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This versatile topic goes back to the inventions of Gauss, Markov, and Gibbs,
whose ideas are incorporated in graphical models and regression graphs. Later,
the geneticist, S. Wright (1923–1934) and the philosopher and computer scien-
tist, J. Pearl (1986–1987) developed the tools, but their notation is too compli-
cated to formulate the mathematical background. Here we mainly follow the
up-to-date discussion of statisticians, S. Lauritzen and N. Wermuth, and try to
juxtapose the directed–undirected and discrete–continuous cases.

1 Graphical Models in General

First, without specifying the type of distribution, we discuss the directed and
undirected models separately. We will show that they have many properties in
common, and after possible alterations, can be transformed into each other. If
we have a sample from a joint distribution that basically does not have directions
between the variables, we can find conditional independences between subsets
of them (supporting some kind of Markovity) based on statistical analysis, and
build usually an undirected graph on them. In particular, when our underlying
distribution is multivariate Gaussian, we build a so-called concentration graph
(see Section 3), and if it is discrete on categorical variables with assumed in-
teractions, we build a log-linear model (see Section 2.1). Both models contain
decomposable ones as special cases, in which case a so-called perfect numbering
of the variables exists. This ordering traces back to the directed case. As a
combination of the discrete and continuous, we may have Conditional Gaussian
(CG) distributions, and as a combination of the directed and undirected, chain
graphs and regression graphs are at our disposal. We want to show that all these
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are strongly related, and only based on the actual data and after a thorough
statistical analysis on them, one can determine which model to use.

Summarizing, graphical models provide a framework for describing statisti-
cal dependences in (possibly large) collections of random variables. At their core
lie various correspondences between the conditional independence properties of
a random vector and the structural properties of the graph used to represent its
distribution. If there are groups of the variables which are marginally indepen-
dent, then the joint distribution factorizes trivially. Usually this is not the case,
but certain groups of variables can be conditionally independent conditioned on
another group. This also causes the joint probability mass function (pmf) or
probability density function (pdf) to factorize in terms of certain conditional
probabilities or densities. The factors are far not unique, and sometimes they
or their negative logarithms are called potentials. Again, the graph here is just
a tool for the representation of the more rich structure of the joint distribution.

1.1 Directed Graphical Model: Bayesian Network (BN)

BN’s are directed graphical representations of joint distributions. The vertices
correspond to random variables (rv’s) X1, . . . , Xd, whereas the directed edges
to causal dependences between them. The rv’s are usually discrete, mainly
categorical, taking on finitely many values. The point is that even if the rv’s are
binary, it is time-consuming to learn the underlying distribution from the data
as there are 2d possible joint states in the pmf. However, if we parameterize
with the conditional probabilities along the dependences, we can reduce the
calculations, provided the underlying distribution P is Markov compatible with
the directed graph assigned to the rv’s based on causal relations. But this is
sometimes not an open question, as the joint distribution is generated through
conditional probability tables (as in [13]), and so, we have it in a factorized
form, which fact will turn out to be equivalent to some kind of Markovity.

We treat only directed acyclic graphs (DAG’s). In case of a DAG G with
vertex-set V = {1, . . . , d}, there are no directed cycles, and therefore, there
exists a linear ordering (labeling) of the vertices such that for every directed
edge j → i, i < j holds (we can refer to this relation as j is the parent of i). So
the youngest vertex has label 1, and the older a vertex, the larger its label is
(we can think of labels as ages). We use this, so-called (not necessarily unique)
topological labeling of the vertices which is also in accord with the labeling of the
forthcoming regression graph models, see Section 4.2. To find such a labeling, an
algorithm is to be found on page 1146 of [11]. Note, that some authors use the
opposite ordering, however, this one fits better in the framework of regression
graphs, when it is important that the rows or columns of the involved matrices
be indexed in this order.

The directed factorization property (DF) of the distribution of the random
vector (X1, . . . , Xd) means that for any state configuration x = (x1, . . . , xd), it
factorizes over the DAG G like

p(x1, . . . , xd) =

d∏
i=1

p(xi|xi+1, . . . , xd) =

d∏
i=1

p(xi|xpar(i)), (DF)

where p(x1, . . . , xd) is the pmf corresponding to the d-tuple of states (x1, . . . , xd)
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in the topological ordering; par(i) ⊂ {i+ 1, . . . , d} denotes the set of vertices
j such that from them, a directed edge j → i emanates to i (they are the
parents of i), and for any A ⊂ V we use the notation xA = {xi : i ∈ A} and
XA = {Xi : i ∈ A}.

In fact, (DF) automatically holds if the pmf is constructed based on con-
ditional probabilities (or densities in the continuous case). Vice versa, we can
construct a DAG based on a factorized joint density in the following way: we
draw a j → i, i < j edge if there is a factor like p(xi| . . . xj . . . ) that cannot be
further reduced.

On the other hand, let (DL) denote the directed local Markov property of the
distribution of the random vector X = (X1, . . . , Xd) as follows. Let

ant(i) = {i+ 1, . . . , d} \ par(i)

denote the set of anteriors of i (the set of its non-descendants except its parents).
Then (DL) means that

Xi⊥⊥Xant(i)|Xpar(i), i = 1, . . . , d (DL)

holds, i.e., Xi (future) and Xant(i) (past) are independent conditioned on Xpar(i)

(present). It also means that

p(xi|x{i+1,...,d}) = p(xi|xpar(i)), i = 1, . . . , d

holds for any state configuration. This generalizes the fundamental property of
Markov chains (when G is a directed path).

Later on, we need the ancestral set of Xi that consists of the variables Xj ,
j ∈ {i+ 1, . . . , d}, such that there is a directed path from j to i. This set
contains the parents, grandparents, etc. of Xi. For A ⊂ V , let An(A) denote
the ancestral set of A, that is the smallest possible vertex-set (including A)
containing all vertices from where a directed path emanates to vertices of A.

Theorem 1 of [25] proves that for any DAG G, the set of distributions enjoy-
ing property (DF) is the same as those enjoying (DL). Actually, Lauritzen [14]
states more. He proves that (DL) is also equivalent to (DG), the global Markov
property on directed graphs, but we can define it only in Section 1.2 in the con-
text of undirected graphs and the so-called d-separation. However, we are able
to define here the directed pairwise Markov property (DP) of the distribution of
(X1, . . . , Xd) that reads as follows:

Xi⊥⊥Xj |Xpar(i) for j ∈ ant(i), i = 1, . . . , d. (DP)

The (DL)=⇒(DP) implication is trivial, but Lauritzen [14] (page 51) shows in
a counterexample that the converse is not always true. Note that Wermuth [31]
(page 4) characterizes pairwise dependences too, in addition to the independence
statements in (DP). These together are equivalent to (DL). We will summarize
these issues in the next sections.

1.2 Undirected Graphical Model and the Markov Random
Field (MRF)

Here the vertices also correspond to rv’s X1, . . . , Xd, whereas the undirected
edges are obtained through conditional independences between them. So MRF’s
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are undirected graphical models that include the neighbors instead of parents in
the conditional independence statements, satisfying some (or all) of the following
Markov-type properties.

For an undirected graph G, the undirected global Markov property (UG) of
a joint distribution with respect to G is defined as follows:

XA⊥⊥XB |XS (UG)

holds for any vertex cutset S between disjoint vertex-subsets A and B, i.e.,
removing vertices of S will make A and B disconnected.

The undirected pairwise Markov property (UP) of a joint distribution with
respect to the undirected graph G is defined as

Xi⊥⊥Xj |XV \{i,j}, i 6= j, (UP)

while the undirected local Markov property (UL) as

Xi⊥⊥XV \cl(i)|Xbd(i), ∀i, (UL)

where bd(i) = {j : j ∼ i} denotes the set of neighbors, in other words, boundary
(in G) of i, while cl(i) = {i} ∪ bd(i) denotes the closure (in G) of i. For the
states, Equation (UL) means that

p(xi|x1, . . . , xi−1, xi+1, . . . , xd) = p(xi|xbd(i)), i = 1, . . . , d.

So the conditional independence relations depend on the neighborhood. This
observation is the base of the so-called Gibbs fields.

Now, let (UF) denote the undirected factorization property of the underlying
multivariate distribution with respect to the undirected graph G. For the states,
it means the factorization of the joint pmf or pdf like

p(x1, . . . , xd) =
1

Z

∏
C∈C

ΨC(xC) (UF)

with normalizing constant Z > 0 and non-negative compatibility functions ΨC ’s
assigned to the cliques C ∈ C of G. Under clique we understand a maximal
complete subgraph of G. Note that, in graph theory, they are sometimes called
maximal cliques. The compatibility functions are sometimes called clique poten-
tials, though this notion is used in the literature in many contexts. In special
(to be called decomposable) models, the forthcoming Equation (11) gives an
explicit formula for the compatibility functions. The above factorization (UF)
is far not unique, and sometimes has a more convenient form if not only the
cliques, but other complete subgraphs are also involved (e.g., in hierarchical
log-linear models).

In fact, ΨC ’s are defined on all the state configurations within the clique,
and depend on the relation of C to the other cliques too. More precisely, ΨC :
XC → R+, where XC = ×i∈CXi and Xi is the sample space corresponding to Xi,
i.e., Xi takes on values in the set Xi. The whole sample space is X = ×di=1Xi.

Lauritzen [14] proves that for a distribution over an undirected graph, the
implications

(UF) =⇒ (UG) =⇒ (UL) =⇒ (UP)
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always hold. However, there is an important theorem, attributed to Hammer-
sley and Clifford (see [14, 19]) that states

(UP) =⇒ (UF),

whenever P is positive and continuous with respect to the product measure
which condition always holds in non-degenerate exponential families. So under
this condition,

(UF) =⇒ (UG) =⇒ (UL) =⇒ (UP) =⇒ (UF),

therefore, all these properties are equivalent. Consequently,

(UG)⇐⇒ (UL)⇐⇒ (UP) (1)

also holds. However, for the equivalences in (1), milder conditions than the
positivity of P also suffice. For example, for disjoint vertex-subsets A,B,C:

XA⊥⊥XB |XC and XA⊥⊥XC |XB =⇒ XA⊥⊥XB∪C .

These are the so-called composition and intersection properties that define so-
called graphoids and Gaussoids, see [16]. However, such distributions, like the
Gaussian, symmetric binary, and so-calledMTP2 distributions, mimic the prop-
erties of the Gaussian one, and we do not need the abstract definition of them.

An important consequence of the Hammersley–Clifford theorem is that, in
case of positive distributions, (UP) can be used to build the graph that is based
on pairwise relations of the variables. Then, with this graph, all the global and
local independences will hold.

Gaussian distributions in the continuous, while log-linear distributions in
the discrete cases, and the mixture of them all satisfy the positivity constraint,
and in the next sections we shall confine ourselves to these distributions. We
will show that these distributions have many properties in common, in particu-
lar, when the models are decomposable (in the wording of [28], multiplicative),
and therefore, the algorithms on a so-called junction tree can be unified in the
possession of data. Also, even if the underlying graph is undirected, the decom-
posable structure gives a (not necessarily unique) so-called perfect ordering of
the vertices, in which order directed edges can be drawn. This is the base of
path analysis [33], regression graph and chain graph models, see [29, 30, 31, 32].
We will go through these topics in Section 4, after discussing log-linear and
Gaussian models in Sections 2.1 and 3, as prototypes, in details.

Note that the (UP) ⇐⇒ (UG) equivalence in (1) justifies that, in case of
positive distributions, all independence statements can be read off the graph,
constructed based on pairwise independences of the variables, conditioned on
the remaining ones. In Cox and Wermuth [5] these are called concentration
graphs, but we introduce this notion only in Section 3 for Gaussian rv’s. In this
context, sometimes covariance graphs are considered, where undirected edges
correspond to non-zero pairwise correlations. In a concentration graph, when
two disjoint vertex-subsets A and B have no path between them, it follows
that XA⊥⊥XB , because XA and XB are independent conditioned on X∅ (as
there is no separating set between them); this means that they are marginally
independent. Otherwise, a covariance graph and concentration graph based on
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the same (positive) distribution coincide only if the latter consists exclusively
of disjoint cliques. Covariance graphs will be discussed in context of regression
graphs (see Section 4.2), but only within chain blocks of rv’s on equal standing.

Going back to the directed graphs, observe that condition (DF) resembles
that of (UF), since in case of a DAG, condition (DF) can be written as

p(x1, . . . , xd) =
1

Z

d∏
i=1

Ψcl(i)(xi, xpar(i)) =
1

Z

d∏
i=1

Ψcl(i)(xcl(i))

where Z = 1 and cl(i) = {i} ∪ par(i) is considered as the closure of vertex
i in the DAG, which also forms a complete subgraph in the skeleton if the
DAG G does not contain a sink V configuration like i → k ← j for k < i,
k < j, when there is no arrow between the distinct vertices i and j. Such
a DAG is called decomposable. Let us form the Mi := cl(i) vertex-sets (i =
1, . . . , d), the spanning subgraph of which is complete. Delete those that are
contained in another one, and keep only the maximal complete subgraphs, i.e.,
the cliques C ∈ C among them. Then the above equation can be transformed
into Equation (UF) with Z now not necessarily 1. We will later see that the
so obtained cliques also form a so-called junction tree structure in the skeleton
(undirected version) of the DAG. This (in other words, decomposable) structure
is not necessary understood in Equation (UF) in case of an undirected graph,
where the factorization over the cliques does not assume their junction tree
structure, so it is weaker than decomposability.

