ISOPERIMETRIC PROPERTIES OF WEIGHTED
GRAPHS RELATED TO THE LAPLACIAN
SPECTRUM AND CANONICAL CORRELATIONS

MARIANNA BoLLA, GABOR MOLNAR-SASKA

Institute of Mathematics, Budapest University of Technology and Economics
1521 Budapest, P.O.Box 91. Bldg. H. V/7. Hungary,
e-mail: marib@math.bme.hu, molnar@math.bme.hu

Abstract

The relation between isoperimetric properties and Laplacian spec-
tra of weighted graphs is investigated. The vertices are clas-
sified into k clusters with “few” inter-cluster edges of “small”
weights (area) and “similar” cluster sizes (volumes). For k = 2
the Cheeger constant represents the minimum requirement for the
area/volume ratio and it is estimated from above by /\1(2 — A1),
where \; is the smallest positive eigenvalue of the weighted Lapla-
cian. For k£ > 2 we define the k-density of a weighted graph
that is a generalization of the Cheeger constant and estimated
from below by Zif:ll A; and from above by c? Zf:_ll i, where
0 < Ay <:-+ < A1 are the smallest Laplacian eigenvalues and
the constant ¢ > 1 depends on the metric classification proper-
ties of the corresponding eigenvectors. Laplacian spectra are also
related to canonical correlations in a probabilistic setup.
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Introduction

Let G = (V, W) be a weighted graph, where V' = {1,...,n} is the vertex set and W
is the n x n symmetric weight matrix of the edges with nonnegative entries and zero
diagonal. We assume that i ; 37 w;; = 1 (this restriction does not influence

the eigenvalues investigated later on). We set d; = >

?:1 wij, i =1,...,n. Let the

n X n diagonal matrix D contain the entries di,...,d, in its main diagonal. If the
graph G is connected then clearly, 0 < d; < 1/2 for all 1.

The following optimization problems arise when we want to classify the vertices

into k clusters.

(a)

(b)

(c)

Embedding problem (discussed thoroughly in [2]): We are looking for optimal
k-dimensional representatives x1,...,X, € RF (1 < k < n) of the vertices such
that the minimum of the quadratic objective function

(L1) LX) =3 3 [ xPus

i=1 j=i+1
is attained on the constraint
(1.2) XDXT =14,
where the £ X n matrix X = (x1...x,) contains the representatives in its

columns. The solution of the problem is as follows. The matrix C =D — W is
the Laplacian, while Cp = D~/2CD~Y/2 =1, - D~ '/2WD~'/2 is the weighted
Laplacian of G. Both are symmetric, positive semidefinite matrices, the number
of their zero eigenvalues is equal to the number of connected components of G.
Suppose that G is connected. Then the eigenvalues of Cp are

0=X <A <A< <A1 <2

in increasing order with corresponding orthonormal system of eigenvectors (col-
umn vectors)
Up, U, U2,...,Un-1.

If \k—1 < Mg then the minimum of (1.1) on (1.2) is attained with the choice
X = (ug...up_1)TD~/2 and the minimum is equal to Z;:ll A;. If the zero is a
single eigenvalue, then the first coordinate of each representative is 1 and hence,
the representatives are in fact of £ — 1 dimension.

Probabilistic setup (conditional expectation and canonical correlations): Now W
is regarded as a joint distribution on a finite product probability space. It will
be shown that the eigenvalues of the conditional expectation operator are the
numbers 1 > ry > -+ > r,_1, where r; = 1 — \; and they are the so-called
canonical correlations of the correspondence analysis. Here r; maximizes the
correlation between the two underlying discrete variables and it is the maximal
correlation introduced by Rényi [14]. The objective functions in (a) and (b) are
closely related, as well as the Ls-norm minimum and maximum obtained from
them.

Isoperimetry (k=2): The Cheeger constant introduced in [6] finds L;-norm min-
imum of an analogous objective function in terms of the vertex representation
in (a). The minima of (a) and (c) are compared in Section 3.
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(d) Probabilistic setup (conditional probability): With the notation of (b) we find
the minimum of some conditional probabilities. An interesting result follows
in comparison to (b) analogously to the results obtained as (a) and (c) are
compared.

(e) Isoperimetry (generalization of the Cheeger constant for £ > 2): As an extension
of (c) we define the weighted k-density pi and estimate it with the sum of the
k — 1 smallest positive Laplacian eigenvalues.

