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Abstra
tThe relation between isoperimetri
 properties and Lapla
ian spe
-tra of weighted graphs is investigated. The verti
es are 
las-si�ed into k 
lusters with \few" inter-
luster edges of \small"weights (area) and \similar" 
luster sizes (volumes). For k = 2the Cheeger 
onstant represents the minimum requirement for thearea/volume ratio and it is estimated from above byp�1(2� �1),where �1 is the smallest positive eigenvalue of the weighted Lapla-
ian. For k > 2 we de�ne the k-density of a weighted graphthat is a generalization of the Cheeger 
onstant and estimatedfrom below by Pk�1i=1 �i and from above by 
2Pk�1i=1 �i, where0 < �1 � � � � � �k�1 are the smallest Lapla
ian eigenvalues andthe 
onstant 
 > 1 depends on the metri
 
lassi�
ation proper-ties of the 
orresponding eigenve
tors. Lapla
ian spe
tra are alsorelated to 
anoni
al 
orrelations in a probabilisti
 setup.
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2 MARIANNA BOLLA, G�ABOR MOLN�AR-S�ASKA1. Introdu
tionLet G = (V;W) be a weighted graph, where V = f1; : : : ; ng is the vertex set andWis the n�n symmetri
 weight matrix of the edges with nonnegative entries and zerodiagonal. We assume that Pni=1Pnj=1 wij = 1 (this restri
tion does not in
uen
ethe eigenvalues investigated later on). We set di =Pnj=1 wij , i = 1; : : : ; n. Let then� n diagonal matrix D 
ontain the entries d1; : : : ; dn in its main diagonal. If thegraph G is 
onne
ted then 
learly, 0 < di < 1=2 for all i.The following optimization problems arise when we want to 
lassify the verti
esinto k 
lusters.(a) Embedding problem (dis
ussed thoroughly in [2℄): We are looking for optimalk-dimensional representatives x1; : : : ;xn 2 Rk (1 < k � n) of the verti
es su
hthat the minimum of the quadrati
 obje
tive fun
tion(1:1) L(X) = n�1Xi=1 nXj=i+1 kxi � xjk2wijis attained on the 
onstraint(1:2) XDXT = Ik;where the k � n matrix X = (x1 : : :xn) 
ontains the representatives in its
olumns. The solution of the problem is as follows. The matrix C = D�W isthe Lapla
ian, while CD = D�1=2CD�1=2 = In�D�1=2WD�1=2 is the weightedLapla
ian of G. Both are symmetri
, positive semide�nite matri
es, the numberof their zero eigenvalues is equal to the number of 
onne
ted 
omponents of G.Suppose that G is 
onne
ted. Then the eigenvalues of CD are0 = �0 < �1 � �2 � � � � � �n�1 � 2in in
reasing order with 
orresponding orthonormal system of eigenve
tors (
ol-umn ve
tors) u0;u1;u2; : : : ;un�1:If �k�1 < �k then the minimum of (1.1) on (1.2) is attained with the 
hoi
eX = (u0 : : :uk�1)TD�1=2 and the minimum is equal toPk�1j=1 �j . If the zero is asingle eigenvalue, then the �rst 
oordinate of ea
h representative is 1 and hen
e,the representatives are in fa
t of k � 1 dimension.(b) Probabilisti
 setup (
onditional expe
tation and 
anoni
al 
orrelations): NowWis regarded as a joint distribution on a �nite produ
t probability spa
e. It willbe shown that the eigenvalues of the 
onditional expe
tation operator are thenumbers 1 > r1 � � � � � rn�1, where ri = 1 � �i and they are the so-
alled
anoni
al 
orrelations of the 
orresponden
e analysis. Here r1 maximizes the
orrelation between the two underlying dis
rete variables and it is the maximal
orrelation introdu
ed by R�enyi [14℄. The obje
tive fun
tions in (a) and (b) are
losely related, as well as the L2-norm minimum and maximum obtained fromthem.(
) Isoperimetry (k=2): The Cheeger 
onstant introdu
ed in [6℄ �nds L1-norm min-imum of an analogous obje
tive fun
tion in terms of the vertex representationin (a). The minima of (a) and (
) are 
ompared in Se
tion 3.