We can make a directed BN undirected: not only disregard the orientation
of the edges but also ‘moralize’ the graph. If G is a DAG , it can be done
by connecting two parents (having a common child) whenever they are not
connected (married). The so obtained moral graph Gm is then used in the
MRF setup. To motivate moralization, assume that the underlying distribution
is multivariate Gaussian on a DAG G. Moralization is needed when for some
triple i, j > k in G, i → k, and j → k holds, but there is no directed edge
between i and j. Then even if Xi and Xj are (marginally) independent, they
are not conditionally independent any more, conditioned on Xk. For example, if
Xi is the years of former schooling and Xj is the gender, then – though they are
independent (men and women can get any education irrespective of gender) –
they are conditionally dependent given the income (Xk). In the example of [31],
on given level of salary, women had a higher level of education than men. Such
conditional dependence induces an edge in Gaussian covariance selection models.
The triplet i, k, j is a sink V; for details about these edge-inducing dependences
see Section 4.1.

Though we may think that an undirected graph gives rise to a richer struc-
ture of independence statements through neighborhoods than a directed one
(on the same skeleton) using only ancestral dependences, it turns out that the
directed and undirected Markov properties are strongly related to each other.

Proposition 1 (Lemma 3.21 of [14]) If P has the property (DF) with re-
spect to the directed graph G, then it has the property (UF) with respect to the
undirected moral graph Gm of G.

Certain converse of Proposition 1 and so-called Markov-equivalences of regres-
sion graphs will be stated later, when the graph has both directed and undirected
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edges, and we have learned the notion of decomposability.

Now, in possession of Proposition 1, we are able to define the directed global
Markov property (DG) of a distribution with respect to a directed graph G.
This means that

XA⊥⊥XB |XS (DG)

holds for any vertex cutset S between disjoint vertex-subsets A and B in the
moral graph of the ancestral set An(A ∪ B ∪ S). Note that (DG) is equivalent
to the d-separation (direction-dependent separation) criterion of Pearl [19]:

XA⊥⊥XB |XS ⇐⇒ S d-separates A from B, (2)

where S d-separates A from B in the DAG G if there is no active path in G from
A to B given S. A path between A and B given S is active if among its inner
nodes, every collision node (◦ → ◦ ← ◦ ) is in An(S) and every transmitting
node (◦ → ◦ → ◦ ) is in V \ (A ∪ B ∪ S). This notion is also generalized to
regression graphs [29], see Section 4.2. Based on these, the so-called Bayes-ball
algorithm is constructed to decide whether the above d-separation holds for
given disjoint subsets A,B, S ⊂ V , see, e.g., [19]. Later it was shown that the
criterion of d-separation cannot be improved: in the case of real sample spaces,
a Gaussian and a symmetric binary distribution always exists satisfying (2).

Recall that
(DF)⇐⇒ (DG)⇐⇒ (DL) =⇒ (DP)

as discussed in Section 1.1.

Finally, note that P is called a Gibbs distribution over the undirected graph
G if it can be parameterized by a set of positive functions ΨC ’s over the cliques
of G, by physicists called clique potentials, such that for its pmf or pdf the
condition (UF) holds. By the above Hammersley–Clifford theorem, a Gibbs
field and MRF are equivalent with regard to the same G whenever P is strictly
positive. We use the notion Markov Random Field (MRF) only for positive
distributions, when all the Markov properties are equivalent to each other and to
the factorization property. Originally, Gibbs fields were developed in statistical
physics, where the compatibility functions are of the form ΨC = e−gC with gC an
energy function over states xC of C. The energy represents the likelihood of the
corresponding relationships within the clique, with a higher energy configuration
having lower probability and vice versa. The estimation of these potentials
through energy functions is related to the theory of the forthcoming log-linear
models and Markov Chain Monte Carlo methods, e.g., Gibbs samplers [12, 14].
When the cliques are vertex-pairs (e.g., G is a grid), then we get the classical
Ising model.

In [13], the authors give several equivalent potential representations of the
probabilities in an MRF, and in the more special class of them (decomposable
model), the forthcoming representation of Equations (9) and (11) indeed give a
direct factorization of the joint density.
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2 Discrete MRF’s

2.1 Log-linear models

Let X1, . . . , Xd be categorical variables, where Xi takes on values in the fi-
nite set Xi = {1, . . . , ri}, i = 1, . . . , d. The components of the random vector
(X1, . . . , Xd) are usually not independent, the observations for their joint dis-
tribution are collected in a so-called contingency table, the frame of which is
provided by the sample space (state space) X = X1 × · · · × Xd. In fact, X is
a d-dimensional array, the entries of which are d-tuples x = (x1, . . . , xd) ∈ X ,
and they are called cells; altogether, there are

∏d
i=1 ri cells. Under contingency

table we understand this frame together with the cell counts n(x), x ∈ X , where
the nonnegative integer n(x) is the number of observations for the random vec-
tor X = (X1, . . . , Xd) that fall in the cell x out of the total n observations. In
other words, n is the sample size, and of course, n =

∑
x∈X n(x). When n is

kept fixed, the joint distribution of the counts, N(x)′s as rv’s, is multinomial
with parameters p(x), x ∈ X :

P(N(x) = n(x), x ∈ X ) =
n!∏

x∈X n(x)!

∏
x∈X

p(x)n(x). (3)

In the saturated model, the parameters are only constrained by restrictions that
are due to the sampling procedure, the multinomial sampling. Under multino-
mial sampling, as in exponential families, the ML-estimate of the parameters is
obtained by equating the count n(x) to the binomial expectation np(x), for all
x ∈ X , and hence, p̂(x) = n(x)

n , x ∈ X .
Now, with some restrictions on the marginal distributions, we shall define

more special models. We need the following definitions. The marginal of the
contingency table corresponding to a given subset of the variables XA = {Xi :
i ∈ A}, with A ⊂ V = {1, . . . , d}, is defined as follows. The A-marginal of the
contingency table is given by the marginal counts

n(xA) =
∑

x′∈X :x′A=xA

n(x′) =
∑

yV \A∈XV \A

n(xA,yV \A), xA ∈ XA = ×i∈AXi,

i.e., the variables in V \A are ‘summed out’. So if |A| = k, then these A-marginal
counts form a k-dimensional contingency table of

∏
i∈A ri cells, and there are(

d
k

)
possible k-dimensional marginals (k = 1, . . . , d). Likewise, the A-marginal

distribution of the {p(x) : x ∈ X} distribution is defined by

pA(xA) =
∑

x′∈X :x′A=xA

p(x′) =
∑

yV \A∈XV \A

p(xA,yV \A), xA ∈ XA.

Given the set Γ = {A : A ⊂ V }, called generating class, we define the following
log-linear model :

ln p(x) = f0 +
∑
A∈Γ

fA(xA), (4)

where the individual terms represent interactions (fA : XA → R functions)
corresponding to A ∈ Γ, for they depend on x only through xA, and the constant
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term f0 corresponds to ∅ ∈ Γ (it also fits into the forthcoming hierarchical
structure of Γ). This is also in accord with the notation of the Gibbs field, see
Section 1.2, where |fA|’s are the energies of the configurations that correspond
to the vertex-subsets in Γ of G. We will see that the log-linear model defines
an MRF if and only if the generating class Γ consists of the cliques of G and of
the subsets of them, see Section 2.2.

To meet some compatibility constraints, we consider hierarchical log-linear
models: with any A ∈ Γ and A′ ⊂ A, the relation A′ ∈ Γ also holds, and some
normalizing conditions are also needed (see [6]). If P obeys a hierarchical log-
linear model, it means that it can be constructed as the product of functions
defined on its lower dimensional margins up to a certain dimension. So it suffices
to keep only the maximal interaction sets in Γ; such a Γ will be called generating
class of the log-linear model.

In special hierarchical log-linear models (we will call them graphical), the
generating class is specified with the set of maximal interactions

C = {C : C is a clique of the underlying graph},

and so, Γ consists of the complete subgraphs of the underlying graph. In this
case, there is another equivalent form of Equation (4) that uses an exponential
parametrization and shows that we are in exponential family :

p(x) = exp

{∑
C∈C
〈θC , IC(xC)〉 − Z(θ)

}
.

Here θ = {θC : C ∈ C} is the canonical parameter, where

θC = {θC,yC
, yC ∈ XC} ∈ R|XC |

is a vector, and so, θ is a
∑
C∈C |XC |-dimensional vector, which dimension is

usually less than |X | =
∏n
i=1 |Xi|. The canonical statistic IC also takes on values

in R|XC | for every C ∈ C. In fact, the IC ’s are multiple indicator functions
consisting of usual 0-1 indicator functions of all possible states in XC (cells with
coordinates in C). More exactly,

IC = {IC,yC
, yC ∈ XC} ∈ R|XC |,

where the usual indicator function IC,yC
(xC) is 1 if xC = yC and 0, otherwise.

Further, 〈., .〉 denotes the inner product in the above finite-dimensional spaces,
and Z(θ) is the log-partition function (it does not depend on x ∈ X ). In accord
with Equation (4), fC = θCIC .

In exponential family, the sums of the canonical statistics through an iid
sample X(1), . . . ,X(n) ∈ X , are the sufficient statistics entering into the param-
eter estimation. So based on this sample, the frequencies n(xC)’s of the cells
within the cliques are the sufficient statistics. The mean value parameters (in
other words, moment parameters) are their expectations: m(xC) = np(xc). In
regular exponential families, there is a one-to-one correspondence between the
mean value and the canonical parameters, see [26]. Further, the ML-estimate
of the mean value parameter comes from the moment-matching equations

m(xC) = n(xC), C ∈ C, x ∈ X .

This system of equations is solved by the Iterative Proportional Scaling (IPS)
algorithm of Section 2.5.
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2.2 Graphical and decomposable models

In many applications we have a contingency table of large size: even in case
of binary variables, there are 2d cells the number of which grows exponentially
with the number of variables d. Then the IPS algorithm of Section 2.5, going
through the cells several times, is time-consuming. However, there are models,
where the ML-estimate of the cell probabilities under the model’s assumptions
can be given by explicit formulas. These models are characterized by the special
dependency structure of the variables when we build a graph or hypergraph on
them. These are the decomposable models.

From now on, our log-lineal model is hierarchical, and therefore, we keep
only the maximal interactions in Γ. Recall that we called this Γ the generating
class of the model. Further, we assume that each variable is included in at
least one interaction; in other words, all main effects are present. hhIn case of
a special structure of the generating class, we can introduce an exact algorithm
that goes through the A ∈ Γ sets in a definite order, see the belief propagation
algorithm of Section 2.5.

To discuss this, hypergraph notions may be used as follows. The generating
class Γ uniquely defines the following hypergraph H: the vertices correspond
to the variables and constitute the set V = {1, . . . , d}, while the hyperedges
are the elements of Γ (they are the maximal interaction sets). With our former
assumption, each vertex is contained in at least one hyperedge. As the model
is hierarchical, the subsets of the maximal interaction set are also interactions,
but they are not hyperedges in H.

The interaction graph G = G(H) corresponding to H, or equivalently, to the
hierarchical log-linear model with generating class Γ, is defined in the following
way. Its vertex set is again V , while the edges are as follows:

i ∼ j ⇔ {i, j} ⊆ A for some A ∈ Γ,

i.e., two vertices are connected if and only if they are contained together in some
interaction set.

The clique hypergraph H of a graph G (both are defined on the same vertex
set) consists of hyperedges which are exactly the cliques of G. With another
wording (see [23]), H is conformal (with G).

Observe that different connected components of the so-called interaction
graph correspond to variables that are mutually (marginally) independent. Also
note that different hierarchical models may have the same interaction graph,
see the examples below. However, we introduce a class of models when there
is a one-to-one correspondence between the model and its interaction graph.
Therefore, the interaction graph is capable to describe such a model. To make
it precise, we need some further definitions.

Definition 1 The hierarchical log-linear model with generating class Γ is graph-
ical if the hypergraph H defined above (with the hyperedges as the entries of the
generating class Γ) is identical to the clique hypergraph of its interaction graph
(see [17]), i.e., H is conformal (with G).

Note that equivalently the definition means: the hierarchical log-linear model
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with generating class Γ is graphical if the generating class Γ is identical to the
cliques of its interaction graph.