The main purpose of the paper is to summarize and compare the above frequently
used optimization problems. New results are the comparisons of different types of
problems and the part (e).

2. Conditional expectation and canonical correlations

Let W denote the joint probability distribution of two discrete random variables
taking on at most n different values. (Tipically, they are categorical variables, such
as eye-color, hair-color, that have no preassigned values.) Suppose that the n x n
matrix W is symmetric and it has zero diagonal. Therefore, the two marginal
distributions are the same: dy,...,d,, the diagonal of the matrix D of Section 1.
Sometimes, D also refers to the marginal. With this notations, the matrix form of
the operator taking conditional expectation between the Hilbert spaces Lo(V, A, D)
and Lo(V, A', D) with respect to the joint distribution W is just I, — Cp. (Here
Ly(V, A, D) is the set of random variables with finite variance on the probability
space (V, A, D), where both A and A’ are the induced o-algebras by V', but we are
going to use different notation for the two copies belonging to the two marginals.)

To show this, let X be a random variable on Ly(V, A, D) taking on values z1, ..., z,
with respective probabilities dy, ..., d, and satisfying the conditions:
(2.1) B(X)=> wd; =0, Var (X) = afd; = 1.

i=1 i=1

(E and Var stand for the expectation and variance of a random variable, respec-
tively.) Put Y = Ew (X|A’) and suppose that Y takes on values y1,...,y,. Then

._nww Wij \/7
= fof

and hence,

Z 2\]/7\/753]

With the notations x = (ml,...,xn)T, u=D"%x,y = (y1,...,yn)7, and v =
D'/2y we have
v=D"2WD" 2y

where [[u||? = 37, (v/d;z;)? = 1 and obviously, D~"¥/2WD~1/2 =1, — Cp

The largest eigenvalue of D™/2WD~1/2 is 1 with eigenvector (v/dy, ..., vdn)T
(its Euclidean norm is 1), while the other eigenvalues are less then 1 and the corre-
sponding eigenvectors are orthogonal to (v/di,...,+/d,)T. So, denoting by u such
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an eigenvector, the coordinates of x = D~'/?u will satisfy the conditions (2.1), in
other words, x is a harmonic eigenvector.

Let
l=rg>r1>2re>-+2>rp_1>-1

denote the eigenvalues of D='/2WD~'/2 in decreasing order.

It is easy to see that \; = 1 —r; (i = 0,...,n — 1). Note that r; is the max-
imum correlation. The corresponding eigenvectors are the same as in Section 2:
ug, uy,...,Uu,_ 1 in this order. In [3], it was shown that r;-s are correlation-like
quantities. For them, |r;| < 1 holds, therefore 0 < \; < 2,i=0,...,n— 1. In case
of 0-1 weights A\,,_; = 2 is attained if and only if G is bipartite.

The second largest eigenvalue r; and the corresponding eigenvector u; can be
found by the spectral decomposition of the matrix D~/2WD~!/2, Finally, the
harmonic eigenvector is obtained by the transformation D~'/2u;. This eigenvector
of the conditional expectation operator can be also determined by the so-called ACE
(Alternating Conditional Expectation) algorithm of [4]. The algorithm developed
by Breiman and Friedman starts with an X satisfying (2.1), it calculates ¥ =
Ew(X|A"), and statndardizes it. Let Y’ denote the standardized Y, take X' =
Ew(Y'|A), and so on ... If W is symmetric then the series of the so constructed
consecutive standardized Xs and Y's both converge to the harmonic eigenvector
belonging to ry.

Now, let us investigate the objective functions the maximum/minimum of which
is found by the algorithm. In [3], it was proved that the following two tasks are
equivalent:

(2.2) sup Ew XY =rq,
X,Y€Ls(V,A,D) i.d.
E(X)=0

Var (X)=1
where i.d. means identically distributed random variables. The supremum is at-
tained for the X,Y pair both taking on values zi,...,z, (the coordinates of the
harmonic eigenvector of D~/2WD~!/2) with probabilities dy, ..., d,, and the joint
distribution of them is W, while r; is the symmetric maximal correlation.

