition of any x(j) or y(ℓ) are disjointly supported, and
so, all the coordinates of these vectors are of absolute value 1. These considerations give rise to the following estimation.

|⟨x(j), Fy(ℓ)
⟩| ≤

k
a=1

2
p=1

k
b=1

2
q=1

⟨1Xjap , F1Yℓbq⟩


(7)
≤

k
a=1

2
p=1

k
b=1

2
q=1

α∗


⟨1Xjap , C1n⟩⟨1m, C1Yℓbq⟩

≤ α∗2k

 k
a=1

2
p=1

k
b=1

2
q=1

⟨1Xjap , C1n⟩⟨1m, C1Yℓbq⟩

= 2kα∗

 k
a=1

2
p=1

1Xjap , C1n

 
1m, C

k
b=1

2
q=1

1Yℓbq



= 2kα∗


⟨|x(j)|, C1n⟩⟨1m, C|y(ℓ)|⟩, (8)

where in the first inequality we used the triangle inequality and |e
28
29 π i

| = 1, in the second one we used (7), while in the
third one, the Cauchy–Schwarz inequality with 4k2 terms.

1 Actually, Lemma 5 is about square matrices, but in the possession of a rectangular one, we can supplement it with zero rows or columns to make it
quadratic; further, the nonzero singular values of the so obtained squarematrix are the same as those of the rectangular one, supplementedwith additional
zero singular values that will not alter the shifted interlacing facts.
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In the last stepwe exploited that the indicator vectors composing x(j) and y(ℓ) are disjointly supported.We also introduced
the notation |z| = (|zs|)ns=1 for the real vector, the coordinates of which are the absolute values of the corresponding
coordinates of the (possibly complex) vector z. (Note that the so introduced |z| is a vector, unlike ∥z∥ = (

n
s=1 |zs|2)1/2.) In

the same spirit, let |M| denote the matrix whose entries are the absolute values of the corresponding entries of M (we will
use this only for real matrices). With this formalism, this is the right moment to prove the following inequalities that will
be used soon to finish the proof:

ℓ

|⟨x(j), Fy(ℓ)
⟩| ≤ 2⟨|x(j)

|, C1n⟩,


j

|⟨x(j), Fy(ℓ)
⟩| ≤ 2⟨1m, C|y(ℓ)

|⟩. (9)

Since the two inequalities are of the same flavor, it suffices to prove only the first one. Note that it is here, where we use the
exact definition of F as follows.

ℓ

|⟨x(j), Fy(ℓ)
⟩| ≤


|x(j)

|, |F|


ℓ

|y(ℓ)
|


≤ ⟨|x(j)

|, (C + DrowRDcol)1n⟩| = 2⟨|x(j)
|, C1n⟩

because |y(ℓ)
| is a 0–1 vector and C+DrowRDcol is a (real) matrix of nonnegative entries. We also used that the ith coordinate

of the vector (C + DrowRDcol)1n for i ∈ Ra is

drow,i


1 +

k
b=1

ρ(Ra, Cb)Vol(Cb)


= 2drow,i

(here we utilized that the sum of the entries of C is 1), and therefore,

(C + DrowRDcol)1n = 2C1n.

Finally, we will finish the proof with similar considerations as in [11]. Let us further estimate

⟨x, Fy⟩ =


j


ℓ


4
5

j

x(j), F

4
5

ℓ

y(ℓ)


.

Put γ := log4/5 α∗; in view of α∗ < 1, γ > 0 holds. Then we divide the above summation into three parts as follows.

|⟨x, Fy⟩| ≤


j


ℓ


4
5

j+ℓ

|⟨x(j), Fy(ℓ)
⟩|

=


|j−ℓ|≤γ

(a)


4
5

j+ℓ

|⟨x(j), Fy(ℓ)
⟩| +


j−ℓ>γ

(b)


4
5

j+ℓ

|⟨x(j), Fy(ℓ)
⟩| +


j−ℓ<−γ

(c)


4
5

j+ℓ

|⟨x(j), Fy(ℓ)
⟩|.