For example, when the generating class is

Γ = {{1, 2}, {2, 3}, {1, 3}}, (5)

then the interaction graph has the clique {1, 2, 3}, which is not an interaction
set. So our log-linear model is not a graphical interaction model. However,
when the generating class is

Γ′ = {{1, 2, 3}}, (6)

then the interaction graph has the clique {1, 2, 3}, so our log-linear model is a
graphical interaction model. Note that model (5) corresponds to the Ising model
on 3 vertices. When there are more than 3 vertices, then, for example, a squared
grid defines an Ising model, where the cliques are indeed the vertex-pairs, so
those constitute the generating class at the same time.

Theorem 1 (see [17]) The distribution P obeying the hierarchical log-linear
model with generating class Γ defines an MRF (satisfies conditions (UF), (UG),
(UL), and (UP)), if and only if the log-linear model is graphical (again, the
cliques of the interaction graph G correspond to subsets of variables which are
in interaction with each other).

Now we investigate special graphical models, the decomposable ones.

Definition 2 The hierarchical log-linear model with generating class Γ is de-
composable if its interaction graph is decomposable.

The definition of the (weak) decomposability of a graph is recursive.

Definition 3 The graph G is decomposable if it is either a complete graph or
its vertex-set V can be partitioned into disjoint vertex-subsets A,B,C such that

• C defines a complete subgraph;

• C separates A from B (in other words, C is a vertex cutset between A and
B);

• the subgraphs generated by A ∪ C and B ∪ C are both decomposable.

In this way, decomposability goes through to the logliner model as follows.

Proposition 2 The log-linear model is decomposable if and only if the gener-
ating class Γ either consists of one set (G is the complete graph) or it is the
disjoint union of the decomposable generating classes Γ1 and Γ2 (they contain no
sets in common) such that there exist A∗ ∈ Γ1 and B∗ ∈ Γ2 with the following
property:

(∪A∈Γ1
A) ∩ (∪B∈Γ2

B) = A∗ ∩B∗.

It is important that decomposable models are subclasses of the graphical
ones.

11



Proposition 3 (see [17], Corollary 7.5) A log-linear model is graphical when-
ever it is decomposable.

So, in case of contingency tables, the graphical interaction models (the
cliques constitute the generating class) coincide with the MRF’s. However,
the decomposable models are proper subsets of them. In [6], the authors show
examples of graphical interaction models that are not decomposable. We will
cite some of these examples at the end of Section 2.3, after we have learned
some equivalent notions of decomposability.

Note that some authors call the decomposable models Markov, as here the
chain of the cliques behaves like a Markov chain, see Equation (8) in the sub-
sequent Section 2.3. It is misleading, and again, the Markov chain property of
the decomposable models is stronger than the condition for being an MRF.

2.3 Junction tree

If we have a graphical hierarchical log-linear model and the model is also de-
composable, we can find a junction tree structure of the cliques by the follow-
ing equivalences. Recall that under clique we understand a maximal complete
subgraph (as in the statistics literature). Here we establish many equivalent
properties of a decomposable graph, based on Proposition 2.5 of [14], Proposi-
tion 4 of [28], and the last section of [25]. For simplicity, the necessary notions
are defined at the very place where they are introduced. Further explanation
together with algorithmic aspects is to be found in Section 2.4.

Proposition 4 The following properties are equivalent to the fact that G is
decomposable:

• G is triangulated (with other words, chordal), i.e., every cycle in G of
length at least four has a chord.

• G has a perfect numbering of its vertices such that in this labeling,

bd(i) ∩ {i+ 1, . . . , d} (7)

is a complete subgraph, i = 1, . . . , d. It is also called single vertex elimi-
nation ordering (see [25]), and obtainable with the Maximal Cardinality
Search (MCS) algorithm of [23], see Section 2.4.

• G has the following running intersection property (RIP): we can
number the cliques of it to form a so-called perfect sequence C1, . . . , Ck
where each combination of the subgraphs induced by Hj−1 = C1∪· · ·∪Cj−1

and Cj is a decomposition (j = 2, . . . , k), i.e., the necessarily complete
subgraph Sj = Hj−1 ∩ Cj is a separator. More precisely, Sj is a vertex
cutset between the disjoint vertex subsets Hj−1 \ Sj and Rj = Cj \ Sj =
Hj \Hj−1. This sequence of cliques is also called a junction tree (JT).
Here any clique Cj is the disjoint union of Rj (called residual), the ver-
tices of which are not contained in any Ci, i < j and of Sj (called sep-
arator) with the following property: there is an i∗ ∈ {1, . . . , j − 1} such
that

Sj = Cj ∩ (∪j−1
i=1Ci) = Cj ∩ Ci∗ .

12



This (not necessarily unique) Ci∗ is called parent clique of Cj. Here S1 = ∅
and R1 = C1. Furthermore, if such an ordering is possible, a version may
be found in which any prescribed set is the first one (see [21]).

Also equivalently, any path between Ci and Cj (i 6= j) contains Ci ∩ Cj.
Note that the junction tree is indeed a tree with vertices C1, . . . , Ck and
one less edges, that are the separators S2, . . . , Sk.

• Sundberg’s criterion: We can number the cliques of G as C1, . . . , Ck,
where each combination of the subgraphs induced by Hj+1 = Cj+1∪· · ·∪Ck
and Cj is a decomposition (j = 1, . . . , k−1), i.e., the necessarily complete
subgraph Sj = Hj+1 ∩ Cj is a separator. More precisely, Sj is a vertex
cutset between the disjoint vertex subsets Hj+1 \ Sj and Rj := Cj \ Sj.
Here Rj is called residual, and so Cj = Sj ∪Rj is a disjoint union. This
sequence of cliques forms the junction tree in the reversed RIP ordering.

So each Cj can be composed of one set of elements (Rj) which are missing
in all Ci, for i > j and one set Sj = Cj ∩ ∪ki=j+1Ci which is contained in
some Ci∗ , i∗ > j. This (not necessarily unique) Ci∗ is the former parent
clique of Cj. Here Sk = ∅ and Rk = Ck.

Furthermore, if such an ordering is possible, a version may be found in
which any prescribed set is the last one (see [21]). As the Sundberg’s
ordering of the cliques is opposite to the RIP ordering, in the RIP ordering
any prescribed clique can be the first one.

• G is recursively simplicial, see [25]. A non-empty graph G is recursively
simplicial if it contains a simplicial vertex, and when that is removed, any
graph that remains is recursively simplicial.

A vertex is called simplicial in a graph if its neighbors form a complete
subgraph. Every decomposable graph with at least two vertices has at least
two simplicial vertices; if the graph is not complete, these vertices can be
chosen to be non-adjacent (see [25]). We can arrange that C1 and Ck
contain the simplicial vertices.

• There is a labeling of the vertices such that the adjacency matrix contains
a reducible zero pattern (RZP). It means that the zero entries in the
upper-diagonal part of the adjacency matrix form an index set that is re-
ducible in the following sense. The index set I, which is the subset of the
set of edges {(i, j) : 1 ≤ i < j ≤ d}, is called reducible if for each (i, j) ∈ I
and h = 1, . . . , i− 1, we have (h, i) ∈ I or (h, j) ∈ I or both.

Indeed, this convenient labeling is a perfect numbering (7) of the vertices.

Note that decomposable graphs are special perfect graphs. A perfect graph
is defined as follows: it and any spanning subgraph of it has the same chromatic
number as the size of the maximum clique (maximum size maximal clique in
the graph or in the spanning subgraph in question). L. Lovász (1972) proved
that the complement of a perfect graph is also perfect. It can also be proven
that a graph is perfect if and only if any odd cycle (of length greater than three)
of it and (in view of the above) of its complement has a chord, see the related
exercises of [15].
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Also observe that in the RIP ordering, the cliques also form a Markov chain:
the conditional distribution of XRj

conditioned on XC1∪···∪Cj−1
is the condi-

tional distribution of XRj conditioned on XSj , i.e.,

p(xRj |xC1∪···∪Cj−1) = p(xRj |xSj ), (8)

where p is the pmf in discrete, and pdf in continuous cases. Sometimes this is
called Markovity, but again, it is stronger than being an MRF.

In decomposable log-linear models, there are also exact ML-estimates for the
cell probabilities, and so, for the moment parameters. Here we cite some results
of [14]. If we have the RIP ordering C1, . . . , Ck of the cliques with separators
S2, . . . , Sk, then for the cell probabilities we have

p(x) =

∏k
j=1 p(xCj

)∏k
j=2 p(xSj

)
=

∏
C∈C p(xC)∏

S∈S p(xS)ν(S)
, x ∈ X (9)

where C is the set of the cliques, S is the set of the separators along the JT, and
ν(S) is the multiplicity of the occurrence of the separator S in the above JT of
G. Hence, the ML-estimate of the mean vector is given by the explicit formula

m̂(x) =

∏k
j=1 n(xCj

)∏k
j=2 n(xSj

)
=

∏
C∈C n(xC)∏

S∈S n(xS)ν(S)
, x ∈ X (10)

and that of the cell probabilities is p̂(x) = m̂(x)
n , x ∈ X .

Equation (9) also induces the following factorization:

p(x) =

k∏
i=1

p(xRj
|xSj

) (11)

in the RIP ordering, where Rj ’s are the residuals, Sj ’s are the separators of the
cliques C1, . . . , Ck; further, R1 = C1, S1 = ∅, so p(xR1

|xS1
) = p(xC1

). It is in
accord with Equation (8) and also resembles the factorization (DF) of a directed
graph. It also gives a possible factorization in (UF), where Z = 1 and the
compatibility function is, in fact, a conditional probability of the clique’s residual
on the clique’s separator: ΨCj (xCj ) = p(xRj |xSj ) for any clique Cj = Rj ∪ Sj
and any state configuration xCj

within it.

Figure 1 illustrates that decomposable models are subclasses of the graphical
ones. Figure 1(a) is the complete graph corresponding to the unrestricted model,
while 1(b) corresponds to the model X1⊥⊥X2⊥⊥X5 | {X3, X4}, in terms of condi-
tional independences; (c) and (d) are not decomposable: (c) corresponds to the
modelX1⊥⊥X4⊥⊥X5 | {X2, X3} and vice versa, X2⊥⊥X3 | {X1, X4, X5}, while (d)
corresponds to the modelX1⊥⊥X3 | {X2, X4, X5} andX2⊥⊥X4 | {X1, X3, X5}. In
(a) and (b), the cliques constitute a junction tree in the Sundberg’s ordering (so
they both are decomposable), and Equation (9) is applicable for their factor-
ization. However, in (c) we can use the factorization according to the log-linear
model. Actually, its equivalent form for the log-probabilities is as follows:

ln p(x1, x2, x3, x4, x5) = f1,2(x1, x2) + f1,3(x1, x3) + f2,4(x2, x4) + f2,5(x2, x5)+

f3,4(x3, x4) + f3,5(x3, x5) + f1(x1) + f2(x2) + f3(x3) + f4(x4) + f5(x5) + f0.
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C1 = {1, 2, 3, 4}

1 2

4 3

(a)

C1 = {1, 2, 3}
C2 = {2, 3, 4}
C3 = {2, 3, 5}

1 2

4 3

5

(b)

C1 = {1, 2}
C2 = {1, 3}
C3 = {2, 4}
C4 = {2, 5}
C5 = {3, 4}
C6 = {3, 5}

1 2

4 3

5

(c)

C1 = {1, 2, 5}
C2 = {2, 3, 5}
C3 = {3, 4, 5}
C4 = {4, 1, 5}

1 2

4 3

5

(d)

Figure 1: Examples of graphical models: (a) and (b) are also decomposable; (c)
and (d) are not. One may think that (d) is triangulated, but it is not: 1-2-3-4-1
is a chordless 4-cycle in it.

In the following example, let us consider the rv’sX1, X2, X3, and assume that
X2 and X3 are independent conditioned on X1. It means that the generating
class of the log-linear model is

Γ = {{1, 2}, {1, 3}}, (12)

and the interaction graph has the cliques {1, 2} and {1, 3}. This log-linear model
is decomposable with the only separator S = {1} between the cliques. From
Equation (9), we get the formula

p(x1, x2, x3) =
p(x1, x2)p(x1, x3)

p(x1)
= p(x1, x2)p(x3|x1) (13)

which gives possible factorizations. The graph here was 2− 1− 3.

As the last example, consider the graph of Figure 2, where the generating
class of the log-linear model is

Γ = {{1, 3}, {2, 3}, {3, 4}, {4, 5, 6}}. (14)

As the entries of Γ are the cliques of the interaction graph, this log-linear model
is a graphical interaction model, and it is also decomposable with the cliques
{1, 3}, {2, 3}, {3, 4}, {4, 5, 6}, which form a junction tree in Sundberg’s ordering
with the separators {3}, {3}, {4}. Therefore, the probabilities in this model can
be decomposed as

p(x1, x2, x3, x4, x5, x6) =
p(x1, x3) · p(x2, x3) · p(x3, x4) · p(x4, x5, x6)

p2(x3) · p(x4)

for all x = (x1, x2, x3, x4, x5, x6) ∈ X .