Ewl|X — X'||?
inf udl I _ inf Ew|X - X'|? =
X,Y€Ly(V,A,D) i.d. Var (X) X,Y€ELy(V,A,D) i.d.
E(X)=0 E(X)=0
Var (X)=1
(2.3) "
inf x; — X ||Pwi = 2),
X,YE€Ls(V,A,D) i.d. ZIZ ” sl !
E(X)=0 i=1j=1
Var (X):l

where the infimum is attained for the same X as the supremum in (2.2), and
A1 =1 —ry is the smallest positive eigenvalue of Cp. Here both X and Y take on
values z1,...,x,, as in (2.2), their joint distribution being W. \; also gives the
minimum of L(X) in (a).

In fact, the equivalence of the two statements can be proven in a more general
form for an appropriate joint distribution (the matrix W is neither symmetric nor
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square, so the two marginals are different). The maximum possible correlation
of the zero-expectation, one-variance factor pairs is also called maximal correla-
tion. Rényi [14] uses the notion for continuous distributions, too. More exactly, he
looks for maximum correlated functions of two random variables with a given joint
distribution.

The process can be continued. On the one hand, after finding the maximum
correlated pair, we look for the next pair, that are uncorrelated to the previous
ones, and have the possible largest correlation, etc. In this way, we can choose as
many pairs as the rank of the matrix containing the joint probabilities (including
the trivial pair with 1 correlation). This process is the so-called correspondence
analysis used in multivariate statistics. The maximum correlated pairs are called
correspondence factors. With formulas

(2.4) sup Ew XY =1y (k=1,...,rank (W)),
X,Y€Ls(V,A,D) i.d.
E(X)=0
Var (X)=1
Cov (X,X;)=0, (i=1,....k—1)

where the pair (X;,Y;) gives the supremum in the ith step (X, and Y} are constantly
1). In the kth step the supremum is attained for the pair (Xy,Yy) taking on the
same values with probabilities dy,...,d,, and the joint distribution of them is W,
while r; is the kth canonical correlation.

The corresponding infimum problem is just (1.1) based on the k-dimensional
representatives x;s.

On the other hand, the values taken on by the correspondence factor pairs also
give rise to an Euclidean representation of the variable categories. If the first &
factors — with the largest possible correlations — are used for the representation
then we obtain a k-dimensional representation of the variable categories that is
equivalent to the k-dimensional representation of the weighted graph G in part (a)
of Section 1. Numerically, the transformed (by D~'/2) eigenvectors corresponding
to the k£ — 1 smallest positive eigenvalues of the weighted Laplacian Cp are used
for the representation that are identical to the harmonic eigenvectors of the condi-
tional expectation operator belonging to its & — 1 largest (excluding the number 1)
eigenvalues. This representation is widely used in the correspondence analysis for
the visual illustration of the variable categories.
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3. The isoperimetric number and )\;.

Now, let us turn to L;-based minima. For graphs, there are combinatorial mea-
sures (e.g., edge density in [12], minimal weighted cut in [3], isoperimetric number
and Cheeger constant in [1], [5], [6], [7], [9], [10]) that indicate the two-clustering
properties of the graph. The so-called Cheeger constant defined for the weighted
graph G = (V, W) can be best compared to the smallest positive eigenvalue of the
weighted Laplacian Cp:

(3.1 he omip i er Vi

Ucv Vol (U)
Vol (U)<1/2

where Vol (U) = ) .., d; is the weight sum of edges with at least one endpoint
in U, while the numerator contains the weight sum of edges with one endpoint
in U and other endpoint in U. Therefore, h < 1 is trivial. Note that h can be
“small” if “low-weight” edges connect together two disjoint vertex-sets with “not
significantly” differing volumes; therefore, h reflects the clustering ability of the
graph.

In the framework of joint distributions, A can be formulated by

h = i B - i _
sl TwV €BIXeB)= min  Ewlohw)
X, Y€Ly(V,A,D) i.d. Vol (U)<1/2
Pp(XeB)<1/2

where X and Y are identically distributed (their values are immaterial here), and
their joint distribution is given by W, while x is the indicator random variable
belonging to the set U.