The three terms are estimated separately. Term (a) can be bounded from above as follows:


|j−ℓ|≤γ


4
5

j+ℓ

|⟨x(j), Fy(ℓ)
⟩|

(8)
≤ 2kα∗


|j−ℓ|≤γ


4
5

2j

⟨|x(j)|, C1n⟩


4
5

2ℓ

⟨1m, C|y(ℓ)|⟩

(∗)

≤ kα∗


|j−ℓ|≤γ


4
5

2j

⟨|x(j)
|, C1n⟩ +


4
5

2ℓ

⟨1m, C|y(ℓ)
|⟩


(∗∗)

≤ kα∗(2γ + 1)


j


4
5

2j

⟨|x(j)
|, C1n⟩ +


ℓ


4
5

2ℓ

⟨1m, C|y(ℓ)
|⟩


,

(∗∗∗)

≤ 2kα∗(2γ + 1),

where in the first inequality, the estimate of (8), and in (*), the geometric–arithmetic mean inequality were used; (**) comes
from the fact that in the second line, the first term depends merely on j, while the second one merely on ℓ, and so, for fixed
j or ℓ, any term can show up at most 2γ + 1 times; (***) is due to the easy observation that


j


4
5

2j

⟨|x(j)
|, C1n⟩ = ∥D1/2

rowx∥
2

≤ 1,


ℓ


4
5

2ℓ

⟨1m, C|y(ℓ)
|⟩ = ∥D1/2

col y∥
2

≤ 1. (10)
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Terms (b) and (c) are of similar appearance (the role of j and ℓ is symmetric in them), therefore, we will estimate only (b).
Here j − ℓ > γ , yielding j + ℓ > 2ℓ + γ . Therefore,

j−ℓ>γ


4
5

j+ℓ

|⟨x(j), Fy(ℓ)
⟩| ≤


ℓ


4
5

2ℓ+γ 
j

|⟨x(j), Fy(ℓ)
⟩|

(9)
≤


ℓ


4
5

2ℓ+γ

2⟨1m, C|y(ℓ)
|⟩

= 2

4
5

γ 
ℓ


4
5

2ℓ

⟨1m, C|y(ℓ)
|⟩

(10)
≤ 2


4
5

γ

where, in the second and third inequalities, (9) and (10) were used. Consequently, (c) can also be estimated from above with
2
 4
5

γ
.

Collecting the so obtained estimates together, we get

sk ≤
9
2
|⟨x, Fy⟩| ≤

9
2


2kα∗(2γ + 1) + 4


4
5

γ 
= 9α∗


2k

lnα∗

ln 4
5

+ k + 2


≤ 9α∗

[2k(−4.5) lnα∗
+ k + 2] = 9α∗(k + 2 − 9k lnα∗),

that was to be proved.

Note that for k = 1, our upper bound is tighter than that of (4), see Theorem 2 of [11].

3. Special cases and conclusions

3.1. Undirected graphs

The notion of the multiway discrepancy naturally extends to edge-weighted graphs. A weighted undirected graph G =

(V ,W) on n vertices is uniquely characterized by its n× n weighted adjacency matrixW, which is symmetric of nonnegative
entries and zero diagonal. D = diag(d1, . . . , dn) is the diagonal degree-matrix (di =

n
j=1 wij), Vol(U) =


i∈U di is the

volume of U ⊂ V , and for simplicity we assume that
n

i=1 di = 1; it does not hurt the generality, because neither the
normalized weighted adjacency matrixWD = D−1/2WD−1/2, nor the multiway discrepancies are affected by the scaling ofW.

Definition 6. The multiway discrepancy of the undirected, edge-weighted graph G = (V ,W) in the proper k-partition
V1, . . . , Vk of its vertices is

md(G; V1, . . . , Vk) = max
1≤a≤b≤k

X⊂Va, Y⊂Vb

|w(X, Y ) − ρ(Va, Vb)Vol(X)Vol(Y )|
√
Vol(X)Vol(Y )

.