2.4 Numerical algorithms to find a junction tree

To find the structure, where one of the equivalent criteria (e.g., triangulated-
ness) of Proposition 4 holds, we can use the MCS (Maximal Cardinality Search)
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1

2

3 4

5

6

Figure 2: Interaction graph with cliques in (14).

method of [23]. For a simple version of MCS see the pseudocode of [11], page
312.

The simple MCS gives label d to an arbitrary vertex. Then labels the vertices
consecutively, from d down to 1, choosing as the next to label a vertex with a
maximum number of previously labeled neighbors and breaks ties arbitrarily.
Note that [14] labels the vertices conversely, and so, there our perfect labeling (7)
happens in the opposite direction. The MCS ordering is far not unique, and
this simple version is not always capable to find the JT structure behind a
triangulated graph in one run, but another run is needed as follows.

To get the cliques of the triangulated graph and construct a JT structure
based on the ordering d, d − 1, . . . , 2, 1, provided by the MCS, we proceed as
follows. Take the vertex labeled i and its higher labeled neighbors:

Mi := {i} ∪ {j : j > i and j ∼ i}, i = 1, . . . , d.

Since the input was a perfect ordering, every Mi will be complete subgraph.
Then C1, . . . , Ck is obtained by deleting all Mi’s that are subsets of another
one, that is by keeping the maximal complete subgraphs (the cliques) of them.
If we label the cliques consecutively, we obtain the Sundberg’s ordering; whereas,
the reversed ordering gives the RIP ordering of them.

Note that, in this way, we are able to get a new labeling of the vertices by
partitioning them according to the JT structure. Let us form the separators
and residuals of the cliques in the Sundberg’s ordering. Then vertices can be
relabeled by permuting them between the separators and the residuals, and
within the residuals, see Figure 3. This relabeling will not hurt the JT structure
and it is another perfect ordering of the vertices.

It gives us a more causal way to look at the vertices. For example, we can
form a DAG in this modified perfect ordering on the skeleton of G such that
j → i if i < j and i ∼ j. Note that, in the above relabeling, a strict perfect
numbering of the vertices is obtained, in which

bd(i) ∩ {1, . . . , i− 1}

is a complete subgraph, for i = 1, . . . , d. This indicates that the reversed labeling
of the vertices is perfect too.

We remark that for a moderate number of vertices, we can as well proceed
as follows. We start with a simplicial vertex and run the MCS with the restric-
tion that first we exhaust the cliques. We can do so by counting the degrees of
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C1

C2 \ S1

...

Ck−1 \ Sk−2

Ck \ Sk−1

R1

S1

R2 \ S1

S2

...
Sk−2

Rk−1 \ Sk−2

Sk−1

Rk \ Sk−1

Figure 3: Relabeling the variables within the junction tree in the Sundberg’s
ordering

the vertices which have the same number of formerly labeled neighbors. Start-
ing from vertex labeled d, first we select vertices with the same degree. At
the moment, when there are no more such vertices, the first residual (R1 in
the RIP ordering) is exhausted. Next come the vertices with higher degree,
which belong to the first separator (S2) and have neighbors in other cliques
too. At the moment, when the degrees start again decrease, the first clique
(C1) is exhausted, etc. This method gives the cliques and the separators in the
RIP ordering that will be used by the so-called belief propagation algorithm of
Section 2.5. However, this method is not the best as for the computational com-
plexity. Numerical issues are discussed in Tarjan, Yannakakis [23] together with
other issues, for example the lexicographical labeling and the fill-in procedure
for undirected graphs which are not triangulated.

Note that fill-in can be also defined for directed graphs, see e.g., [20]. Recall
that to have Markov equivalences, the graph has to be first moralized, and this
undirected moral graph is then triangulated, see also Section 4.1. The process
of triangulation is called fill-in in [13] and [25] too.

It can easily be seen that in a chordal graph, the perfect ordering is also a
suitable ordering of the vertices in which the adjacency matrix has the reducible
zero pattern I. Note that by Proposition 6 of [28], the cliques (in the reversed
RIP ordering, that is in the Sundberg’s ordering) can be obtained as discussed
before:

Mi := {i} ∪ {j : j > i and (i, j) /∈ I}, i = 1, . . . , k,

then C1, . . . , Ck is again obtained by deleting allMi’s that are subsets of another
one. A possible MCS-ordering and JT structure is shown in Figure 4.

Another construction of a JT from a so-called cluster tree is as follows
(see [25]). Call the cliques clusters, and first have all separators (intersections)
between the cluster pairs.

The so obtained cluster graph, with vertices as the clusters and edges as
the separators, usually contains cycles. Then find the maximal weight spanning
tree of this cluster graph with usual algorithms of Kruskal, Prim, see, e.g., on
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C1 = {a, t}
C2 = {t, l, e}
C3 = {l, e, b}
C4 = {l, b, s}
C5 = {e, b, d}
C6 = {e, x}

a(8) s(3)

t(7) l(6) b(4)

e(5)

x(1) d(2)

• a: visit to Asia? (y/n)

• s: smoking? (y/n)

• t: tuberculosis? (y/n)

• l: lung cancer? (y/n)

• e: tuberculosis or
lung cancer? (y/n)

• b: bronchitis? (y/n)

• x: positive X-ray? (y/n)

• d: dyspnoea? (y/n)

Figure 4: The stylized example of [13], where the set of variables
V = {a, s, t, l, b, e, x, d} is labeled (see the superscript) based on MCS, starting
from vertex a of label 8. (It is a backward numbering, so the perfect elimination
ordering is x, d, s, b, e, l, t, a.) On the left panel see the clique structure of the
triangulated graph in the RIP ordering.

page 1147 of [11]. Again, the vertices are the cliques, while the edges are the
separators with weights that are equal to their size (cardinality). Any maximal
weight spanning tree (there can be more than one) will be a computationally
economic JT. More exactly, Proposition 4 of [25] states that any maximal weight
spanning tree of the cardinality weighted clique graph is a junction tree for the
original graph.

If we have the joint distribution, and we want to find a tree-structured graph
that defines an MRF over it, then we can use the Chow–Liu algorithm of [3].
Based on the empirical probabilities (estimated from the sample) of the vertices
and vertex-pairs (edges), the likelihood of the spanning tree over the vertices is
maximized with information theoretical tools, see [25]. More general structures
are investigated in [22].

If the variables are binary, and the interactions are singletons or pairwise, the
min-cut algorithm can also be applied, which runs in polynomial time, see [11].
For this purpose we construct an edge-weighted graph, the cuts of which to be
minimized are just the energies in the Gibbs model. The vertices are either
in spin state 0 or 1, and the weights are obtained from the exponents of the
potential functions, see [1] for details.

2.5 Iterative scaling, belief propagation, and mode pre-
diction

In hierarchical log-linear models, the mean value parameters, and so, the cell
probabilities are estimated based on the clique frequencies, and are obtainable
by the IPS (Iterative Proportional Scaling) algorithm, see [25] (page 97) and
[14] (page 82). In the heart of this algorithm lies the following: we want to make
the clique probabilities equal to the corresponding relative frequencies, for all
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cliques. Recall that
{n(xC), xC ∈ XC , C ∈ C}

is a sufficient statistic for the canonical parameters of the log-linear model.
Moreover, as we are in exponential family, the C-marginals of the ML-estimate
m̂ of the mean value parameter m satisfy the system of equations

m(xC) = n(xC), C ∈ C, x ∈ X

for all the cliques (and consequently, for their subsets), but not for larger subsets
of the vertices. To solve the above system, we will recursively adjust the above
marginal counts going through each clique in a cyclic iteration that finds the
fixed point of the mapping T = TC1

. . . TCk
(if there are k cliques in C), where

TCim(x) = m(x)
n(xCi

)

m(xCi)
, i = 1, . . . , k.

Note that TCi
m(xCi

) = n(xCi
) and

∑
x∈X TCi

m(x) = n.

So starting from some m(0), the iteration is

m(t)(x) = Tm(t−1)(x), x ∈ X .

In [17] it is proved that if n(xC) > 0 and m(0)(xC) > 0, ∀x ∈ X and ∀C ∈ C,
then the sequence m(t)(x) converges as t → ∞, for all x ∈ X . With some
additional condition, namely, thatm(0)(xA) = n(xA) cannot hold for A /∈ C, the
sequence m(t)(x) converges to the theoretically guaranteed unique ML estimate
of m:

m(t)(x)→ m̂(x) as t→∞, ∀x ∈ X

or equivalently, m
(t)(x)
n → p̂(x). The proof is based on information divergence

minimization, see [17, 25]. The additional condition excludes the possibility
that some extra subset of variables is added to the prescribed set of interactions
(which are the cliques). In particular, the cell frequencies do not provide a good
starting, as they belong to the saturated model. The suggested starting is the
uniform distribution over the cells, i.e., m(0)(x) = n

c , where c = |X | is the total
number of the cells.

Note that the same idea is hidden behind the so-called covariance selection
method in the Gaussian case, see Section 3.3.

In general, in hierarchical log-linear models, we cannot give the ML estimate
of the mean value parameter in explicit form, this is why the infinite iteration
of IPS is needed that converges to this estimate. However, when the log-linear
model is decomposable, we have the ML estimate in explicit form, see (10), and
in accord with this, we can construct an iteration that converges in two runs.
The iteration facilitates the quick computation of the clique marginals. Here
the special structure of the cliques and separators is exploited.

For the cliques of the junction tree (in the reversed RIP ordering), together
with separators, we apply the so-called message-passing, in other words, belief
propagation algorithm so that we update their potentials in such a way, that at
the end, they become the clique marginals. Let A and B be two consecutive
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cliques, and S be the separator between them. Starting with some potentials
(see later), and denoting by ∗ the newly updated potential, the algorithm is:

ψ∗S(xS) =
∑

xA\S∈XA\S

ψA(xS ,xA\S), ∀xS ∈ XS

ψ∗B(xB) = ψB(xB) · ψ
∗
S(xS)

ψS(xS)
, ∀xB ∈ XB

ψ∗∗S (xS) =
∑

xB\S∈XB\S

ψ∗B(xS ,xB\S), ∀xS ∈ XS

ψ∗A(xA) = ψA(xA) · ψ
∗∗
S (xS)

ψ∗S(xS)
, ∀xA ∈ XA.

(15)

These equations hold for any state-configurations xA,xS ,xB within the cliques.

Algorithm (15) can be thought of as the so-called sum-product algorithm
that gives the following:∑

y∈XA\S

ψ∗A(xS ,y) =
∑

y∈XA\S

ψA(xS ,y)
ψ∗∗S (xS)

ψ∗S(xS)
=
ψ∗∗S (xS)

ψ∗S(xS)

∑
y∈XA\S

ψA(xS ,y)

=
ψ∗∗S (xS)

ψ∗S(xS)
ψ∗S(xS) = ψ∗∗S (xS) =

∑
y∈XB\S

ψ∗B(xS ,y).

So
∑

y∈XB\S
ψ∗B(xS ,y) =

∑
y∈XA\S

ψ∗A(xS ,y) after one back and forth step,
which means local consistency, see [13] (page 181).

Start with clique potentials obtained from conditional probability tables,
whereas the separator potentials can be constantly 1’s. So ψC contains the
product of marginal or conditional probabilities, affecting variables included in
C, and such that the product of ψC ’s for C ∈ C, with normalizing constant
Z, gives the formula (UF). It means that the joint distribution is already
factorized in some form with respect to the cliques. To find all clique and
separator marginals, we first run the algorithm in the reversed RIP, that is,
in the Sundberg’s ordering C1, . . . , Ck of the cliques. In this forward step we
start at C1 (called root), and via the separators, end at Ck. The so obtained
potential of Ck is already the clique potential. To obtain all the clique potentials,
we have to run the algorithm again, that is to make a backward step (in the
RIP ordering). In this way, each separator appears with multiplicity in the
calculations.

It is proven (see [12, 25]) that at the end, ψ∗∗Ci
(xCi) = p(xCi) and ψ∗∗Si

(xSi) =
p(xSi

), i = 1, . . . , k; so the iteration leads to the clique marginals. In other
wording, in the forward steps, the cliques collect the information from all of
its neighbors (parent cliques on the JT) recursively; whereas, in the backward
steps, they distribute the information to them. This is the so-called HUGIN
version of the belief propagation algorithm, whereas the original version of [12]
does not store the separator potentials.

Basically, we have historical data or empirical observation a priori. These
provide us with so-called probability tables of conditional probabilities and also
suggest the causal links. After, if a new observation comes in with some evi-
dences (observed values of some of its variables), we can substitute those (or
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make them absorbed by other cliques), and get probabilities of the other vari-
ables, see the expert system description of [13].

Sometimes, we want to take the mode of the log-linear distribution, i.e., to
find the most probable state. In the junction tree framework, it is the max-
product algorithm that does this. The max-product algorithm is practically the
same as the sum-product algorithm (15) with the difference, that instead of
summation we take maxima over the same sets.