In [7] it is proved that with our notations

-1
ot > Z?=i+1 i — xj|wij

h = min m
X€L,(V,A,D) c€ER Sor mi — cld;
X is not constant
1 . Ew|X -Y|

= — min max ———.
2 X,YeLy(V,A,D) id. ceR Ep|X — |
X is not constant

If we take advantage of the fact that the median of X minimizes the expectation
Ep|X — ¢/ in ¢, we can simplify the above formula to

Ew|X -Y|

1

— min ,

2 X,YELy(V,4,D) i.d. Ep|X — med x|
X is not constant

(3.2) h=

the denominator containing the absolute deviation of X from its median, medyx.
Thus (3.2) is the L;-norm analog of the Lo-norm based minimum problem in (2.3).
Utilizing this analog, the following proposition can easily be proved.

Proposition 3.1. Let G = (V, W) be a weighted graph. The diagonal matrix D and
the weighted Laplacian Cp are defined as in Section 2. Let \; denote the smallest
positive eigenvalue of Cp with harmonic eigenvector x*. Let X* € Ly(V, A, D) be
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a random variable with range vector x* taking on values with the diagonal entries
of D. Then the Cheeger constant h of G satisfies

h < Vi
~ V2Ep|X* — medx-

with medx- being the median of X*.

A direct relation between h and \; are stated in the following theorem. Similar
statements are proved in [7] and [12] for unweighted graphs. To be self-contained,
we include the proof of this theorem.

Theorem 3.2. Let G = (V, W) be a weighted graph. If h denotes its Cheeger
constant and A1 is the smallest positive eigenvalue of its weighted Laplacian Cp
then

A
?1 < h < min{l,/2\}

holds true. If Ay <1 then the upper estimate can be improved to

h< V(2= ).

Proof. With the notations used throughout the paper, A; is the smallest positive
eigenvalue of Cp, and x* is a harmonic eigenvector belonging to it.

Lower bound. It follows easily by the optimum property of A\; and x*. Let U*
denote a vertex-subset at which the minimum of (3.1) is attained. Thus Vol (U*) <
1/2 holds. Let us define the following representation of the vertices:

- { 1/Vol (U*), if ieU*
L =1/ Vol (T*), it e U*

Then (2.3) gives that

1 1 2
Sict Mg (@i — 25) wi B Lievs 2jev- <V01(U*) Vol (U*)) Wi
> e Tid; B 1 + 1_
Vol (U*) = Vol (U*)
- Vol (U*) + Vol (U* Z S wy < ZiEU* X0 Wij _ oh,

Vol (U*)Vol (U*) Vol (U*)

A1 <

ieU* jeU*

which implies \;/2 < h.
Upper bound. Let x* be a harmonic eigenvector of Cp belonging to Ay directed
such that
S ax Y 4
1:x27<0 i:xy >0

To simplify notation we drop * from x* from now on. We rearrange the coordinates
of x in increasing order:

21 < <z <0<z, <o < 1y,
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Actually, we took advantage of the fact that there are both negative and positive
numbers among the coordinates. Say, the number of strictly negative coordinates
is r — 1, r > 2. The vertex set V = {1,...,n} is rearranged, accordingly. Put
Vo i={1,...,r — 1} and V; := {r,...,n}. By the above assumption, for the
coordinates of x we have that

r—1 n
(3.3) D di=) di
=1 i=r
Set y := x4, that is the coordinates of the vector y are

vi= 0, otherwise.

We shall choose special two-partitions of the rearranged vertex-set induced by
the subsets Uy = {k,...,n} and put

(34) C = Z Z Wiy, (k:2,,n)

1€ Uy _] € Uk:
Obviously,

. Ck
3.5 h<ec= _
(3.5) = €7 2Zk<n min{Vol (Uy), Vol (TU) }

We remark that in view of (3.3), the relation

(3.6) min{Vol (Uy), Vol (Ux)} = Vol (Ux) = > _d;  for  k=r,....n
i=k

is valid.