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 3(d) Probabilisti
 setup (
onditional probability): With the notation of (b) we �ndthe minimum of some 
onditional probabilities. An interesting result followsin 
omparison to (b) analogously to the results obtained as (a) and (
) are
ompared.(e) Isoperimetry (generalization of the Cheeger 
onstant for k > 2): As an extensionof (
) we de�ne the weighted k-density �k and estimate it with the sum of thek � 1 smallest positive Lapla
ian eigenvalues.The main purpose of the paper is to summarize and 
ompare the above frequentlyused optimization problems. New results are the 
omparisons of di�erent types ofproblems and the part (e).2. Conditional expe
tation and 
anoni
al 
orrelationsLet W denote the joint probability distribution of two dis
rete random variablestaking on at most n di�erent values. (Tipi
ally, they are 
ategori
al variables, su
has eye-
olor, hair-
olor, that have no preassigned values.) Suppose that the n � nmatrix W is symmetri
 and it has zero diagonal. Therefore, the two marginaldistributions are the same: d1; : : : ; dn, the diagonal of the matrix D of Se
tion 1.Sometimes, D also refers to the marginal. With this notations, the matrix form ofthe operator taking 
onditional expe
tation between the Hilbert spa
es L2(V;A; D)and L2(V;A0; D) with respe
t to the joint distribution W is just In � CD. (HereL2(V;A; D) is the set of random variables with �nite varian
e on the probabilityspa
e (V;A; D), where both A and A0 are the indu
ed �-algebras by V , but we aregoing to use di�erent notation for the two 
opies belonging to the two marginals.)To show this, let X be a random variable on L2(V;A; D) taking on values x1; : : : ; xnwith respe
tive probabilities d1; : : : ; dn and satisfying the 
onditions:(2:1) E(X) = nXi=1 xidi = 0; Var (X) = nXi=1 x2i di = 1:(E and Var stand for the expe
tation and varian
e of a random variable, respe
-tively.) Put Y = EW (XjA0) and suppose that Y takes on values y1; : : : ; yn. Thenyi = nXj=1 wijdi xj = nXj=1 wijpdipdj xjpdjpdi ;and hen
e, pdiyi = nXj=1 wijpdipdj (pdjxj):With the notations x = (x1; : : : ; xn)T , u = D1=2x, y = (y1; : : : ; yn)T , and v =D1=2y we have v = D�1=2WD�1=2u;where kuk2 =Pni=1(pdixi)2 = 1 and obviously, D�1=2WD�1=2 = In �CD.The largest eigenvalue of D�1=2WD�1=2 is 1 with eigenve
tor (pd1; : : : ;pdn)T(its Eu
lidean norm is 1), while the other eigenvalues are less then 1 and the 
orre-sponding eigenve
tors are orthogonal to (pd1; : : : ;pdn)T . So, denoting by u su
h



