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Abstract

This article investigates relation between spectral and structural properties of large
edge-weighted graphs. In social or biological networks we frequently look for par-
tition of the vertices such that the induced subgraphs on them and the bipartite
subgraphs between any pair of them exhibit regular behavior of information flow
within or between the vertex subsets. We estimate the constants bounding the
volume regularity of the cluster pairs by means of spectral gaps and classification
properties of eigenvectors. We will focus on the more than two clusters case.
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1 Preliminaries

Facing large networks, our purpose is to find some community structure in
them, that is a partition of the vertices into clusters with homogeneous edge-
densities within or between the clusters. For this purpose, the general frame-
work of an edge-weighted graph will be used.

1 Research supported by the Hungarian National Research Grants OTKA 76481 and
OTKA-NKTH 77778.
2 Email: marib@math.bme.hu



Let G = (V,W) be a graph on n vertices, where the n × n symmetric
weight matrix W has non-negative real entries and zero diagonal. The num-
bers di =

∑n
j=1 wij (i = 1, . . . , n) are the generalized degrees which constitute

the main diagonal of the diagonal degree matrix D. In [2], we investigated
the spectral gap of the normalized Laplacian LD = I−D−1/2WD−1/2, where
I denotes the identity matrix of appropriate size. As its spectrum is invariant
under scaling the edge-weights, without loss of generality,

∑n
i=1

∑n
j=1 wij = 1

will be supposed. The spectrum of LD is in the [0,2] interval, and if G is
connected (W is irreducible), 0 is a single eigenvalue with corresponding unit-
norm eigenvector

√
d := (

√
d1, . . . ,

√
dn)T . For our convenience, we transform

the normalized Laplacian into the so-called normalized modularity matrix de-

fined by BD = D−1/2WD−1/2 −
√

d
√

d
T
. The spectrum of this matrix is

in the [-1,1] interval (1 cannot be an eigenvalue if G is connected), and 0 is
always an eigenvalue with eigenvector

√
d. In fact, the so-called Expander

Mixing Lemma of [6] can be generalized for edge-weighted graphs in terms
of the spectral norm of BD. More generally, the eigenvalues of this matrix,
separated from 0, together with the corresponding eigenvectors will play an
important role in the community detection problem. To formulate this rela-
tion, weighted cuts, volumes, and volume regularity are defined.

The volume of U ⊂ V is defined as Vol(U) =
∑

i∈U di; further, for X, Y ⊂
V , w(X, Y ) =

∑
i∈X

∑
j∈Y wij is the weighted cut between X and Y . In

this setup, the Expander Mixing Lemma is formulated in the following way:
supposing Vol(V ) = 1, for all X, Y ⊂ V ,

|w(X, Y )− Vol(X)Vol(Y )| ≤ ‖BD‖ ·
√
Vol(X)Vol(Y ).

As the spectral gap of G is 1− ‖BD‖, a large spectral gap indicates a quasi-
random property discussed in [5]. But what if there is a gap not at the ends
of the spectrum? In this case we want to partition the vertices into clusters so
that a relation similar to the above property for the edge-densities between the
cluster pairs would hold. We will use a slightly modified version of the volume
regularity’s notion introduced by Alon, Coja-Oghlan, Han, Kang, Rödl, and
Schacht [1].

Definition 1.1 Let G = (V,W) be weighted graph with Vol(V ) = 1. The
disjoint pair (A, B) is α-volume regular if for all X ⊂ A, Y ⊂ B we have

|w(X, Y )− ρ(A, B)Vol(X)Vol(Y )| ≤ α
√
Vol(A)Vol(B),(1)

where ρ(A, B) = w(A,B)
Vol(A)Vol(B)

is the relative inter-cluster density of (A, B).

In case of several clusters we will assign vectors, so-called representatives to



the vertices. The (k−1) dimensional vertex representatives r1, . . . , rn are row
vectors of the n× (k− 1) matrix X of column vectors D−1/2ui, where ui’s are
unit-norm eigenvectors belonging to k − 1 so-called structural eigenvalues of
BD well separated from 0. The weighted k-variance of the (k−1)-dimensional
vertex representatives is defined by

S2
k(X) = min

Pk∈Pk

S2
k(Pk,X) = min

Pk=(V1,...,Vk)

k∑
a=1

∑
j∈Va

dj‖rj − ca‖2,(2)

where ca = 1
Vol(Va)

∑
j∈Va

djrj is the weighted center of cluster Va (a = 1, . . . , k)
and Pk denotes the family of k-partitions of the vertices.