As x is a harmonic eigenvector of Cp = I, — D~ /2WD~1/2 with eigenvalue )1,
A Dx = Dx — Wx

holds, equivalently for the coordinates
(37) /\1dzl‘z = dzl‘z — Zwijazj = Z wij(asi — QS‘J'), (Z =1... y n)
7=1 7j=1

Multiplying both sides of (3.7) by x; and summing up for indices i € V we get

that .
)\1 Z dlx?: Z xiZwij(xi—xj),
i€V ieVy  j=1
or equivalently,
Diev, Tidjoy Wij(@i — ;) A

3.8 A = S .
(3:8) ' Ziev+ dix} > i diy}
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We shall estimate the numerator (A) from below as follows:

A= Z Z wija:i(:c,' — a:j) + Z Z wz’jﬂfz‘(l’z’ - xj)

i€V+ j€V+ i€V+ JEV_
= [wijzi(zi — ) + wjizj(z; — )] +
Z'EV+7.7'€V+
i>j
2
+ E E Wi T; — E E Wij il
i€V+ JEV_ i€V+ JEV_
) 2 2
=) wile—m) Y Y whyi = Y Y wiaa,
ieVy,jeVy 1€V, JEV_ 1€V JEV_
i>j
(2) N )
> E wij (ys — y5)° + E § wii (Yi — yj5)
E€VL, JEV,L 1€V, JEV_
i>j
n n
(3) o 1 2
= E , E :wij(yz‘_yj) =3 E E :wij(yz’_yj) .
iEV+ j<l =1 j:l

In the steps (1) and (2) we used the fact that y; is equal to z; on V; and 0 on V_.
We decreased the expression between the two steps by — Zz‘EV+ Zjev_ w;;r;x; that
is a nonnegative quantity due to the different signs of z; and z; for indices ¢ € V.
and j € V_. In the step (3) we utilized that for such indices i > j automatically
holds true. We also used the symmetry of W several times.

Now, let us go back to (3.8). Using the lower estimate for A we get that

% D1 Z?=1 wii (Y — y5)?

3.9 A\ > -
(3.9) L= >y diy?

- Q.

The quantity ) defined above will be important later when we improve the estimate.
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Q@ will be further decreased as follows.

S S i (9 — )] - [ S s (9 + )?
> i diyy - [Z?:l 2?21 wi; (yi + ?Jj)z}
1 :ZL o1 Wiglyi — yj\z] : {Z?:l i1 Wijlyi + @/jl2]
> i diyy - {Z?ﬂ Z?:l wij(y; + yj)z}
{2?21 D i wiglyi — y5l - |y + yjl] 2
> iy diyy - [Z?=1 Z?:l Wi (Y + yj)g]
[, Sl — o2l]
> i diy} - [Zz 1 Z _1 wij (¥ +y5)? ]2
1 PELMUWW3—ﬁﬂ2
250 diy? &lejwm@+w”

DN [—=

N |

(AV4
DO | =

| =

2

(3.10)

(S w02~ o)) o

> i diyy - [Z?zl 2?21 wi; (yi + yj)g] B

=2

In the third line we used the Cauchy—Schwarz inequality for the expectation of
random variables |Y — Y’| and |Y + Y’| with joint distribution W (Y and Y’ are
identically distributed with range vector y).

To estimate A; from below, we shall use the fact that y; > y; for ¢ > j and write
the members y? — yjz as a telescopic sum:

yi—yi =i -yl 4+ + Wi —vi)  fori>g

By this,
- ) v
A = wa(yzz - 3/32) = (Y% — Yie—1) Z Wij = 1% — Yo—1)Ck
i>j k=2 z‘>k>j k=
(5) — n ) n
‘Z £ vk-nek > D vk~ vk Zd >Z ¢k )_d
k= i=k
u (6)
_hz —yk ) :hzykdk
1=k

where in (4) we used the definition of ¢, in (5) the relations (3.5) and (3.6) were
exploited, while in (6) a partial summation was performed.
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The denominator B is estimated from above:

n

B:Zdzyf Zzwzg yl_'_y] <Zdzyz Zzwij(2yz'2+2y32')
i=1

i=1 j=1 i=1 j=1
n 2
= Zdzyz 4Zy2d =4 (nydi) -
i=1

There remains to collect the terms together:

\ o 248 207 (0 vk )2:h_2

B - 4(Zz lyzd) 2’

and so, the upper estimate h < /2 follows.

We can improve this upper bound by using the exact value of B and going back
to (3.9) that implies

D> wi(yi— ) =2Q) diy}.
=1

i=1j=1

An equivalent form of B is

B = Z dzyzz Z sz] Yi + y] Z dzyz Z sz’j(2yz‘2 + 23/32' - (yi - yj)Q)
=1

| i=1 j=1 i=1j=1

i=1 j=1
Starting the estimation of @ at (3.10) and continuing with the B above, yields

Ly
O S -0 2@

By (3.9), Q is non-negative implying

h2
Q> 20 or equivalently, 1—vV1-h2<Q@Q<1++1-h2

Summarizing, we derive that
AM>Q>1—14/1—h2 or equivalently, V1I—h2>1- ).