4 MARIANNA BOLLA, G�ABOR MOLN�AR-S�ASKAan eigenve
tor, the 
oordinates of x = D�1=2u will satisfy the 
onditions (2.1), inother words, x is a harmoni
 eigenve
tor.Let 1 = r0 > r1 � r2 � � � � � rn�1 � �1denote the eigenvalues of D�1=2WD�1=2 in de
reasing order.It is easy to see that �i = 1 � ri (i = 0; : : : ; n � 1). Note that r1 is the max-imum 
orrelation. The 
orresponding eigenve
tors are the same as in Se
tion 2:u0;u1; : : : ;un�1 in this order. In [3℄, it was shown that ri-s are 
orrelation-likequantities. For them, jrij � 1 holds, therefore 0 � �i � 2, i = 0; : : : ; n� 1. In 
aseof 0-1 weights �n�1 = 2 is attained if and only if G is bipartite.The se
ond largest eigenvalue r1 and the 
orresponding eigenve
tor u1 
an befound by the spe
tral de
omposition of the matrix D�1=2WD�1=2. Finally, theharmoni
 eigenve
tor is obtained by the transformation D�1=2u1. This eigenve
torof the 
onditional expe
tation operator 
an be also determined by the so-
alled ACE(Alternating Conditional Expe
tation) algorithm of [4℄. The algorithm developedby Breiman and Friedman starts with an X satisfying (2.1), it 
al
ulates Y =EW (XjA0), and statndardizes it. Let Y 0 denote the standardized Y , take X 0 =EW (Y 0jA), and so on : : : If W is symmetri
 then the series of the so 
onstru
ted
onse
utive standardized Xs and Y s both 
onverge to the harmoni
 eigenve
torbelonging to r1.Now, let us investigate the obje
tive fun
tions the maximum/minimum of whi
his found by the algorithm. In [3℄, it was proved that the following two tasks areequivalent:(2:2) supX;Y 2L2(V;A;D) i.d.E(X)=0Var (X)=1 EWXY = r1;where i.d. means identi
ally distributed random variables. The supremum is at-tained for the X;Y pair both taking on values x1; : : : ; xn (the 
oordinates of theharmoni
 eigenve
tor ofD�1=2WD�1=2) with probabilities d1; : : : ; dn, and the jointdistribution of them is W, while r1 is the symmetri
 maximal 
orrelation.
(2:3) infX;Y 2L2(V;A;D) i.d.E(X)=0 EW kX �X 0k2Var (X) = infX;Y 2L2(V;A;D) i.d.E(X)=0Var (X)=1 EWkX �X 0k2 =infX;Y 2L2(V;A;D) i.d.E(X)=0Var (X)=1 nXi=1 nXj=1 kxi � xjk2wij = 2�1;where the in�mum is attained for the same X as the supremum in (2.2), and�1 = 1� r1 is the smallest positive eigenvalue of CD. Here both X and Y take onvalues x1; : : : ; xn, as in (2.2), their joint distribution being W. �1 also gives theminimum of L(X) in (a).In fa
t, the equivalen
e of the two statements 
an be proven in a more generalform for an appropriate joint distribution (the matrix W is neither symmetri
 nor



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 5square, so the two marginals are di�erent). The maximum possible 
orrelationof the zero-expe
tation, one-varian
e fa
tor pairs is also 
alled maximal 
orrela-tion. R�enyi [14℄ uses the notion for 
ontinuous distributions, too. More exa
tly, helooks for maximum 
orrelated fun
tions of two random variables with a given jointdistribution.The pro
ess 
an be 
ontinued. On the one hand, after �nding the maximum
orrelated pair, we look for the next pair, that are un
orrelated to the previousones, and have the possible largest 
orrelation, et
. In this way, we 
an 
hoose asmany pairs as the rank of the matrix 
ontaining the joint probabilities (in
ludingthe trivial pair with 1 
orrelation). This pro
ess is the so-
alled 
orresponden
eanalysis used in multivariate statisti
s. The maximum 
orrelated pairs are 
alled
orresponden
e fa
tors. With formulas(2:4) supX;Y 2L2(V;A;D) i.d.E(X)=0Var (X)=1Cov (X;Xi)=0; (i=1;:::;k�1)Cov (Y;Yi)=0; (i=1;:::;k�1) EWXY = rk (k = 1; : : : ; rank (W));
where the pair (Xi; Yi) gives the supremum in the ith step (X0 and Y0 are 
onstantly1). In the kth step the supremum is attained for the pair (Xk; Yk) taking on thesame values with probabilities d1; : : : ; dn, and the joint distribution of them is W,while rk is the kth 
anoni
al 
orrelation.The 
orresponding in�mum problem is just (1.1) based on the k-dimensionalrepresentatives xis.On the other hand, the values taken on by the 
orresponden
e fa
tor pairs alsogive rise to an Eu
lidean representation of the variable 
ategories. If the �rst kfa
tors { with the largest possible 
orrelations { are used for the representationthen we obtain a k-dimensional representation of the variable 
ategories that isequivalent to the k-dimensional representation of the weighted graph G in part (a)of Se
tion 1. Numeri
ally, the transformed (by D�1=2) eigenve
tors 
orrespondingto the k � 1 smallest positive eigenvalues of the weighted Lapla
ian CD are usedfor the representation that are identi
al to the harmoni
 eigenve
tors of the 
ondi-tional expe
tation operator belonging to its k� 1 largest (ex
luding the number 1)eigenvalues. This representation is widely used in the 
orresponden
e analysis forthe visual illustration of the variable 
ategories.