For example, if we want to predict the mode (the most probable value of a
variable) based on the observed values of the others, it suffices to consider the
observed values of those variables which share cliques and/or separators with the
target variable. For example, let X1, . . . , Xd be categorical variables, where Xi

takes on ri distinct values. We want to predict the value of the target variable
(say, X1) based on the given values x2, . . . , xd of the others. If x1i denotes the
ith possible value of X1, we are looking for the conditional probabilities

p(x1i|x2, . . . , xd) =
p(x1i, x2, . . . , xd)

p(x2, . . . , xd)
, i = 1, . . . , r1 (16)

and find the i∗ for which it is maximal. This is a discrete maximization (integer
programming) task. Then x1i∗ is the mode of X1 conditioned on the given
values of the other variables, and this is our prediction for X1. For example,
if X2, . . . , Xd are possible symptoms, and X1 is the diagnosis, then x1i∗ is the
most likely diagnosis under the given symptoms.

If X1, . . . , Xd is a perfect numbering, and the variables are organized into a
junction tree structure, in the possession of the clique (and separator) potentials
(obtained by the belief propagation algorithm), we proceed as follows. We find

p(xi) := p(x1i, x2, . . . , xd) =

∏
C p(x

i
C)∏

S p(x
i
S)
, i = 1, . . . , r1.

However, the C’s and S’s that do not contain X1 can be disregarded, as those
marginal counts do not depend on i at all. Therefore,

p(xi) ∝ qi :=

∏
C:X1∈C p(x

i
C)∏

S:X1∈S p(x
i
S)
.

Eventually,
p(x1i|x2, . . . , xd) =

qi∑r1
j=1 qj

, i = 1, . . . , r1

and a discrete maximization in i closes the mode finding procedure for X1.

Again, the important clique and separator marginals (where X1 is included)
are obtained through the junction tree iteration, which can be stopped at the
desired place.

Note that the estimation process can be extended to directed graphs or to
CG models, where some of the variables can be continuous (scaled). We can
either categorize them or assuming, that they are Gaussian (conditioned on
the discrete ones), similar procedures are available via covariance estimates, see
Section 3.
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3 Continuous MRF’s and Gaussian graphical mod-
els

3.1 Partitioned Covariance Matrices and Partial Correla-
tions

Here we consider the multivariate Gaussian distribution which is able to define
so-called compositional graphoids (see [16]), and thus, embody the prototype
of continuous multivariate distributions with existing second moments, where
pairwise relations rule the joint distribution of the components.

Let X ∼ Nd(µ,Σ) be a d-variate Gaussian random vector with expectation
(vector) µ and positive definite, symmetric d × d covariance matrix Σ. Note
that this distribution belongs to the exponential family with canonical param-
eter (Σ−1,Σ−1µ). The also positive definite, symmetric matrix Σ−1 of en-
tries σij is called concentration matrix, and its zero entries indicate conditional
independences between two components of X, conditioned on the remaining
components. This is supported by the following facts.

Proposition 5 Let the (p+ q)× (p+ q) covariance matrix Σ > 0 be partitioned
as

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σ11, Σ22 are covariance matrices of X1 and X2, whereas Σ12 = ΣT
21

is their cross-covariance matrix. Then the symmetric matrix Σ−1 > 0 has the
following partitioned form:

Σ−1 =

(
Σ−1

1|2 −Σ−1
1|2Σ12Σ

−1
22

−Σ−1
22 Σ21Σ

−1
1|2 Σ−1

22 + Σ−1
22 Σ21Σ

−1
1|2Σ12Σ

−1
22

)
, (17)

where
Σ1|2 = Σ11 −Σ12Σ

−1
22 Σ21.

Further, Σ > 0 is equivalent to the fact that both Σ22 and Σ1|2 are regular
(invertible) matrices (actually, they are positive definite).

Theorem 2 Let (XT
1 ,X

T
2 )T ∼ Np+q(µ,Σ) be a random vector, where the ex-

pectation µ and the covariance matrix Σ are partitioned (with block sizes p and
q) in the following way:

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then the conditional distribution of the random vector X1 conditioned on X2 =
x2 is Np(Σ12Σ

−1
22 (x2 − µ2) + µ1,Σ1|2) distribution.

Note that the conditional covariance matrix Σ1|2 does not depend on x2 of
the condition. Further, for the conditional expectation, which is the expectation
of the conditional distribution, we get that

E(X1|X2 = x2) = Σ12Σ
−1
22 (x2 − µ2) + µ1.
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Therefore,
E(X1|X2) = Σ12Σ

−1
22 (X2 − µ2) + µ1

which is a linear function of the coordinates of X2. In the p = q = 1 case, it
is called regression line, while in the p = 1, q > 1 case, regression plane. Sum-
marizing, in case of the multidimensional Gaussian distribution, the regression
functions are linear functions of the variables in the condition, which fact has
important consequences in the multivariate statistical analysis. Since µ is just a
shift, in the sequel, we will assume µ = 0, i.e., the variables are mean centered.

Theorem 3 Let X = (X1, . . . , Xd)
T ∼ Nd(0,Σ) be a random vector, and let

V := {1, . . . , d} denote the index set of the variables, d ≥ 3. Assume that Σ is
positive definite. Then

rXiXj |XV \{i,j} =
−σij√
σiiσjj

i 6= j,

where rXiXj |XV \{i,j} denotes the partial correlation coefficient between Xi and
Xj after eliminating the effect of the remaining variables XV \{i,j}. Further,

σii = 1/(Var(Xi|XV \{i}), i = 1, . . . , d

is the reciprocal of the conditional (residual) variance of Xi conditioned on the
other variables XV \{i}.

Note that the rXiXj |XV \{i,j} = 0 ⇐⇒ σij = 0 equivalence can heuristi-
cally be explained as follows. It suffices to prove for the i = 1, j = 2 case.
rX1X2|XV \{1,2} = 0 means that when regressing X1 and X2 with XV \{1,2}, the
residuals have 0 covariance. This is equivalent to that the residual covariance
matrix Σ11−Σ12Σ

−1
22 Σ21 is diagonal, where Σ11 is the upper left 2×2 block of

Σ, and the other blocks are constructed accordingly. This in turn is equivalent
to that the inverse of the residual covariance matrix is also diagonal, and this
is just the upper left 2× 2 block of Σ−1, see (17).

Definition 4 Let X ∼ Nd(0,Σ) be random vector with Σ positive definite.
Consider the regression plane

E(Xi|XV \{i} = xV \{i}) =
∑

j∈V \{i}

βji·V \{i}xj , j ∈ V \ {i},

where xj’s are the coordinates of xV \{i}. Then we call the coefficient βji·V \{i}
the partial regression coefficient of Xj when regressing Xi with XV \{i},
j ∈ V \ {i}.

Theorem 4

βji·V \{i} = −σ
ij

σii
, j ∈ V \ {i}.

Corollary 1 An important consequence of Theorems 3 and 4 is that

βji·V \{i} = rXiXj |XV \{i,j}

√
σjj

σii
= rXiXj |XV \{i,j}

√
Var(Xi|XV \{i})

Var(Xj |XV \{j})
, j ∈ V \{i}.
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(The formula is analogous to the one of unconditioned regression.) So only the
variables Xj ’s whose partial correlation with Xi (after eliminating the effect of
the remaining variables) is not 0, enter into the regression of Xi with the other
variables.

3.2 Testing hypotheses about partial correlations

For i 6= j we want to test

H0 : rXiXj |XV \{i,j} = 0,

i.e., that Xi and Xj are conditionally independent conditioned on the remaining
variables. Equivalently, H0 means that βij|V \{i} = 0, βji|V \{j} = 0, or simply,
σij = σji = 0 (Σ > 0 is assumed).

To test H0 in some form, several exact tests are known that are usually
based on likelihood ratio tests. The following test uses the empirical partial
correlation coefficient, denoted by r̂XiXj |XV \{i,j} , and the following statistic is
based on it:

B = 1− (r̂XiXj |XV \{i,j})
2 =

|SV \{i,j}| · |SV |
|SV \{i}| · |SV \{j}|

,

where S is the sample size times the empirical covariance matrix of the variables
in the subscript (its entries are the product-moments).

It can be proven that under H0, the test statistic

t =
√
n− d ·

√
1

B
− 1 =

√
n− d ·

r̂XiXj |XV\{i,j}√
1− (r̂XiXj |XV \{i,j})

2

is distributed as Student’s t with n− d degrees of freedom. Therefore, we reject
H0 for large values of |t|.

3.3 The undirected model and the covariance selection

Let X ∼ Nd(µ,Σ) be a d-dimensional Gaussian random vector, and form a
graph G on the vertex-set V , where V corresponds to the components of X and
the edges are drawn according to the rule

i ∼ j ⇔ σij 6= 0, i 6= j.

This is called Gaussian graphical model. For practical purposes we use the
empirical partial correlation coefficients, and based on them, the above exact
test to check whether they significantly differ from 0 or not. If we put zeros into
the no-edge positions ij’s of the inverse covariance matrix, we can fit a so-called
covariance selection model. The restricted covariance matrix is denoted by Σ∗.

With the help of the concentration matrixK = Σ−1 and the vector h = Kµ,
the log-density of X has the following form:

ln f(x) = c− 1

2

∑
i∈V

kiix
2
i +

∑
i∈V

hixi −
∑
i 6=j

kijxixj ,
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where c is appropriate normalizing constant. Compared to the log-linear model,
the log-density is additively decomposed of quadratic main effects with coeffi-
cients − 1

2kii, linear main effects with coefficients hi, and quadratic interactions
with coefficients −kij . Observe that the interaction terms of the highest order
involve pairs of variables, and there are no terms involving groups of variables
with more than two elements. This is in contrast to the discrete case and it fol-
lows in particular that within the normal distribution there are no hierarchical
interaction models which are not graphical. So it is an MRF.

Given the interaction graph and a sample (of more than d elements), we
want to fit a (Gaussian) distribution so that Xi is conditionally independent
of Xj given the remaining variables, denoted by Xi⊥⊥Xj |XV \{i,j}, whenever
there is no edge between i and j in G. (Actually, this is the pairwise Markov
property, which is equivalent to the local and global Markov properties, as we
have a positive distribution.) That is, we want to estimate the mean value
parameters (µ and Σ) from the iid. sample X1, . . . ,Xn ∼ Nd(µ,Σ) (n > d),
such that the concentration matrix has zero entries in the no-edge positions:
kij = 0 whenever {i, j} /∈ E.

This can be done by the covariance selection model: it can be proven (see
Theorem 5.3 of [14]) that under this model the ML-estimate of the parameters
is: µ̂ = X̄ = 1

n

∑n
i=1 Xi and that of the restricted covariance matrix Σ∗ = (σ∗ij)

can be calculated as follows. We estimate the entries in the edge-positions as in
the saturated model (no restrictions):

σ̂∗ij =
1

n
sij , {i, j} ∈ E, (18)

where S = (sij) =
∑n
`=1(X` − X̄)(X` − X̄)T . The other entries (in the no-

edge positions) of Σ∗ are free, but satisfy the model conditions: after taking
K∗ = (k∗ij) = Σ∗−1 with these undetermined entries, we get the same number
of equations for them from k∗ij = 0 whenever {i, j} /∈ E. To do so, there are nu-
merical algorithms at our disposal, for instance, the IPS (Iterative Proportional
Scaling (see [14], p. 134), already discussed in Section 2.5.

The quintessence of the IPS is that it suffices to state Equations (18) for the
cliques:

Σ̂∗C =
1

n
SC , C ∈ C,

where the subscript indicates that we choose the quadratic (and symmetric)
|C|× |C| submatrix of the underlying covariance or empirical covariance matrix
that contains only variables in C. Note that instead of the n > d condition
n > c would suffice, where c is the cardinality of the largest (maximum) clique.

Then K∗ = Σ∗−1 is the fixed point of the equation TK = K, where T =∏k
i=1 TCi

with C1, . . . , Ck being the cliques of the graph and

TCi
K = K + [n(SCi

)−1 − (K−1
Ci

)−1]V ,

where, in general, [MC ]V denotes the d×d matrix containing the entries of the
larger matrixM in the |C|×|C| block corresponding to C, and otherwise zeros.

Then starting with an arbitraryK(0) which contains 0 entries exactly in the
no-edge positions of G, the iteration

K(t) = TK(t−1), t = 1, 2, . . .
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converges to the inverse of the unique ML estimate:

K(t) → K̂∗ = (Σ̂∗)−1, t→∞.

Here an infinite iteration is needed, because in general, there is no explicit
solution for the ML estimate. However, in the decomposable case there is no
need of running the IPS, but explicit estimates can be given as follows. Recall
that if the Gaussian graphical model is decomposable (its concentration graph
G is decomposable), then the cliques, together with their separators (with mul-
tiplicities), form a JT structure. Denote C the set of the cliques and S the set
of the separators in G.