For A; > 1 this is a trivial statement. For A\; < 1 it implies that h < {/A1(2 — A1) <
1 while for A\; = 1 we get the trivial bound h < 1. This finishes the proof. [J

In terms of the symmetric maximal correlation the result of Theorem 3.2 can be
written in an equivalent form as follows.
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Corollary 3.3. Let W be a symmetric joint distribution of two discrete random
variables taking on at most n different values. If the symmetric maximal correlation
(r1 of Section 3) is non-negative then the estimation

1— _
(3.11) o< min Py (X' € BIX € B) < /112
2 BCR Borel-set
X,Y€L>(V,A,D) i.d.

Pp(XeB)<1/2
holds.

Proof. Since A\y = 1 — ry, the lower bound trivially follows. r; > 0 implies that
A1 < 1, so the improved upper bound of Theorem 4.2 becomes /(1 — 1) (1 + r1).
This finishes the proof. [

Consequently, the symmetric maximal correlation somehow regulates the min-
imum conditional probability that provided a random variable takes values in a
category set (with probability less than 1/2) then another one with the same distri-
bution (their joint distribution is given by W) will take values in the complement
category set. In particular, if r; is the eigenvalue of I — Cp with the largest abso-
lute value (apart from 1), then r; is the usual maximal correlation, and in this case
inequality (3.11) also holds for it.

4. k-density, a generalization of the isoperimetric number

We can generalize the notion of the Cheeger constant for k£ > 2. Let P, =
(V1,..., V%) be a given k-partition. The k-density of Py is defined as

k—1

-1k 1 1

=

where for [ # m we set w(Vi, Vin) = > ,cv; Djev,, Wij, and let

= min p(P
Pk Pkepkp( %)

be the k-density of G, where Pi denotes the set of all possible k-partitions into
disjoint, non-empty subsets of a set of cardinality n. (The cardinality of Py is the
Stirling number of second order.)

It is easy to see that pp punishes k-partitions with “many” inter-cluster edges of
“large” weights and with “strongly” differing volumes. Further, po < 2h. The quan-
tity p2 was also introduced in Mohar [12] for ordinary graphs (with 0-1 weights).

Theorem 4.1. Suppose that G = (V, W) is connected. With the notations of the

previous sections
k—1
E i < pg
i=1

and in the case when the optimal k-dimensional representatives can be classified into
k well-separated clusters in such a way that the maximum cluster diameter € satisfies



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 13

the relation ¢ < min{1/+/2k, /2 min, VPi} — where p; = Vol(V;), i =1,... k, with
k-partiton (V1,..., Vi) induced by the clusters above — then

k—1
2
Pk <c E )‘ia
=1

where ¢ = 1+ ec' /(2 — ec’) and ¢ = 1/ min; \/p;.

Proof. Lower bound. Let P = (Vi*,...,V;*) be a k-partition with p(P}) = px and

X = (x1,...,Xy) be the following representation:
{ 1//Vol(V}*), j eV,
Li; =
¢ 0, otherwise,

where z;;s are the entries of X. In this representation the objective function (1.1)

becomes L(X) = pi(Py), but this is greater than or equal to Zi:ll A;, latter one

being the minimum of L(X) that finishes the proof of the first part.

Upper bound. To prove the reversed statement, let P, = (Vi,..., V%) be a k-
partition obtained by k-means classification of the optimal k-dimensional Euclidean
representatives, x3,...,x% (their first coordinates are identically 1). As they fall
into k well-separated clusters (the maximum cluster diameter being less than or
equal to the minimum distance of x7s of different clusters), the MacQueen method
[11] converges to a unique solution. According to our assumption

1
— *— * < 1 B p— 2 1 .
£ 1¥13]x||x1 x]||_m1n{m,\/_milnw/pz},

where the relation ¢ ~ j denotes that the vertices ¢ and j belong to the same cluster.
The representatives satisfy the condition: Z 1 d; x*x =xX*DX*T = 1,.

Let x(¥) denote the center of the ith cluster:

de], i=1,...,k.