6 MARIANNA BOLLA, G�ABOR MOLN�AR-S�ASKA3. The isoperimetri
 number and �1.Now, let us turn to L1-based minima. For graphs, there are 
ombinatorial mea-sures (e.g., edge density in [12℄, minimal weighted 
ut in [3℄, isoperimetri
 numberand Cheeger 
onstant in [1℄, [5℄, [6℄, [7℄, [9℄, [10℄) that indi
ate the two-
lusteringproperties of the graph. The so-
alled Cheeger 
onstant de�ned for the weightedgraph G = (V;W) 
an be best 
ompared to the smallest positive eigenvalue of theweighted Lapla
ian CD:(3:1) h = minU�VVol (U)�1=2 Pi2UPj2 �U wijVol (U)where Vol (U) = Pi2U di is the weight sum of edges with at least one endpointin U , while the numerator 
ontains the weight sum of edges with one endpointin U and other endpoint in �U . Therefore, h � 1 is trivial. Note that h 
an be\small" if \low-weight" edges 
onne
t together two disjoint vertex-sets with \notsigni�
antly" di�ering volumes; therefore, h re
e
ts the 
lustering ability of thegraph.In the framework of joint distributions, h 
an be formulated byh = minB�R Borel-setX;Y 2L2(V;A;D) i.d.PD(X2B)�1=2 PW (Y 2 �BjX 2 B) = minU�VVol (U)�1=2EW (� �U j�U );where X and Y are identi
ally distributed (their values are immaterial here), andtheir joint distribution is given by W , while �U is the indi
ator random variablebelonging to the set U .In [7℄ it is proved that with our notationsh = minX2L2(V;A;D)X is not 
onstantmax
2R Pn�1i=1 Pnj=i+1 jxi � xj jwijPni=1 jxi � 
jdi= 12 minX;Y 2L2(V;A;D) i.d.X is not 
onstant max
2R EW jX � Y jEDjX � 
j :If we take advantage of the fa
t that the median of X minimizes the expe
tationEDjX � 
j in 
, we 
an simplify the above formula to(3:2) h = 12 minX;Y 2L2(V;A;D) i.d.X is not 
onstant EW jX � Y jEDjX �medX j ;the denominator 
ontaining the absolute deviation of X from its median, medX .Thus (3.2) is the L1-norm analog of the L2-norm based minimum problem in (2.3).Utilizing this analog, the following proposition 
an easily be proved.Proposition 3.1. Let G = (V;W) be a weighted graph. The diagonal matrix D andthe weighted Lapla
ian CD are de�ned as in Se
tion 2. Let �1 denote the smallestpositive eigenvalue of CD with harmoni
 eigenve
tor x�. Let X� 2 L2(V;A; D) be



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 7a random variable with range ve
tor x� taking on values with the diagonal entriesof D. Then the Cheeger 
onstant h of G satis�esh � p�1p2EDjX� �medX� jwith medX� being the median of X�.A dire
t relation between h and �1 are stated in the following theorem. Similarstatements are proved in [7℄ and [12℄ for unweighted graphs. To be self-
ontained,we in
lude the proof of this theorem.Theorem 3.2. Let G = (V;W) be a weighted graph. If h denotes its Cheeger
onstant and �1 is the smallest positive eigenvalue of its weighted Lapla
ian CDthen �12 � h � minf1;p2�1gholds true. If �1 � 1 then the upper estimate 
an be improved toh �p�1(2� �1):Proof. With the notations used throughout the paper, �1 is the smallest positiveeigenvalue of CD, and x� is a harmoni
 eigenve
tor belonging to it.Lower bound. It follows easily by the optimum property of �1 and x�. Let U�denote a vertex-subset at whi
h the minimum of (3.1) is attained. Thus Vol (U�) �1=2 holds. Let us de�ne the following representation of the verti
es:xi := � 1=Vol (U�); if i 2 U��1=Vol ( �U�); if i 2 �U� :Then (2.3) gives that�1 � Pn�1i=1 Pnj=i+1(xi � xj)2wijPni=1 x2i di = Pi2U�Pj2 �U� � 1Vol (U�) + 1Vol ( �U�)�2 wij1Vol (U�) + 1Vol ( �U�)� Vol (U�) + Vol ( �U�)Vol (U�)Vol ( �U�) Xi2U� Xj2 �U�wij � 2Pi2U�Pj2 �U� wijVol (U�) = 2h;whi
h implies �1=2 � h.Upper bound. Let x� be a harmoni
 eigenve
tor of CD belonging to �1 dire
tedsu
h that Xi: x�i<0 di � Xi:x�i�0 di:To simplify notation we drop � from x� from now on. We rearrange the 
oordinatesof x in in
reasing order:x1 � � � � � xr�1 < 0 � xr � � � � � xn:
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tually, we took advantage of the fa
t that there are both negative and positivenumbers among the 
oordinates. Say, the number of stri
tly negative 
oordinatesis r � 1, r � 2. The vertex set V = f1; : : : ; ng is rearranged, a