The minimum k-way discrepancy of G is

mdk(G) = min
V1,...,Vk

disc(G; V1, . . . , Vk).

A result, similar to that of Theorem 2 can now be proved in terms of the eigenvalues ofWD, the absolute values of which are
the singular values:

1 = µ0 ≥ |µ1| ≥ · · · ≥ |µn−1|.

Theorem 7. Let G = (V ,W) be an edge-weighted, undirected graph with the non-decomposable weighted adjacency matrixW.
Then

|µk| ≤ 9mdk(G)(k + 2 − 9k lnmdk(G)), (11)

where µk is the kth largest absolute value eigenvalue (excluding the trivial 1) of the normalized weighted adjacency matrix WD
(k = 1, . . . , n − 1).

Proof. The proof follows the same considerations as the proof of Theorem 2with the difference that here we use symmetric
matrices. In particular, R = (ρ(Va, Vb)) is an n × n symmetric block-matrix of k × k blocks corresponding to the partition
V1, . . . , Vk of the vertices for which α∗

= disc(G) = disc(G; V1, . . . , Vk); consequently, the matrix F = W − DRD is also
symmetric. Therefore, in accord with (7) and Definition 6: for every Va, Vb pair and X ⊂ Va, Y ⊂ Vb (1 ≤ a ≤ b ≤ k) we
have

|⟨1X , F1Y ⟩| ≤ α∗


⟨1X ,W1n⟩⟨1n,W1Y ⟩. (12)

The left and right singular vectors (v,u ∈ Rn) corresponding to the maximal singular value of the real symmetric matrix
D−1/2FD−1/2 satisfy u = ±v (the sign is the same as the sign of the eigenvalue of the maximal absolute value). If u = v,
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then Yℓbq = Xℓbq for every ℓ, b = 1, . . . , k, and q = 1, 2. If u = −v, then Yℓb1 = Xℓb2 and Yℓb2 = Xℓb1 for every ℓ and
b = 1, . . . , k. Consequently, in the estimates of (8), when we use the absolute values of the coordinates of the vectors x(j)

and y(ℓ), constructed in Section 2, the inequalities remain valid. Namely,

|⟨x(j), Fy(ℓ)
⟩| ≤

k
a=1

2
p=1

k
b=1

2
q=1

⟨1Xjap , F1Xℓbq⟩
 .

Here the summation is for every 1 ≤ a, b ≤ k pair. However, if a ≤ b, then by (12) we get⟨1Xjap , F1Xℓbq⟩
 ≤ α∗


⟨1Xjap ,W1n⟩⟨1n,W1Xℓbq⟩;

whereas, if a > b, then by the symmetry of F:⟨1Xjap , F1Xℓbq⟩
 =

⟨1Xℓbq , F1Xjap⟩
 ≤ α∗


⟨1Xlbq ,W1n⟩⟨1n,W1Xjap⟩

=


⟨1Xjap ,W1n⟩⟨1n,W1Xℓbq⟩.

Therefore, for a ≠ b, the same term appears twice, and all the subsequent estimates remain valid by substituting W for C
and D for both Drow and Dcol. This completes the proof.

Recall that Bilu and Linial [4] proved the following converse of the expandermixing lemma for simple d-regular graphs on
n vertices. Assume that for any disjoint vertex-subsets S, T : |e(S, T )−

|S||T |d
n | ≤ α

√
|S||T |. Then all but the largest adjacency

eigenvalue ofG are bounded (in absolute value) byO(α(1+log d
α
)). Note that for a d-regular graph the adjacency eigenvalues

are d times larger than the normalized adjacency ones, and the deviation between e(S, T ) and the one what is expected in
a random d-regular graph, is also proportional to our (1-way) discrepancy in terms of the volumes (note that Vol(S) is also
proportional to |S|). Though they use disjoint subsets S, T , their upper estimate for the absolute value of the second largest
(in absolute value) eigenvalue with the (1-way) discrepancy α is Cα(1− A logα) with some absolute constants A, C . Hence,
the upper estimate of (4) or that of (11) in the k = 1 case is reminiscent of this.