]GV

Furthet, let y; denote the k-dimensional vector with coordinates

1/ Di, if je Vvia
(4.1) vis :{ VPi

0, otherwise,

and Y =: (y1,...,yx). In fact, with P = diag (p1,...,px) the relation Y = P~1/2
holds. Let R be a k x k orthogonal matrix. With the notations y; = Ry; and
Y’ = RY we are looking for a system Y' such that y; is “close” to the cluster center
g for i = 1,...,k. To this end, we use the so-called MANOVA (Multivariate
ANalysis Of VAriance) decomposition of the k x k covariance matrix of x}s into
within-clusters and between-clusters covariances (the mean of the components of
x*%s is zero except the first one that is identically 1, but it will not contribute to the

j
variances):

(4.2) de* =T ZZd X —xU ( +pr

i=1jEeV;
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or briefly,
k
(4.3) I, =) A;+B=A+B,
i=1
where A; = Y.y dj(x) — W) (x5 — )T, i = 1,... k. Here tr A, is the k-

2

variance of representatives in cluster ¢, therefore tr A; < Zc(j)zi djs2 = p;e°, and

trA = Zle tr A; < €2. As A is symmetric, positive semidefinite, its maximum
eigenvalue is at most 2. So, A will be regarded as a perturbation on B. The
matrix B = Iy — A is also positive semidefinite and by the Weyl’s perturbation
theory it follows that denoting by Ay, ...\ its eigenvalues, for them the relation

(4.4) 0<1—)\ <e?, i=1,....k

holds. With the notation X = (V,..., %*)) our matrix B is equal to XPX7.

Now, let us find such an R that with (y},...,y;) = RY the sum
1 k
Zf:l piHi(i) — y!||? be the least possible.

k
> pillg® —yi|? = tr (X - RY)P(X - RY)”
=1
(4.5)

k k
= tr XPX" + tr RYPY"R” - 20 XPY"R > ) N +k—2) s,

where s1,...s; are the singular values of the matrix XPY7. Le., the first term is
tr B, the second is tr Iy, while to the third one the following theorem is applicable.
With our notations, tr XPYTR. is maximum (with respect to R) if the matrix
XPYTR is symmetric and the maximum is equal to the sum of the singular values
of XPY”. By choosing such an R, equality can be attained. Taking into account
that

XPYT)(XPYT)T = XPYTYPXT = XPP'PX” = XPX” = B,

the eigenvalues of B can be enumerated in such an order that \; = s, i = 1,...,k.
2 4
€° €

But we saw that s? is of order 1—¢2, therefore via Taylor’s expansion 1—s; ~ 54—1

is a good approximation. Hence, with the choice of R giving equality in (4.5) we
have that

k k

k k k
Spilx®D -yl =382 k2% -2 si=> (s2-1)+2) (1-s) ~ 2ke?
=1 =1 =1

i=1 i=1
that is less than €2 provided that ¢ < 1/4/2k holds. Consequently, p;||x(?) —y!||? <
e and [|x® —y'|| < ec.

Let the y! nearest to () be denoted by y(xj) for every jsin V; (thus y(x}) = y;,
V j €V;). Let 6 denote the minimum distance between the different y!s, that is

T 1
5 = mi - — mi — = mi — — >V
min [y, = Y|l = min [y: = ym| ?%%IH =2
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With them,

pr < p(Vis. s Vi) = L(y(x1), - ¥(x5)) = i > willy(x}) =y (x|

i=1 j=i+1
n—1 n n—1 n
< wislelle; ~ 2}l < S0 3 wilat — a3
< ij i T Til)T = i 1T — T
i=1 j=i+1 i=1 j=i+1
k—1
= c2L(x},...,2%) = Z i
i=1
where
) 14 ec <1+ ec
CcC = — R — -
6 —ec 0 —ec — V2 —ed’

that implies our statement. [

The first part of the theorem gives A\; < py < 2h for k = 2; therefore, it
also implies the lower estimate of the Cheeger constant. The constant ¢ of the
second part is greater than 1, and it is the closer to 1, the smaller ¢ is. The latter
requirement is satisfied if there exists a “very” well-separated k-partition of the
k-dimensional Euclidean representatives. From the above theorem, we can also
conclude that the gap in the spectrum is a necessary but not a sufficient condition
of a good classification. In addition, the Euclidean representatives should be well
classified in the appropriate dimension.
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