ordingly. PutV� := f1; : : : ; r � 1g and V+ := fr; : : : ; ng. By the above assumption, for the
oordinates of x we have that(3:3) r�1Xi=1 di � nXi=r di:Set y := x+, that is the 
oordinates of the ve
tor y areyi = � xi; if xi � 00; otherwise.We shall 
hoose spe
ial two-partitions of the rearranged vertex-set indu
ed bythe subsets Uk = fk; : : : ; ng and put(3:4) 
k = Xi2Uk Xj2 �Uk wij ; (k = 2; : : : ; n):Obviously,(3:5) h � 
 = min2�k�n 
kminfVol (Uk);Vol ( �Uk)g :We remark that in view of (3.3), the relation(3:6) minfVol (Uk);Vol ( �Uk)g = Vol (Uk) = nXi=k di for k = r; : : : ; nis valid.As x is a harmoni
 eigenve
tor of CD = In�D�1=2WD�1=2 with eigenvalue �1,�1Dx = Dx�Wxholds, equivalently for the 
oordinates(3:7) �1dixi = dixi � nXj=1wijxj = nXj=1wij(xi � xj); (i = 1 : : : ; n):Multiplying both sides of (3.7) by xi and summing up for indi
es i 2 V+ we getthat �1 Xi2V+ dix2i = Xi2V+ xi nXj=1wij(xi � xj);or equivalently,(3:8) �1 = Pi2V+ xiPnj=1 wij(xi � xj)Pi2V+ dix2i = APni=1 diy2i :



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 9We shall estimate the numerator (A) from below as follows:
A = Xi2V+ Xj2V+wijxi(xi � xj) + Xi2V+ Xj2V� wijxi(xi � xj)= Xi2V+; j2V+i>j [wijxi(xi � xj) + wjixj(xj � xi)℄++ Xi2V+ Xj2V� wijx2i � Xi2V+ Xj2V� wijxixj(1)= Xi2V+; j2V+i>j wij(xi � xj)2 + Xi2V+ Xj2V�wijy2i � Xi2V+ Xj2V� wijxixj(2)� Xi2V+; j2V+i>j wij(yi � yj)2 + Xi2V+ Xj2V�wij(yi � yj)2(3)= Xi2V+Xj<i wij(yi � yj)2 = 12 nXi=1 nXj=1wij(yi � yj)2:

In the steps (1) and (2) we used the fa
t that yi is equal to xi on V+ and 0 on V�.We de
reased the expression between the two steps by �Pi2V+Pj2V� wijxixj thatis a nonnegative quantity due to the di�erent signs of xi and xj for indi
es i 2 V+and j 2 V�. In the step (3) we utilized that for su
h indi
es i > j automati
allyholds true. We also used the symmetry of W several times.Now, let us go ba
k to (3.8). Using the lower estimate for A we get that
(3:9) �1 � 12Pni=1Pnj=1 wij(yi � yj)2Pni=1 diy2i = Q:
The quantityQ de�ned above will be important later when we improve the estimate.