In the forward direction, for an arbitrary k (between 1 and rankW), in Theorem 3 of [8] we proved that under some
balancing conditions for the degrees and the cluster sizes (when n → ∞) and denoting by V1, . . . , Vk the clusters obtained
by spectral clustering (see the forthcoming explanation), the (Va, Vb) pairs are O(

√
2kSk + |µk|)-volume regular (a ≠ b)

and similar statement holds for the subgraphs induced by Va’s. In this direction, we merely assume thatW is irreducible, so
1 is an eigenvalue of WD. However, the singular value 1 of WD can have multiplicity greater than one. For example, if G is
bipartite, then W is irreducible, but decomposable, hence −1 is also an eigenvalue of WD, and so, the singular value 1 has
multiplicity two. It will be important in the forthcoming examples.

In fact, inspired by [2], in [8] we used a bit different notation and concept of α-volume regular pairs, namely, for every
X ⊆ Va, Y ⊆ Vb we required

|w(X, Y ) − ρ(Va, Vb)Vol(X)Vol(Y )| ≤ α

Vol(Va)Vol(Vb).

In the above formula, the right hand side contains the squareroots of the volumes of the clusters, unlike (3), which contains
the squareroots of the volumes of X and Y . However, in the spirit of the Szemerédi regularity lemma [18], if we require
(3) to hold only for X, Y ’s satisfying Vol(X) ≥ εVol(Vi), Vol(Y ) ≥ εVol(Vj) with some fixed ε, then the so modified k-
way discrepancy is O(

√
2kSk + |µk|), and so does mdk(G). Here the partition V1, . . . , Vk is defined so that it minimizes the

weighted k-variance S2k of the vertex representatives r1, . . . , rn ∈ Rk−1 obtained as the row vectors of the n× (k−1)matrix
of column vectors D−1/2ui, where ui is the unit-norm eigenvector corresponding to µi(i = 1, . . . , k − 1). The k-variance of
the representatives is defined as

S2k = min
(V1,...,Vk)

k
a=1


j∈Va

dj∥rj − ca∥2, (13)

where ca =
1

Vol(Va)


j∈Va djrj is the weighted center of cluster Va. It is the weighted k-means algorithm that gives this

minimum, and the point is that the optimum Sk is just the minimum distance between the eigensubspace corresponding to
µ0, . . . µk−1 and the one of the suitably transformed step-vectors over the k-partitions of V . In [8] we also discussed that,
in view of subspace perturbation theorems, the larger the gap between |µk−1| and |µk|, the smaller Sk is. So the message
is, that here the eigenvectors corresponding to the largest absolute value eigenvalues have to be used, unlike usual spectral
clustering methods which automatically use the bottom eigenvalues of the Laplacian or normalized Laplacian matrix (latter
one is just I−WD). The clusters or cluster-pairs of small discrepancy behave like expanders or bipartite expanders. In another
context, they resemble the generalized random or quasirandom graphs of Lovász, Sós, Simonovits [16,17].

In some special cases Sk = 0, and so, mdk(G) ≤ B|µk| = Bsk follows from the result of [8]. In particular, Sk = 0 whenever
the vectors D−1/2u1, . . . ,D−1/2uk−1 are step-vectors over the same proper k-partition of the vertices. Some examples:
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• If k = 2 and G is bipartite, then µ1 = −1, s1 = 1, and S22 , i.e., the 2-variance of the coordinates of the transformed
eigenvector corresponding to µ1 can be small if |µ2| is separated from |µ1| = 1 (see also the bipartite expanders of [1]).