Then direct density estimates, like (9), are available:

f(x) =

∏k
j=1 f(xCj )∏k
j=2 f(xSj )

=

∏
C∈C f(xC)∏

S∈S f(xS)ν(S)
, x ∈ Rd. (19)

There are also exact tests in decomposable models (see [14], p. 149).

The ML estimator of K can be calculated based on the product moment
estimators applied for subsets of the variables, corresponding to the cliques and
separators. First, introduce the simpler form for K, see [14]:

K = Σ−1 =
∑
C∈C

[KC ]V −
∑
S∈S

[KS ]V =
∑
C∈C

[Σ−1
C ]V −

∑
S∈S

[Σ−1
S ]V ,

further,

|Σ| =
∏
C∈C |ΣC |∏
S∈S |ΣS |

.

Let n be the sample size for the underlying d-variate normal distribution,
and assume that n > d. For the clique C ∈ C, let [SC ]V denote n times
the empirical covariance matrix corresponding to the variables {Xi : i ∈ C}
complemented with zero entries to have a d×d (symmetric, positive semidefinite)
matrix. Likewise, for the separator S ∈ S, let [SS ]V denote n times the empirical
covariance matrix corresponding to the variables {Xi : i ∈ S} complemented
with zero entries to have an d × d (symmetric, positive semidefinite) matrix.
Then the ML estimator of the mean vector is the sample average (as usual),
while the ML estimator of the concentration matrix is

K̂ = n

{∑
C∈C

[S−1
C ]V −

∑
S∈S

[S−1
S ]V

}
;

further,

|K̂| = nd ·
∏
S∈S |SS |∏
C∈C |SC |

.

Again, here the structure of K imitates the junction tree structure, through
RZP’s. Also, decomposable (multiplicative) models provide the Markov prop-
erty through a chain, and a factorization, resembling (11), also holds:

f(x) =

k∏
i=1

f(xRj
|xSj

) (20)

in the RIP ordering of the cliques, residuals, and separators.

By [7, 21], the same can be done for all members of the exponential family.
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3.4 Directed model, recursive linear regression, and path
analysis

Now some causal relations are built in the covariance selection model. Using
the estimated inverse covariance matrix, we build a so-called regression graph,
and special constellation of the zeros in the concentration matrix, the RZP will
give an ordering of the vertices in which causation may happen. Again, it is
important that (marginal) independences are indicated by the zero entries of the
covariance matrix (more exactly, entries of the sample covariance matrix which
do not differ significantly from 0); whereas, conditional independences can be
concluded from the (sample) concentration matrix, or can be supplanted in it
via covariance selection.

For 2 ≤ k ≤ d, consider the following recursive system of linear equations:

X1 + a12X2 + a13X3 + · · ·+ a1dXd = ε1

X2 + a23X3 + · · ·+ a2dXd = ε2

... =
...

Xk + · · ·+ akdXd = εk,

(21)

where X1, . . . , Xk are so-called endogenous, and Xk+1, . . . , Xd are fixed or so-
called exogenous (in other wording, context) variables, whereas the errors are
εi ∼ N (0, δi) for i = 1, . . . , k and E(εiεj) = 0 for i 6= j. So Xi’s are also Gaus-
sians with zero expectations, and for i = 1, . . . , k, Xi depends on Xi+1, . . . , Xd

linearly, described by equations (21) with the regression coefficients aij ’s which
are estimated based on iid measurements xi = (xi1, . . . , xin)T ∈ Rd, i = 1, . . . , n.
Assume that n > d and the sample means (averages of the coordinates of xi’s)
are zeros. Then the n × n symmetric sample covariance matrix S has entries
sij = 1

nxTi xj . If n > d, S is positive definite with probability 1.

When there are no restrictions on aij ’s, the system is called complete, and
when some of the aij ’s are restricted to be zero, it is incomplete. In both
cases the MLE’s of the parameters can be obtained by applying the method of
least squares to each equation separately (where the variables with coefficients
restricted to zero do not enter into the regression). The forthcoming theory
guarantees that the equations need not be treated separately, but can be solved
simultaneously with a convenient decomposition of the concentration matrix
(and of the sample concentration matrix) of Xi’s. It is also interesting that
which pattern of the parameters restricted to zero makes it possible to use a
unique method for the parameter estimation. It will turn out that those are
the decomposable, in other wording, multiplicative models which possess this
property, and they are strongly related to the decomposable graphs and JT’s.
For this purpose, let us form a graph with the variables.

We form the directed graph G on d vertices, which correspond to X1, . . . , Xd.
For i = 1, . . . , k and j = i+ 1, . . . d, we draw a directed edge Xj → Xi if aij 6= 0
(Xj is explanatory for Xi) and there is no edge between them if aij = 0. Assume
that between the exogenous variables Xk+1, . . . , Xd all edges are present, but
those are bidirected and carry no information for the system. This notation was
elaborated in path analysis [33], but here we discuss the topic with the simpler
notions of [28]. We can as well think of the biderected edges as undirected, and
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sometimes we will also forget the direction of the directed edges, as the criteria
for decomposability do not use the direction; however the directions somehow
dictate the ordering of the cliques in the JT and a perfect numbering of the
vertices.

Now we do not regard Xk+1, . . . , Xd as fixed but as rv’s and consider X =
(X1, . . . , Xd) ∼ N (0,Σ). Assume that Σ > 0 and so, K = Σ−1 > 0. We
complete the system (21) with further d−k complete recursive equations to get
its matrix form:

AX = ε with ε = (ε1, . . . , εd)
T , ε ∼ Nd(0,∆), (22)

where A is a d × d upper triangular matrix with 1’s along its main diagonal,
otherwise it contains the aij ’s, and ∆ = diag(δ1, . . . , δd) is d×d diagonal matrix
with positive diagonal entries.

From Equation (22) we get that

E[(AX)(AX)T ] = AΣAT = ∆.

So given the covariance matrix Σ > 0, we have to find a decomposition

AΣAT = ∆, (23)

where A is upper triangular (with all 1’s along its main diagonal) and ∆ is
diagonal matrix with positive diagonal entries. If Σ > 0, then there is a one-to-
one correspondence between Σ and the pair (A,∆), which provides the unique
solution of Equation (22). The entries of A and ∆ are related to partial regres-
sion coefficients and residual variances, see [28] and our forthcoming reasoning;
further, we can state the following.

Proposition 6 (Proposition 1 of [28]) The following are equivalent:

1. The system (A,∆) of recursive linear equations is complete.

2. The covariance matrix Σ of X is unrestricted.

How to get the decomposition of Equation (23)? Since Σ andA are invertible
matrices, equivalently we have that Σ = A−1∆(AT )−1 and

Σ−1 = AT∆−1A. (24)

In fact, we have to perform the Cholesky decomposition (in this form called LDL
decomposition) of the symmetric, positive definite matrix K = Σ−1, to obtain
the decomposition

K = LDLT ,

where L is lower triangular, and with the convenient choice of the diagonal
matrix D, we can achieve that its diagonal entries are 1’s. Then A := LT and
∆ := D−1.

For example, to get the first row of A, that is the first column of L, we just
divide the first column (row) of K with k11. So d−1

11 = k11 and a11 = 1, while

a1j =
k1j

k11
, j = 2, . . . , d.
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In view of Theorem 4, a1j ’s (j = 2, . . . , d) are −1 times the partial regression
coefficients of X1 when regressed with X2, . . . , Xd. The negative sign comes
from the equivalent form

X1 = −a12X2 − a13X3 − · · · − a1dXd + ε1

of the first equation of (21), which shows that −aij ’s are the partial regression
coefficients. Further on, with the notation of Definition 4, we get that

aij = −βji·{i+1,...,d}, j ∈ {i+ 1, . . . , d}, i = 1, . . . , d− 1 (25)

and
δi = Var(Xi|X{i+1,...,d}), i = 1, . . . , d (26)

is the conditional (residual) variance ofXi conditioned on the variables X{i+1,...,d}.

Due to Cochran [4], there is also a recursion for the correlations and the
partial regression coefficients, when the variables are standardized:

rij =

d∑
k=i+1

βki·{i+1,...,d} rkj , j ∈ {i+ 1, . . . , d}. (27)

This is the base of the path analysis.

To treat the incomplete cases, we need a definition, already used for discrete
variables and undirected models in Proposition 4.

Definition 5 Let I ⊆ Ĩ be a subset of the set Ĩ = {(i, j) : 1 ≤ i < j ≤ d},
i.e., the set of the edges of the complete graph over the d-element vertex-set V .
We say that I is reducible if for each (i, j) ∈ I and h = 1, . . . , i − 1, we have
(h, i) ∈ I or (h, j) ∈ I or both.

We say that the symmetric p×p matrixM has zero structure with respect
to I if the upper-diagonal entries of M are zeros exactly in positions (i, j) ∈ I.
If I is reducible, we say that M has a reducible zero pattern (RZP).

Proposition 7 (Proposition 2 of [28]) Let Σ(1,...,k) and A(1,...,k) be the sub-
matrices of Σ and A, which remain after deleting rows and columns 1, . . . , k.
I∅ := Ĩ and I(1,...,k) is obtained from Ĩ by deleting all pairs (i, j) with i ∈
{1, . . . , k}. With this notation, for every reducible I ⊆ Ĩ and k ∈ {0, . . . d− 2},
the following are equivalent:

1. (Σ(1,...,k))
−1 has zero structure with respect to I(1,...,k).

2. A(1,...,k) has zero structure with respect to I(1,...,k).

In the proof, the formulas (2.8), (2.9) of [28] are used, and the fact, that Σ =

A−1∆A−1T implies (by the nature of the Cholesky decomposition) that

Σ(1,...,k) = (A−1)(1,...,k)∆(1,...,k)(A
−1T )(1,...,k).

So to find the (k + 1)th row of A, only the entries of Σ(1,...,k) are used.

The next proposition applies to the k = 0 case.
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Proposition 8 (Proposition 3 of [28]) For every reducible I ⊆ Ĩ and ev-
ery pair (A,∆),Σ∗ (latter one denoting the restricted covariance matrix), the
following are equivalent:

1. A has zero structure with respect to I.

2. (Σ∗)−1 has zero structure with respect to I.

So only in the labeling of the vertices that gives an RZP it is true that the zeros
of (Σ∗)−1 and A coincide.

To find the ML estimate Σ̂∗ of Σ∗, the covariance selection method of Sec-
tion 3.3 is applicable. Now we will clarify that which class of covariance selection
models can be characterized by a reducible zero pattern in the concentrations
(entries of Σ−1). The author of [28] shows (Section 3) that

1. Every incomplete system (A,∆) with reducible zero pattern can be equiv-
alently described with a decomposable (multiplicative) covariance selec-
tion model.

2. Every decomposable (multiplicative) covariance selection model can, after
a proper reordering of the variables, be described by an incomplete system
(A,∆) with reducible zero pattern.

3. The decomposition rule can be derived from a given reducible zero pattern.

4. A reducible zero pattern facilitates computation of the ML estimates of
the parameters in a covariance selection model, i.e., there are closed forms
for the clique concentrations (see Section 3.3) and hence, for the least
squares estimates of the corresponding incomplete system.

It is important that in decomposable models the regression coefficients have
the same reducible zero pattern as the concentration matrix (see Propositions
5,6,7 of [28]). The proofs use the equivalent statements of decomposability,
which comply with our Proposition 4 of Section 2.3. In Sections 4 and 5 of [28],
testing hypotheses to find the zero patterns and a practical example are also
considered.

Consequently, the condition for a directed graph to be decomposable (has
no sink V pattern) corresponds to the condition of its undirected skeleton to be
decomposable (have an RZP). If we order the variables according to this RZP,
then the recursive regressions give the same estimates for the correlations by
the path coefficients as those expected via ML estimation.

The relation to path analysis is also discussed in [28]. If the Gaussian vari-
ables are standardized (they are not only mean centered, but have unit vari-
ance), then the estimated regression coefficients are the path coefficients, and
with them, there are recursions for the correlations rij ’s (they are consequences
of similar recursions between the usual and partial correlations, due to Cochran,
see [31]). With Equation (27), and denoting by âik’s the ML-estimates of the
so-called path coefficients,

rij =

d∑
k=i+1

âikr̂kj
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holds, if we estimate rkj ’s in the usual way. When we start from Σ∗, and the
correlations are estimated by covariance selection, then

r∗ij =

d∑
k=i+1

âikr̂
∗
kj

is the correlation expected from the path diagram. Then ML ratio test can be
used to decide whether the estimated correlations (r̂ij ’s) and the path correla-
tions (r∗ij ’s) differ significantly or not. If not, then the path analysis model with
existing arrows fits to our data.

4 Composite models

Models with both discrete and continuous (Gaussian) variables are discussed as
Conditional Gaussian (CG) models in [14]. Here we rather focus on graphs with
both directed and undirected edges.