10 MARIANNA BOLLA, G�ABOR MOLN�AR-S�ASKAQ will be further de
reased as follows.Q = 12 hPni=1Pnj=1 wij(yi � yj)2i � hPni=1Pnj=1 wij(yi + yj)2iPni=1 diy2i � hPni=1Pnj=1wij(yi + yj)2i= 12 hPni=1Pnj=1wij jyi � yj j2i � hPni=1Pnj=1wij jyi + yj j2iPni=1 diy2i � hPni=1Pnj=1 wij(yi + yj)2i� 12 hPni=1Pnj=1wij jyi � yj j � jyi + yj ji2Pni=1 diy2i � hPni=1Pnj=1wij(yi + yj)2i= 12 hPni=1Pnj=1wij jy2i � y2j ji2Pni=1 diy2i � hPni=1Pnj=1wij(yi + yj)2i2= 12 h2Pi>j wij jy2i � y2j ji2Pni=1 diy2i � hPni=1Pnj=1wij(yi + yj)2i= 2 hPi>j wij(y2i � y2j )i2Pni=1 diy2i � hPni=1Pnj=1wij(yi + yj)2i = 2A21B :(3:10)
In the third line we used the Cau
hy{S
hwarz inequality for the expe
tation ofrandom variables jY � Y 0j and jY + Y 0j with joint distribution W (Y and Y 0 areidenti
ally distributed with range ve
tor y).To estimate A1 from below, we shall use the fa
t that yi � yj for i > j and writethe members y2i � y2j as a teles
opi
 sum:y2i � y2j = (y2i � y2i�1) + � � �+ (y2j+1 � y2j ) for i > j:By this,A1 =Xi>j wij(y2i � y2j ) = nXk=2(y2k � y2k�1) Xi�k>jwij (4)= nXk=2(y2k � y2k�1)
k= nXk=r(y2k � y2k�1)
k (5)� nXk=r(y2k � y2k�1)
 nXi=k di � nXk=r(y2k � y2k�1)h nXi=k di= h nXk=r(y2k � y2k�1) nXi=k di (6)= h nXk=r y2kdkwhere in (4) we used the de�nition of 
k, in (5) the relations (3.5) and (3.6) wereexploited, while in (6) a partial summation was performed.



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 11The denominator B is estimated from above:B = nXi=1 diy2i � 24 nXi=1 nXj=1wij(yi + yj)235 � nXi=1 diy2i � 24 nXi=1 nXj=1wij(2y2i + 2y2j )35= nXi=1 diy2i � 4 nXi=1 y2i di = 4 nXi=1 y2i di!2 :There remains to 
olle
t the terms together:�1 � 2A21B � 2h2 �Pnk=1 y2kdk�24 (Pni=1 y2i di)2 = h22 ;and so, the upper estimate h � p2�1 follows.We 
an improve this upper bound by using the exa
t value of B and going ba
kto (3.9) that implies nXi=1 nXj=1wij(yi � yj)2 = 2Q nXi=1 diy2i :An equivalent form of B isB = nXi=1 diy2i � 24 nXi=1 nXj=1wij(yi + yj)235 = nXi=1 diy2i � 24 nXi=1 nXj=1wij(2y2i + 2y2j � (yi � yj)2)35= nXi=1 diy2i � 244 nXi=1 y2i di � nXi=1 nXj=1wij(yi � yj)235 = 2 nXi=1 diy2i!2 (2�Q):Starting the estimation of Q at (3.10) and 
ontinuing with the B above, yieldsQ � 2A21B � 2 h2(Pnk=1 y2kdk)22(Pni=1 diy2i )2(2�Q) = h22�Q:By (3.9), Q is non-negative implyingQ � h22�Q or equivalently, 1�p1� h2 � Q � 1 +p1� h2:Summarizing, we derive that�1 � Q � 1�p1� h2 or equivalently, p1� h2 � 1� �1:For �1 > 1 this is a trivial statement. For �1 < 1 it implies that h �p�1(2� �1) <1 while for �1 = 1 we get the trivial bound h � 1. This �nishes the proof. �In terms of the symmetri
 maximal 
orrelation the result of Theorem 3.2 
an bewritten in an equivalent form as follows.