To investigate the ideal k-cluster case, let us consider the following gen-
eralized random simple graph model: given the partition (V1, . . . , Vk) of V ,
vertices i ∈ Va and j ∈ Vb are connected with probability pab, independently
of each other, 1 ≤ a, b ≤ k. We can think of the probability pab as the inter-
cluster density of the pair (Va, Vb). Since generalized random graphs can be
viewed as edge-weighted graphs with a special block-structure burdened with
random noise, based on [3], we are able to give the following spectral char-
acterization of them. Fixing k, and tending with n to infinity in such a way
that the cluster sizes grow at the same rate, there exists a positive number
θ ≤ 1, independent of n, such that for every 0 < τ < 1/2 there are exactly
k− 1 eigenvalues of BD greater than θ− n−τ , while all the others are at most
n−τ in absolute value; further, the k-variance of the vertex representatives
constructed by the k − 1 transformed structural eigenvectors is O(n−2τ ), and
the cluster pairs are α-volume regular with any small α, almost surely.

Generalized quasi-random graphs were introduced by Lovász and T. Sós [7]
as deterministic counterparts of the generalized random graphs with the same
spectral properties. In fact, the authors define so-called generalized quasi-
random graph sequences by means of graph convergence that also implies the
convergence of spectra. Though, the spectrum itself does not carry enough
information for the cluster structure of the graph, together with some classi-
fication properties of the structural eigenvectors it does.

For general deterministic edge-weighted graphs, our result is that the ex-
istence of k − 1 eigenvalues of BD separated from 0 by ε, is indication of a
k-cluster structure, while the eigenvalues accumulating around 0 are respon-
sible for the pairwise regularities. The clusters themselves can be recovered
by applying the k-means algorithm for the vertex representatives obtained by
the eigenvectors corresponding to the structural eigenvalues. We will focus
on the case k > 2: Theorem 2.1 bounds the volume regularity’s constants
of the different cluster pairs by means of ε and the k-variance of the vertex



representatives (based on the structural eigenvectors). We are also able to
give estimates for the intra-cluster densities. As for the case k = 2, due to [2],
the k-variance itself can be estimated by the spectral gap, and hence, the
estimation simplifies.

2 Results

Theorem 2.1 Let G = (V,W) be an edge-weighted graph on n vertices, with
generalized degrees d1, . . . , dn and degree matrix D. Suppose that Vol(V ) = 1
and there are no dominant vertices: di = Θ(1/n), i = 1, . . . , n, as n →∞. Let
the eigenvalues of D−1/2WD−1/2, enumerated in decreasing absolute values,
be

1 = ρ1 > |ρ2| ≥ . . . ≥ |ρk| > ε ≥ |ρi|, i ≥ k + 1.

The partition (V1, . . . , Vk) of V is defined so that it minimizes the weighted
k-variance S2

k(X) of the vertex representatives – defined in (2) – obtained as
row vectors of the n× (k − 1) matrix X of column vectors D−1/2ui, where ui

is the unit-norm eigenvector belonging to ρi (i = 2, . . . , k). Suppose that there
is a constant 0 < K ≤ 1

k
such that |Vi| ≥ Kn, i = 1, . . . , k. With the notation

s2 = S2
k(X), the (Vi, Vj) pairs are O(

√
2ks+ ε)-volume regular (i 6= j) and for

the clusters Vi (i = 1, . . . , k) the following holds: for all X, Y ⊂ Vi,

|w(X, Y )− ρ(Vi)Vol(X)Vol(Y )| = O(
√

2ks + ε)Vol(Vi),

where ρ(Vi) = w(Vi,Vi)
Vol2(Vi)

is the relative intra-cluster density of Vi.

Proof. Recall that the spectrum of D−1/2WD−1/2 differs from that of BD

only in the following: it contains the eigenvalue ρ1 = 1 with corresponding
eigenvector u1 =

√
d instead of an eigenvalue 0 of BD with the same eigen-

vector. If G is connected (W is irreducible), 1 is a single eigenvalue. The
(k − 1)-dimensional representatives of the vertices are row vectors of the ma-
trix X = (x2, . . . ,xk), where xi = D−1/2ui (i = 2, . . . , k). The representatives
can as well be regarded as k-dimensional ones, as by inserting the vector
x1 = D−1/2u1 = 1 will not change the k-variance s2 = S2

k(X). Suppose
that the minimum k-variance is attained on the k-partition (V1, . . . , Vk) of
the vertices. By an easy analysis of variance argument it follows that s2 =∑k

i=1 dist
2(ui, F ), where F = Span {D1/2z1, . . . ,D

1/2zk} with the so-called
normalized partition vectors z1, . . . , zk of coordinates zji = 1√