• Let k = 2 and G be bipartite, biregular on the independent vertex-subsets V1, V2. That is, all the edge-weights within V1
or V2 are zeros, and the 0–1 weights between vertices of V1 and V2 are such that di = k1 if i ∈ V1 and di = k2 if i ∈ V2
with the understanding that |V1|k1 = |V2|k2 (both are the total number of edges in G). It is easy to see that the unit-norm
eigenvector corresponding to the eigenvalue µ1 = −1 is u1 = D1/21V1 − D1/21V2 , and D−1/2u1 = 1V1 − 1V2 . Therefore,
the representatives of vertices of V1 are all 1’s, and those of V2 are −1’s, so S2 = 0. Consequently, md2(G) ≤ B|µ2|, with
some absolute constant B. Up to the constant, this was another proof of Lemma 3.2 of Evra et al. [14]. They call their
result expander mixing lemma for bipartite graphs, and use cardinalities instead of volumes, but in this special case,
these cardinalities are proportional to the volumes, both within V1 and V2.

• Let G(n, P) be a generalized random graph with n vertices over the symmetric k × k pattern matrix P = (pab); i.e., there
is a proper k-partition, V1, . . . , Vk, of its vertices such that |Va| = na (a = 1, . . . , k),

k
a=1 na = n, and for any

1 ≤ a ≤ b ≤ k, vertices i ∈ Va and j ∈ Vb are connected independently, with the same probability pab. This is the k-cluster
generalization of the classical Erdős–Rényi random graph, see also [16] for their generalized quasirandom counterparts.
In [5] we characterized the adjacency and normalized Laplacian spectra of such graphs, that extends to their normalized
adjacency spectra as follows: both |µk| = sk and Sk tend to zero almost surely when n → ∞, under some balancing
conditions for the cluster sizes ( nan ≥ c with some constant c , for a = 1, . . . , k). By the forward statement of [8], it also
holds for the k-way discrepancy in the clustering V1, . . . , Vk.

Summarizing, in the k = 1 case: when the second singular value |µ1| = s1 is ‘small’ (much smaller than s0 = 1), then the
overall discrepancy is ‘small’. However, for k > 1, a ‘small’ sk is necessary, but not sufficient for a ‘small’ k-way discrepancy.
In addition, Sk should be ‘small’ too.With subspace perturbation theorems, it is ‘small’ if sk is ‘much smaller’ than sk−1. Hence,
a gap in the normalized spectrum may be an indication for the choice of k.

3.2. Directed graphs

A directed weighted graph G = (V ,W) is described by its quadratic, but usually not symmetric weighted adjacency
matrix W = (wij) of zero diagonal, where wij is the nonnegative weight of the i → j edge (i ≠ j). The row-sums dout,i =n

j=1 wij and column-sums din,j =
n

i=1 wij ofW are the out- and in-degrees, while Dout = diag(dout,1, . . . , dout,n) and Din =

diag(din,1, . . . , din,n) are the diagonal out- and in-degreematrices, respectively. NowDefinition 1 canbe formulated as follows.

Definition 8. The multiway discrepancy of the directed, edge-weighted graph G = (V ,W) in the in-clustering Vin,1, . . . ,
Vin,k and out-clustering Vout,1, . . . , Vout,k of its vertices is

md(G; Vin,1, . . . , Vin,k, Vout,1, . . . , Vout,k)

= max
1≤a,b≤k

X⊂Vout,a, Y⊂Vin,b

|w(X, Y ) − ρ(Vout,a, Vin,b)Volout(X)Volin(Y )|
√
Volout(X)Volin(Y )

,

where w(X, Y ) is the sum of the weights of the X → Y edges, whereas Volout(X) =


i∈X dout,i and Volin(Y ) =


j∈Y din,j
are the out- and in-volumes, respectively. The minimum k-way discrepancy of the directed weighted graph G = (V ,W) is

mdk(G) = min
Vin,1,...,Vin,k

Vout,1,...,Vout,k

md(G; Vin,1, . . . , Vin,k, Vout,1, . . . , Vout,k).