12 MARIANNA BOLLA, G�ABOR MOLN�AR-S�ASKACorollary 3.3. Let W be a symmetri
 joint distribution of two dis
rete randomvariables taking on at most n di�erent values. If the symmetri
 maximal 
orrelation(r1 of Se
tion 3) is non-negative then the estimation(3:11) 1� r12 � minB�R Borel-setX;Y 2L2(V;A;D) i.d.PD(X2B)�1=2 PW (X 0 2 �BjX 2 B) �q1� r21holds.Proof. Sin
e �1 = 1 � r1, the lower bound trivially follows. r1 � 0 implies that�1 � 1, so the improved upper bound of Theorem 4.2 be
omes p(1� r1)(1 + r1).This �nishes the proof. �Consequently, the symmetri
 maximal 
orrelation somehow regulates the min-imum 
onditional probability that provided a random variable takes values in a
ategory set (with probability less than 1/2) then another one with the same distri-bution (their joint distribution is given by W) will take values in the 
omplement
ategory set. In parti
ular, if r1 is the eigenvalue of I�CD with the largest abso-lute value (apart from 1), then r1 is the usual maximal 
orrelation, and in this 
aseinequality (3.11) also holds for it.4. k-density, a generalization of the isoperimetri
 numberWe 
an generalize the notion of the Cheeger 
onstant for k � 2. Let Pk =(V1; : : : ; Vk) be a given k-partition. The k-density of Pk is de�ned as�(Pk) = k�1Xl=1 kXm=l+1� 1V ol(Vl) + 1V ol(Vm)�w(Vl; Vm);where for l 6= m we set w(Vl; Vm) =Pi2VlPj2Vm wij , and let�k = minPk2Pk �(Pk)be the k-density of G, where Pk denotes the set of all possible k-partitions intodisjoint, non-empty subsets of a set of 
ardinality n. (The 
ardinality of Pk is theStirling number of se
ond order.)It is easy to see that �k punishes k-partitions with \many" inter-
luster edges of\large" weights and with \strongly" di�ering volumes. Further, �2 � 2h. The quan-tity �2 was also introdu
ed in Mohar [12℄ for ordinary graphs (with 0-1 weights).Theorem 4.1. Suppose that G = (V;W) is 
onne
ted. With the notations of theprevious se
tions k�1Xi=1 �i � �kand in the 
ase when the optimal k-dimensional representatives 
an be 
lassi�ed intok well-separated 
lusters in su
h a way that the maximum 
luster diameter " satis�es



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 13the relation " � minf1=p2k;p2minippig { where pi = V ol(Vi), i = 1; : : : ; k, withk-partiton (V1; : : : ; Vk) indu
ed by the 
lusters above { then�k � 
2 k�1Xi=1 �i;where 
 = 1 + "
0=(p2� "
0) and 
0 = 1=minippi.Proof. Lower bound. Let P �k = (V �1 ; : : : ; V �k ) be a k-partition with �(P �k ) = �k andX = (x1; : : : ;xn) be the following representation:xij = � 1=pV ol(V �i ); if j 2 V �i ;0; otherwise,where xijs are the entries of X. In this representation the obje
tive fun
tion (1.1)be
omes L(X) = �k(P �k ), but this is greater than or equal to Pk�1i=1 �i, latter onebeing the minimum of L(X) that �nishes the proof of the �rst part.Upper bound. To prove the reversed statement, let Pk = (V1; : : : ; Vk) be a k-partition obtained by k-means 
lassi�
ation of the optimal k-dimensional Eu
lideanrepresentatives, x�1; : : : ;x�n (their �rst 
oordinates are identi
ally 1). As they fallinto k well-separated 
lusters (the maximum 
luster diameter being less than orequal to the minimum distan
e of x�j s of di�erent 
lusters), the Ma
Queen method[11℄ 
onverges to a unique solution. A