Vol(Vi)
if j ∈ Vi

and 0, otherwise (i = 1, . . . , k). Note that the vectors D1/2z1, . . . ,D
1/2zk



form an orthonormal system. By [2], we can find another orthonormal system
v1, . . . ,vk ∈ F such that s2 ≤

∑k
i=1 ‖ui − vi‖2 ≤ 2s2. We approximate the

matrix D−1/2WD−1/2 =
∑n

i=1 ρiuiu
T
i by the rank k matrix

∑k
i=1 ρiviv

T
i with

the following accuracy (in spectral norm):∥∥∥∥∥
n∑

i=1

ρiuiu
T
i −

k∑
i=1

ρiviv
T
i

∥∥∥∥∥ ≤
k∑

i=1

|ρi| ·
∥∥uiu

T
i − viv

T
i

∥∥ +

∥∥∥∥∥
n∑

i=k+1

ρiuiu
T
i

∥∥∥∥∥ ,(3)

which can be estimated from above with
∑k

i=1 sin αi+ε ≤
∑k

i=1 ‖ui−vi‖+ε ≤√
2ks+ε, where αi is the angle between ui and vi, and for it, sin αi

2
= 1

2
‖ui−vi‖

holds, i = 1, . . . , k.

Based on these considerations and relation between the cut norm and the
spectral norm, the densities to be estimated in the defining formula (1) of
volume regularity can be written in terms of stepwise constant vectors in
the following way. The vectors yi := D−1/2vi are stepwise constants on the
partition (V1, . . . , Vk), i = 1, . . . , k. The matrix

∑k
i=1 ρiyiy

T
i is therefore a

symmetric block-matrix on k × k blocks belonging to the above partition of
the vertices. Let w̃ab denote its entries in the (a, b) block (a, b = 1, . . . , k).
Using (3), the rank k approximation of the matrix W is performed with the
following accuracy of the perturbation E:

‖E‖ =

∥∥∥∥∥W −D(
k∑

i=1

ρiyiy
T
i )D

∥∥∥∥∥ =

∥∥∥∥∥D1/2(D−1/2WD−1/2 −
k∑

i=1

ρiviv
T
i )D1/2

∥∥∥∥∥ .

Therefore, the entries of W – for i ∈ Va, j ∈ Vb – can be decomposed as
wij = didjw̃ab + ηij, where the cut norm of the n× n symmetric error matrix
E = (ηij) restricted to Va × Vb (otherwise it contains entries all zeroes) and
denoted by Eab, is estimated as follows:

‖Eab‖� ≤ c
√
Vol(Va)

√
Vol(Vb)(

√
2ks + ε),

where the constant c does not depend on n (due to the balancing conditions
on the vertex degrees and cluster sizes). Consequently, for a, b = 1, . . . , k and
X ⊂ Va, Y ⊂ Vb:

|w(X, Y )− ρ(Va, Vb)Vol(X)Vol(Y )| =∣∣∣∣∣∑
i∈X

∑
j∈Y

(didjw̃ab + ηab
ij )− Vol(X)Vol(Y )

Vol(Va)Vol(Vb)

∑
i∈Va

∑
j∈Vb

(didjw̃ab + ηab
ij )

∣∣∣∣∣ =



∣∣∣∣∣∑
i∈X

∑
j∈Y

ηab
ij −

Vol(X)Vol(Y )

Vol(Va)Vol(Vb)

∑
i∈Va

∑
j∈Vb

ηab
ij

∣∣∣∣∣ ≤ 2c(
√

2ks + ε)
√
Vol(Va)Vol(Vb),

that gives the required statement both in the a 6= b and a = b case. 2

Remark 2.2 The above theorem has only relevance if there is a remarkable
spectral gap between |ρk| and |ρk+1|. This is a necessary condition for s2 to
be “small”. As it is not sufficient, the estimate is given in terms of s and ε,
except the case k = 2, where s2 can directly be estimated by the spectral gap.

In this case we get that the pair (V1, V2) is O(
√

1−θ
1−ε

)-volume regular, where

θ = |ρ2|, see [4].
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