4.1 Edge matrices and V’s

For edge matrices see page 8 of [31]. An edge-matrix A corresponding to a DAG
is upper triangular, contains 1’s along its main diagonal, and for i < j its ij
entry is 1 if there is a j → i edge, and 0, otherwise. If the graph also contains
undirected edges, the 1’s in adjacency positions appear below the diagonal. On
page 9 of [31], it is shown that the matrix

A− = In[(2I −A)−1]

brings in additional dependences and conditional dependences. Here In is an
indicator function that assigns 1 to non-zero entries and 0 to the zero ones. The
idea is that inversion means a geometric sum, where the powers of the adjacency
matrix (edge matrix minus I) introduce 1’s between ancestral relations up to
the order d − 1. In this way, additional 1’s will appear in the covariance and
concentration graphs which means that there are induced edges in them. For
example, the existence of a ‘sink’ i→ k ← j for k < i, k < j when the distinct
vertices i and j are not connected with an arrow, induces an i ∼ j edge in the
concentration graph, as Xi and Xj are conditionally dependent on Xk and so,
on all the remaining vertices.

Such operations are called fill-in, ‘moralization’ in [13, 14]. These proce-
dures also ensure Markov equivalence between two graphs (partially directed
and undirected). Two so-called regression graphs (to be introduced next) are
Markov equivalent if they define the same independence structure, i.e., the set
of independences implied by the graph that goes into the joint distribution of
the variables corresponding to the graph’s vertices.

4.2 Regression graphs

A regression graph is, in fact, a chain graph that contains both directed and
undirected edges in the following way. If we keep only the undirected edges, the
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graph falls apart into connected components. The components are numbered
such that the last ones (with highest indices) correspond to the so-called context
variables that are given in the context of the experiment. Typically they form
the last connected components, and context variables of the same component
are connected with undirected edges based on the concentration graph on them.
From the context variables arrows show to variables in the lower index boxes
(components), which are primary, secondary, etc. responses. From the response
variables arrows may show to the response (target) variable(s) which are in
lower index boxes (the primary response variables are in the first box, from
the left). Between the non-context and non-response variables in the same
connected component, there are dashed lines, which indicate dependences on
a covariance base. Variables, connected by dashed lines, are also called to be
on equal standing; i.e., there is no dashed line between two variables if they
are (marginally) independent (the corresponding entry of the covariance matrix
of that component, within that box, is 0). Then we can trace the so-called
regressions along the arrows. For traceable regressions, see [29, 30], and our
examples in Section 4.3.

The simplest version of a regression graph is the so-called recursive casual
model of Kiiveri et al. [10]. Here the context variables X, called exogenous, are
in one component (the last one in our labeling, but the first one in the labeling
of the authors); whereas the other variables Y, called endogenous, as singletons
form the other chain components. Here arrows may show from the exogenous
variables to endogenous ones, and from endogenous variables arrows show to
other endogenous one. As the variables (vertices) connected by directed edges
form a DAG, by section 1.1, there is a topological labeling, here called recursive
ordering of them, so that a j → i implies i < j, in accord with the [30] paper.
Note that, on the contrary, j → i implies i > j in the Kiiveri et al. [10] paper,
where a reversed numbering is used. The authors also prove that every causal
graph has at least one so-called extreme endogenous vertex, such that there
is no directed arrow starting from it, i.e., it is the first one in the topological
ordering. Indeed, it is the ‘youngest’ vertex with no children at all, and also a
simplicial one in the skeleton of the DAG. Obviously, the exogenous vertices can
have only outgoing arrows, and assume that the endogenous ones are labeled
as Y1, . . . , Yd in the ordering of [30]. Again, the first some vertices are extreme
(the first one is surely that), which are the targets to be predicted.

Theorem 5 (part of Theorem of [10]) A strictly positive density (pmf or
pdf) p(x,y) corresponding to the casual recursive graph G (here x belongs to
the states of the exogenous, and y to those of the endogenous variables), the
following are equivalent:

(RCF)⇐⇒ (GM)⇐⇒ (LM),

where (GM) and (LM) are the global and local Markov properties for recursive
causal graphs (they amalgamate the (DG), (UG), and (DL), (UL) properties),
and (RCF) means the recursive casual factorization as follows. The exogenous
variables form an MRF over the undirected part of the graph (for Gaussian
variables with positive definite covariance matrix it always holds) and

p(x,y) = p(x)

d∏
i=1

p(yi|ypar(i)). (28)
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Now we are interested in the following: what happens if we forget the direc-
tions, and consider the underlying graph G as undirected, by just replacing the
directed edges with undirected ones. This undirected graph is the skeleton of
G. The answer is as follows.

Proposition 9 (Corollary of [10]) Assume that the recursive casual graph
G of Theorem 5 has no sink V configuration, see Section 4.1. Then the condi-
tions (RCF), (GM) and (LM) are equivalent to each other and to the undirected
Markov property (UM), i.e., the joint distribution is Markov (MRF) over the
undirected skeleton of G. Further, if the graph of the exogenous variables is
decomposable, then the skeleton of G is also decomposable.

The authors in [10] also give a variant of the Cholesky decomposition, that
triangulates only for the endogenous variables. They prove the following.

Proposition 10 (Lemma 2 of Kiiveri et al. [10]) The (positive definite) con-
centration matrix K of the Gaussian system (Y,X) of endogenous and exoge-
nous random vectors has a unique representation K = LDLT with L and D
having the form

L =

(
AT O
BT I

)
, D =

(
∆−1 O
O C−1,

)
where A is d×d upper triangular having 1’s along its main diagonal, ∆ is d×d
diagonal with positive diagonal entries; whereas the positive definite C and the
identity matrix I are of the dimension of X (say, q).

Then the entries of A = (aij) and ∆ = diag(δ1, . . . , δd) are determined by the
Equations (25) and (26) like

aij = −βji·{i+1,...,d+q}, j ∈ {i+ 1, . . . , d+ q}, i = 1, . . . , d− 1

and
δi = Var(Yi|Y{i+1,...,d}X), i = 1, . . . , d− 1.

The q × q positive definite matrix C is just the covariance matrix of X, while
the q × d matrix B comes by stopping the Cholesky decomposition after the
first d columns/rows of K were eliminated.

A strict ordering of the vertex set is defined by [10] as any labeling of the
exogenous variables together with a topological labeling of the endogenous ones.

Proposition 11 (Proposition 1 of [10]) A distribution p(x,y) satisfies the
equivalent conditions of Theorem 5 if and only if for all strict orderings of the
vertex set the elements of the associated L,D,C in the Cholesky factorization
of Σ−1 satisfy the zero constraints: the zeros in the exogenous part (of C−1)
correspond to no-edges (covariance selection model), while zeros of L indicate
no directed edges from the endogenous variables to another endogenous, or from
an exogenous to an endogenous one.

The authors of [10] also investigate relation to Structural Equation Modelling
(SEM) and establish the following.
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Proposition 12 IfK is decomposed as in Proposition 10, then Y and X satisfy
the linear structural equations

AY +BX = ε,

where ε and X are independent Gaussian random vectors with covariance ma-
trices ∆ and C. Conversely, if Y and X satisfy the above structural equation,
further, if ε and X are independent with covariance matrices ∆ and C, and if
A is upper triangular with 1’s along its diagonal and ∆ is diagonal, then the
matrices A,B,C,∆ combine as in Proposition 10 to give K.

Note that A is not necessarily upper triangular, it is that only if the structural
equations are recursive. For more general setups see Jöreskog [9].

Some remarks are in order.

• A DAG has a topological ordering (j → i means i < j for all directed
edges). If the DAG does not contain any sink V, then the undirected
skeleton is triangulated, so decomposable, and has a perfect numbering
of its vertices (see Proposition 4). This perfect numbering is not unique,
but it can be the same as a topological ordering of the DAG. Further, in
lack of sink V’s, any topological ordering of the DAG gives the RZP. So
we may call a DAG decomposable if it does not contain sink V.

Consider a DAG which does not contain any sink V together with a
topological ordering of its vertices. The undirected skeleton G is tri-
angulated, so decomposable, and has a JT. The cliques of the JT of
G in the RIP ordering can be obtained as follows. Let us form the
Mi := {i} ∪ par(i) = cl(i) sets. They will be complete subgraphs (be-
cause G is triangulated). Delete those that are contained in another one.
The remaining Mi’s will be the cliques of the JT.

• If the DAG has sink V, then its moral graph is not necessarily triangulated.
Also note that even if a DAG has sink V’s, its skeleton can be triangulated,
so decomposable, and the adjacency matrix has an RZP in a convenient
labeling of the vertices. However, this labeling is not topological in the
original DAG, where the direction of the edges correspond to real causation
given by the real-life problem.

For example, let the directed adjacency matrix be

A =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 .

Then the upper diagonal part of A does not have the RZP, due to the sink
2→ 1← 3. However, the undirected skeleton of this DAG is triangulated,
so has a labeling of the vertices in which it has the RZP (for example, in
the 2,1,3,4 permutation of the vertices), but this ordering is not topological
in the DAG.

Note that when the DAG has sink V, then to that a triplet i → h ← j
corresponds with h < i < j and ahi 6= 0, ahj 6= 0, but aij = 0, see
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vertices 1,2,3 in the above A, in contrast to the definition of RZP (see
Proposition 4).

• Conversely: let us have a decomposable (triangulated) graph G, and a
perfect numbering of its vertices. Let us form a directed graph on the
same vertex set in the following way: consider a perfect numbering of the
vertices and for i < j we draw a j → i edge whenever i ∼ j in G. This
results in a DAG. The perfect numbering of the vertices of G also gives a
topological ordering of the DAG’s vertices.

For example, let the directed adjacency matrix be

A =


1 0 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 .

This DAG has no sink V’s, and the given topological labeling of the vertices
indeed defines the RZP.

• The message of Proposition 9 is that in lack of sink V’s, the skeleton
graph is Markov equivalent to the original recursive casual G, and it is
also decomposable if the undirected part of G is decomposable. So the
directed part can fully describe the independence statements if there are
no sink V’s in it.

The other message is that if the exogenous part is decomposable, then
the exogenous vertices can form the first cliques of a JT, and the others
are formed by the endogenous ones, in their reversed topological ordering.
So the topological ordering of the DAG gives the perfect ordering of its
decomposable skeleton, provided there are no sink V’s in it.

• In case of a DAG, the covariance selection means checking for ZPA-s
(zero partial associations/correlations) only of the restricted part of the
inverse covariance matrix (between a vertex and the higher labeled ver-
tices). These are not necessarily the same as the zeros of the whole covari-
ance matrix above the main diagonal (used for covariance selection in the
undirected graph). However, in lack of sink V’s, an RZP exists, in which
labeling of the vertices, the ZPA in the DAG and in the undericted graph
coincide, i.e., the zeros of A are the same as those in the upper-diagonal
part of Σ−1, in view of the Cholesky decomposition. Therefore, these
so-called decomposable graphs have the same ZPA, irrespective whether
they are directed or undirected.

• Write’s rule:

rij =
∑

k→i; j→k

βki.{i+1,...,d}rkj =
∑

k→i; j→k

βki|{i+1,...,d}\krkj

In the d = 3 case, if direct effect X3 → X1 and indirect effect X3 → X2 →
X1 are both present, then

r13 = β13|2 + β12|3r23
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is the sum of the direct and indirect effect. If the direct effect is close
to zero, then only the indirect effect X3 → X2 → X1 is present, and
X1⊥⊥X3|X2 holds, approximately.

On the other hand, the inditect effect (which is a product) can be zero
only if either X2⊥⊥X3 or X1⊥⊥X2|X3 holds (no effect reversal).

Going back to the more general case, [30] formulates more general statements
about the Markov equivalences of regression graphs. By [32] (page 11), two
different graphs are Markov equivalent if they define the same independence
structure. Some more notions are also needed. In a regression graph, above a
sink V, other types of so-called collision V’s exist. These are

◦- - - ◦ - - -◦, ◦ → ◦ ← ◦, ◦- - -◦ ← ◦.

Further, a collision path has as inner nodes exclusively collision nodes (like the
middle nodes in the above collision V’s), see [30] (page 222).

Theorem 6 (Theorem 1 of [30]) Two regression graphs are Markov equiva-
lent if and only if they have the same skeleton and the same set of collision Vs,
irrespective of the type of edge.

Note that a directed ‘sink’ pattern i → k ← j and an undirected pattern
i−k− j cannot be equivalent. Consequently, the ‘sink’ pattern should be filled-
in (i and j should be connected in the undirected version). Then they won’t
have the same skeleton, but they can be Markov equivalent.

Theorem 7 (Theorem 2 of [30]) A regression graph with a chordal graph for
the context variables can be oriented to be Markov equivalent to a DAG on the
same skeleton if and only if it does not contain any chordless collision path in
four nodes.