ording to our assumption" = maxi�j kx�i � x�jk � minf 1p2k ;p2mini ppig;where the relation i � j denotes that the verti
es i and j belong to the same 
luster.The representatives satisfy the 
ondition: Pnj=1 djx�jx�j T = X�DX�T = Ik.Let �x(i) denote the 
enter of the ith 
luster:�x(i) = 1pi Xj2Vi djxj ; i = 1; : : : ; k:Furthet, let yi denote the k-dimensional ve
tor with 
oordinates(4:1) yij = � 1=ppi; if j 2 Vi;0; otherwise,and Y =: (y1; : : : ;yk). In fa
t, with P = diag (p1; : : : ; pk) the relation Y = P�1=2holds. Let R be a k � k orthogonal matrix. With the notations y0i = Ryi andY0 = RY we are looking for a systemY0 su
h that y0i is \
lose" to the 
luster 
enter�x(i) for i = 1; : : : ; k. To this end, we use the so-
alled MANOVA (MultivariateANalysis Of VArian
e) de
omposition of the k � k 
ovarian
e matrix of x�j s intowithin-
lusters and between-
lusters 
ovarian
es (the mean of the 
omponents ofx�j s is zero ex
ept the �rst one that is identi
ally 1, but it will not 
ontribute to thevarian
es):(4:2) nXj=1 djx�jx�j T = kXi=1 Xj2Vi dj(x�j � �x(i))(x�j � �x(i))T + kXi=1 pi�x(i)�x(i)T ;
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y,(4:3) Ik = kXi=1Ai +B = A+B;where Ai = Pj2Vi dj(x�j � �x(i))(x�j � �x(i))T , i = 1; : : : ; k. Here trAi is the k-varian
e of representatives in 
luster i, therefore trAi � P
(j)=i dj"2 = pi"2, andtrA = Pki=1 trAi � "2. As A is symmetri
, positive semide�nite, its maximumeigenvalue is at most "2. So, A will be regarded as a perturbation on B. Thematrix B = Ik � A is also positive semide�nite and by the Weyl's perturbationtheory it follows that denoting by �1; : : : �k its eigenvalues, for them the relation(4:4) 0 � 1� �i � "2; i = 1; : : : ; kholds. With the notation �X = (�x(1); : : : ; �x(k)) our matrix B is equal to �XP �XT .Now, let us �nd su
h an R that with (y01; : : : ;y0k) = RY the sumPki=1 pik�x(i) � y0ik2 be the least possible.kXi=1 pik�x(i) � y0ik2 = tr ( �X�RY)P( �X�RY)T= tr �XP �XT + trRYPYTRT � 2tr �XPYTR � kXi=1 �i + k � 2 kXi=1 si;(4:5)
where s1; : : : sk are the singular values of the matrix �XPYT . I.e., the �rst term istrB, the se
ond is tr Ik, while to the third one the following theorem is appli
able.With our notations, tr �XPYTR is maximum (with respe
t to R) if the matrix�XPYTR is symmetri
 and the maximum is equal to the sum of the singular valuesof �XPYT . By 
hoosing su
h an R, equality 
an be attained. Taking into a

ountthat ( �XPYT )( �XPYT )T = �XPYTYP �XT = �XPP�1P �XT = �XP �XT = B;the eigenvalues of B 
an be enumerated in su
h an order that �i = s2i , i = 1; : : : ; k.But we saw that s2i is of order 1�"2, therefore via Taylor's expansion 1�si � "22 + "44is a good approximation. Hen
e, with the 
hoi
e of R giving equality in (4.5) wehave thatkXi=1 pik�x(i) � y0ik2 = kXi=1 s2i � k + 2k � 2 kXi=1 si = kXi=1(s2i � 1) + 2 kXi=1(1� si) � 2k"4that is less than "2 provided that " � 1=p2k holds. Consequently, pik�x(i)�y0ik2 �"2 and k�x(i) � y0k � "
0.Let the y0i nearest to �x(i) be denoted by y(x�j ) for every js in Vi (thus y(x�j ) = y0i,8 j 2 Vi). Let Æ denote the minimum distan
e between the di�erent y0is, that isÆ = minl6=m ky0l � y0mk = minl6=m kyl � ymk = minl6=mr 1pl + 1pm � p2:



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 15With them,�k � �(V1; : : : ; Vk) = L(y(x�1); : : : ;y(x�n)) = n�1Xi=1 nXj=i+1wijky(x�i )� y(x�j )k2� n�1Xi=1 nXj=i+1wij(
kx�i � x�jk)2 � 
2 n�1Xi=1 nXj=i+1wijkx�i � x�jk2= 
2L(x�1; : : : ; x�n) = 
2 k�1Xi=1 �i;where 
 = ÆÆ � "
0 = 1 + "
0Æ � "
0 � 1 + "
0p2� "
0 ;that implies our statement. �The �rst part of the theorem gives �1 � �2 � 2h for k = 2; therefore, italso implies the lower estimate of the Cheeger 
onstant. The 
onstant 
 of these
ond part is greater than 1, and it is the 
loser to 1, the smaller " is. The latterrequirement is satis�ed if there exists a \very" well-separated k-partition of thek-dimensional Eu
lidean representatives. From the above theorem, we 
an also
on
lude that the gap in the spe
trum is a ne
essary but not a suÆ
ient 
onditionof a good 
lassi�
ation. In addition, the Eu
lidean representatives should be well
lassi�ed in the appropriate dimension.A
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