Butler [11] treats the k = 1 case, and for a general k, Theorem 2 implies the following.

Proposition 9. Let G = (V ,W) be a directed edge-weighted graph with non-decomposable weighted adjacency matrixW. Then

sk ≤ 9mdk(G)(k + 2 − 9k lnmdk(G)),

where sk is the kth largest nontrivial singular value of the normalized weighted adjacency matrixWD = D−1/2
out WD−1/2

in .

We applied the SVD based algorithm to find migration patterns in the set of 75 countries, and found 3 underlying
immigration and emigration trait clusters. Since the algorithm is the same as for rectangular matrices, we will describe
it in Section 3.3.

3.3. Back to rectangular matrices

In multivariate statistics, sometimes our data are collected in anm× nmatrix C, where the entries are frequency counts
corresponding to the joint distribution of two categorized random variables (taking onm and n distinct values, respectively).
Such a C is called contingency table in statistical language, and the data are popularly said to be cross-tabulated. The χ2

statistic, which measures the deviation from independence, is N
r−1

i=1 s2i with the notation of Section 1, where N is the
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(usually ‘large’) sample size. However, the second factor can be ‘small’ if s1 is ‘small’, and this corresponds to the existence
of a good rank 1 approximation of C (when the two underlying random variables are ‘nearly’ independent). This fact is
also supported by the disc(C) = md1(C) ≤ s1 relation. Otherwise, one may ask, whether there exists a ‘good’ rank k
approximation for some integer 1 < k < r = rank(C), which problem is treated in the correspondence analysis by the first
k dyads of the SVD of CD. However, there it is not made exact how sk is estimated by mdk(C). Our Theorem 2 says that if
the minimum k-way discrepancy is very ‘small’, i.e., the sub-tables Ra × Cb behave like independent tables in the optimal
k-partitions of the rows and columns, then sk is ‘small’ too.

In the forward direction, in [7], we proved the following. Given the m × n contingency table C, consider the spectral
clusters R1, . . . , Rk of its rows and C1, . . . , Ck of its columns, obtained by applying the weighted k-means algorithm for
the (k − 1)-dimensional row- and column representatives, defined as the row vectors of the matrices of column vectors
(D−1/2

row v1, . . . ,D
−1/2
row vk−1) and (D−1/2

col u1, . . . ,D
−1/2
col uk−1), respectively, where vi,ui is the unit norm singular vector pair

corresponding to si(i = 1, . . . , k − 1). In fact, these partitions minimize the weighted k-variances S2k,row and S2k,col of these
row- and column-representatives introduced in (13). Then, under some balancing conditions for the margins and for the
cluster sizes, we proved that mdk(C) ≤ B(

√
2k(Sk,row + Sk,col) + sk), with some constant B, which depends only on the

constants of the balancing conditions, and does not depend onm and n. This is the base of our algorithm, with fixed k.
We remark that the correspondence analysis uses the above (k − 1)-dimensional row- and column-representatives for

simultaneously plotting the row- and column-categories in Rk−1 (k = 2, 3 or 4 in most applications), and hence, the
practitioner can draw conclusions from theirmutual positions. For example, inmicroarray analysiswe can plot the genes and
conditions together, and the biclusters obtained by k-clustering the row- and column-representatives give clusters of the
genes and the conditions such that, every gene-cluster and condition-cluster pair behaves like a randomweighted bipartite
graph in the sense, that genes and conditions of the same cluster nearly independently influence each other, which fact may
have importance for practitioners.

In the possession of networks or microarrays, practitioners want to find a fairly small k, such that there is a k-cluster
structure behind thematrix or the graph in the sense that the subgraphs and bipartite subgraphs have ‘small’ discrepancy. It
depends on thematrix or the graph that how small discrepancy can be attained and with what k. The above theory tells that
we have to inspect the normalized spectra together with spectral subspaces, since the leading ones carry a lot of information
about the smallest attainable multiway discrepancy.
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