Note that only the following three types of chordless collision paths in four nodes
exist:

◦- - - ◦ - - - ◦ - - -◦, ◦ → ◦- - -◦ ← ◦, ◦- - - ◦ - - -◦ ← ◦

Then the authors of [30] (page 241) define an algorithm (Algorithm 1) for
labeling the vertices of a regression graph so that to obtain a Markov equivalent
DAG, provided it has a chordal concentration graph (for the context variables)
and has no chordless collision path on four nodes. Actually, they use the MCS
algorithm for the subgraph spanned by the context variables. These will have
the higher labels in the reversed RIP ordering. Then directed edges start from
higher number components to lower number ones, while within the components
the labeling is immaterial. All the collision V’s are replaced by sink V’s; and
when a dashed line in a component is replaced by an arrow, then they label the
endpoints such that the arrow is from a higher label to a lower label one if the
labels do not already exist. The authors prove (Lemma 1) that their Algorithm
1 generates a DAG that is Markov equivalent to the original regression graph.
Then for the DAG, the recursive linear regression of Section 3.4 can be applied,
possibly with linearizing formulas.
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4.3 Application

Based on the 2014’s Egypt Demographic and Health Survey (EDHS 2014), we
examined the effect of background characteristics on the ideal number of children
a family thinks manageable to have. The research question is: to what extent do
age and education level of married couples affect the conceivable ideal number
of children, through intermediate variables (wife’s age at first marriage, family’s
wealth index, total number of births a wife had, and use of contraception). The
focus is on a selected random sample of 626 urban married women aged 20-49
years. Figure 5 shows the opposite ordering of the variables as they are entered
into the model. The joint distribution of them is approximately multivariate
Gaussian, and their labeling is based on the expected relationships between the
variables based on the literature. The far right hand box includes the relevant
context variables. These are the background variables in the model: husband’s
and wife’s education level in years (for both X9 and X8, min = 0, max = 28);
husband’s age (X7; min = 20, max = 77) and wife’s age (X6; min = 20,
max = 49). The next box from the right contains the two intermediate variables,
woman’s age at the first marriage (X5; min = 10, max = 40) and the family
wealth index (X4; min = 1, max = 5). Moving to the next box, the secondary
responses are represented. These variables are the number of years the woman
has been using any contraception method (X3; min = 0, max = 28) and the
total number of births (X2; min = 0, max = 9). The first box on the left is the
primary response variable, the ideal number of children the family thinks to be
optimal (X1, min = 0, max = 11).
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Figure 5: Ordering of the variables as they enter into the model. The variables
are selected from the Egyptian ever-married women’s questionnaire of EDHS
2014 study.

To examine this model, we first build a regression graph based on the partial
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Figure 6: Regression graph of the model. Circles represent the examined con-
tinuous random variables.

correlation coefficients between the variables and their ancestors, see Figure 6.
The graph summarizes important aspects of the relationships between the vari-
ables. It represents the direct causality between some variables by an arrow that
goes directly from the explanatory variable pointing to the response. Indirect
relationships are represented by a sequence of arrows linking the explanatory
variable to an intermediate variable and then continuing to the response vari-
able. As shown in the graph, the context variable components, both age of the
married couples, and their education are connected to each other by a solid line
that means they are adjacent and influence each other. The intermediate vari-
ables in the secondary response components are connected with dashed lines if
they are marginally dependent, but are on equal standing.

Later, statistical regression analysis is conducted for the regression graph.
The regression results (see Tables 1, 2, 3, 4, 5) confirm the links in the plotted
regression graph, due to Corollary 1. The significance of variables in the tested
models show which variables are directly explanatory and which are important
for generating and predicting a response, and which ones affect only indirectly
the response.

The listed variables to the right of a response without an arrow pointing to
the response are not essential to improve the prediction of the response when
they are used in addition to the directly explanatory variables. As for the
conceivable ideal number of children (X1), only the number of births (X2) is
directly explanatory. The number of births is an important mediator between
the woman’s current age (X6), the family wealth index (X4), her age at first
marriage (X5) and the response (X1).

The results suggest that the woman’s age at first marriage is crucial, and
that it is strongly affected by her education. Well educated women are more
likely to be older at the first marriage. That reduces the number of births
the woman has had, and thus her conceivable ideal number of children. Some
of variables are indirectly explanatory. An arrow starts from an explanatory
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Explanatory variables Coeff Scoeff 

 

Std. Error 

 

Sig 

 Constant 2.427 

 

-- .358 .000 

X2, number of births -- .432 .044 .000 

X3, using contraception method. 

 
-- -.096 .008 .066 

X4, family wealth index -- -.018 .051 .661 

X5, woman age at first marriage -- .056 .013 .236 

X6, wife age -- -.126 .011 .098 

X7, husband age -- .045 .008 .512 

X8, wife education -- -.057 .011 .250 

X9, husband education -- -.040 .010 .374 

R2 = .38; The model:  X1 = 2.43 + .43 X2  

Table 1: Response X1, linear regression
 

 

 

 

 

 

 

 

 

 

Explanatory variables Coeff Scoeff 

 

Std. Error 

 

Sig 

 Constant 3.062 

 

-- .318 .000 

X4, family wealth index -- -.092 .047 .003 

X5, woman age at first marriage -- -.419 .011 .000 

X6, wife age -- .628 .010 .000 

X7, husband age -- -.082 .008 .112 

X8, wife education -- -.037 .011 .328 

X9, husband education -- -.053 .010 .132 

R2 = .46; The model:  X2 = 3.06 - .09 X4 - .42X5 + 0.63 X6  

Table 2: Response X2, linear regression
 

 

 

 

 

 

 

 

 

  

 

Explanatory variables Coeff Scoeff 

 

Std. Error 

 

Sig 

 Constant 3.97 

 

-- 1.678 .018 

X4, family wealth index -- .030 .251 .435 

X5, woman age at first marriage -- -.276 .058 .000 

X6, wife age -- .395 .052 .000 

X7, husband age -- -.003 .042 .960 

X8, wife education -- -.022 .055 .642 

X9, husband education -- -.081 .051 .058 

R2 = .21; The model:  X3 = 3.97 - .28 X5 + .40X6  

Table 3: Response X3, linear regression

variable and points, via a sequence of arrows, through intermediate variables,
to the response variable. For example, the husband’s education (X9) indirectly
affects the conceivable ideal number of children (X1). It directly affects the
family wealth index (X4), which, in turn, affects directly the number of births
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Explanatory variables Coeff Scoeff 

 

Std. Error 

 

Sig 

 Constant 3.14 

 

-- .183 .000 

X6, wife age -- .108 .007 .074 

X7, husband age -- -.037 .006 .543 

X8, wife education -- .389 .008 .000 

X9, husband education -- .075 .008 .005 

R2 = .19;  The model:  X4 = 3.14 + .39X8 + .08 X9   

Table 4: Response X4, linear regression
 

 

 

 

  

 

 

 

Explanatory variables Coeff Scoeff 

 

Std. Error 

 

Sig 

 Constant 15.58 

 

-- .796 .000 

X6, wife age -- .561 .032 .000 

X7, husband age -- -.428 .027 .000 

X8, wife education -- .240 .034 .000 

X9, husband education -- .130 .034 .002 

R2 = .21; The model: X5 = 15.58 + .56 X6  - .43X7 + .24X8 + .13 X9  

Table 5: Response X5, linear regression

(X2), while this, in turn, affects the conceivable ideal number of children (X1).

4.4 Further perspectives

Conditional independences and dependences are captured by regression graphs
if the generated distribution shares some properties with a multivariate Gaus-
sian distribution. After a thorough statistical analysis and applying Theorem 7
together with its construction, we construct a DAG. In the topological ordering
of the vertices, given by the construction of the theorem, instead of linear, lin-
earized, or logistic regression we take conditional expectation in a nonparametric
way, like the ACE (Alternating Conditional Expectation) algorithm [2]. Here
we need not alternate, we just take directed conditional expectations, see [8].

Say, we have a data set of cases x(i) that are multidimensional observations
with coordinates labeled as x(i) = (x

(i)
1 , . . . , x

(i)
d ), i = 1, . . . , n (we call it corpus).

We also have a DAG on d vertices constructed on the above way, based on the
corpus. Then a new case x(n+1) comes with missing variables, we know only
the last some coordinates of it. We never know the first coordinate, which is the
very target to be predicted, but we know at least the coordinates corresponding
to its context variables. So let 1 ≤ k < d be an integer, so that the last d − k
coordinates of our new case are known, and d − k is at least the number of
the context variables. Then to predict the first k coordinates, we successively
proceed as follows. First,

x
(n+1)
k := E(Xk |x(n+1)

k+1,...,d) = E(Xk |x(n+1)
par(k)),

where the second equality follows by Markovity. When k > 1, we proceed
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backward: for j = k − 1, k − 2, . . . , 1:

x
(n+1)
j := E(Xj |x(n+1)

j+1,...,d) = E(Xj |x(n+1)
par(j)).

If our data are from multivariate Gaussian distribution, then the above condi-
tional expectations are linear functions of the variables in the condition, and
are obtainable by linear regression (better to say, the coefficients are estimated
from the corpus). Otherwise, we take the conditional expectation in a nonpara-
metric way, by the smoothing algorithms discussed in [2]. We illustrate it with
a symmetric, bivariate kernel K that depends on some parameters and is also
translation invariant. The estimates are as follows.

x̂
(n+1)
k =

n∑
i=1

x
(i)
k K(x

(i)
par(k),x

(n+1)
par(k))/

n∑
i=1

K(x
(i)
par(k),x

(n+1)
par(k))

which is a Nadaraya–Watson type local averaging estimate, see [18, 27].

Then for j = k − 1, . . . , 1 we continue with

x̂
(n+1)
j =

n∑
i=1

x
(i)
j K(x

(i)
par(j),x

(n+1)
par(j))/

n∑
i=1

K(x
(i)
par(j),x

(n+1)
par(j)). (29)

In a greedy way, we could put the already existing estimates for the coordinates
j + 1, . . . , k of case n + 1 into the corpus, and then the summation for i goes
from 1 to n + 1. Likewise, if the next incomplete case n + 2 comes, we either
use the learning sample of n cases, or all of the n+ 1 cases before, etc.

In [2] and [8], other types of smoothings are also introduced, especially for
discrete (sometimes categorical) variables. So we could apply smoothings suc-
cessively for new-coming data through the corpus, and the selection of the kernel
should be automated.

If no regression graph is known, but the skeleton is triangulated, we can find
a junction tree, and make predictions from separators to residuals according to
the factorization

p(x) =

k∏
i=1

p(xRj
|xSj

),

where Equation (29) is applied to a multidimensional target.

Consider the ordering of the cliques, obeying the running intersection prop-
erty with cliques Cj , residuals Rj and separators Sj (indexed from the past to
the future), S1 = ∅ and R1 = C1. Assume that we have the coordinates of
x(n+1) corresponding to C1. Then

x
(n+1)
Rj

:= E(XRj |x
(n+1)
Sj

)

for j = 2, . . . , k, where k now denotes the number of cliques. Because of Cj =

Rj ∪ Sj , we so get x
(n+1)
Cj

and via marginalizing, the new x
(n+1)
Sj+1

is obtained.
In a nonparametric way, dropping the new-coming case into the corpus, for
j = 2, . . . , k we have the estimate

x̂
(n+1)
Rj

=

n∑
i=1

x
(i)
Rj
K(x

(i)
Sj
,x

(n+1)
Sj

)/

n∑
i=1

K(x
(i)
Sj
,x

(n+1)
Sj

).
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We plan to make the selection of the best kernel automatic, depending on the
type and the range of the variables The above algorithm is also applicable to time
series, mainly to Gauss–Markov processes, where the directions of the arrows
indicate not only causation but time sequence of the observations. Longitudinal
data can also be treated. We also plan to involve SEM and PLS techniques by
distinguishing between measurement and latent variables, see e.g., [24].
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Abbreviations

An(A) ancestral set of the vertex-set A, which is the smallest possible vertex-set (including A)
containing all vertices from where a directed path emanates to vertices of A in a
directed graph

ant(i) anteriors of the vertex i in a directed graphs (non-descendants except its parents)
bd(i) boundary of the vertex i (its neighbors in the undirected, and its parents in the

directed case)
BN Bayesian Network
CG Conditional Gaussian
cl(i) closure of the vertex i (it and its biundary)
DAG Directed Acyclic Graph
DF Directed Factorization Property
DG Directed Global Markov Property
DL Directed Local Markov Property
DP Directed Pairwise Markov Property
EDHS Egypt Demographic and Health Survey
iid independent identically distributed
IPS Iterative Proportional Scaling
JT Junction Tree
MCS Maximal Cardinality Search
ML Maximum Likelihood
MRF Markov Random Field
par(i) parents of the vertex i (from where directed edge shows to it) in a directed graph
pdf Probability Density Function
pmf Probability Mass Function
RCF Recursive Casual Factorization
RIP Running Intersection Property
rv random variable
RZP Reducible Zero Pattern
SEM Structural Equation Modeling
UF Undirected Factorization Property
UG Undirected Global Markov Property
UL Undirected Local Markov Property
UP Undirected Pairwise Markov Property
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