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AbstratThe relation between isoperimetri properties and Laplaian spe-tra of weighted graphs is investigated. The verties are las-si�ed into k lusters with \few" inter-luster edges of \small"weights (area) and \similar" luster sizes (volumes). For k = 2the Cheeger onstant represents the minimum requirement for thearea/volume ratio and it is estimated from above byp�1(2� �1),where �1 is the smallest positive eigenvalue of the weighted Lapla-ian. For k > 2 we de�ne the k-density of a weighted graphthat is a generalization of the Cheeger onstant and estimatedfrom below by Pk�1i=1 �i and from above by 2Pk�1i=1 �i, where0 < �1 � � � � � �k�1 are the smallest Laplaian eigenvalues andthe onstant  > 1 depends on the metri lassi�ation proper-ties of the orresponding eigenvetors. Laplaian spetra are alsorelated to anonial orrelations in a probabilisti setup.
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2 MARIANNA BOLLA, G�ABOR MOLN�AR-S�ASKA1. IntrodutionLet G = (V;W) be a weighted graph, where V = f1; : : : ; ng is the vertex set andWis the n�n symmetri weight matrix of the edges with nonnegative entries and zerodiagonal. We assume that Pni=1Pnj=1 wij = 1 (this restrition does not inuenethe eigenvalues investigated later on). We set di =Pnj=1 wij , i = 1; : : : ; n. Let then� n diagonal matrix D ontain the entries d1; : : : ; dn in its main diagonal. If thegraph G is onneted then learly, 0 < di < 1=2 for all i.The following optimization problems arise when we want to lassify the vertiesinto k lusters.(a) Embedding problem (disussed thoroughly in [2℄): We are looking for optimalk-dimensional representatives x1; : : : ;xn 2 Rk (1 < k � n) of the verties suhthat the minimum of the quadrati objetive funtion(1:1) L(X) = n�1Xi=1 nXj=i+1 kxi � xjk2wijis attained on the onstraint(1:2) XDXT = Ik;where the k � n matrix X = (x1 : : :xn) ontains the representatives in itsolumns. The solution of the problem is as follows. The matrix C = D�W isthe Laplaian, while CD = D�1=2CD�1=2 = In�D�1=2WD�1=2 is the weightedLaplaian of G. Both are symmetri, positive semide�nite matries, the numberof their zero eigenvalues is equal to the number of onneted omponents of G.Suppose that G is onneted. Then the eigenvalues of CD are0 = �0 < �1 � �2 � � � � � �n�1 � 2in inreasing order with orresponding orthonormal system of eigenvetors (ol-umn vetors) u0;u1;u2; : : : ;un�1:If �k�1 < �k then the minimum of (1.1) on (1.2) is attained with the hoieX = (u0 : : :uk�1)TD�1=2 and the minimum is equal toPk�1j=1 �j . If the zero is asingle eigenvalue, then the �rst oordinate of eah representative is 1 and hene,the representatives are in fat of k � 1 dimension.(b) Probabilisti setup (onditional expetation and anonial orrelations): NowWis regarded as a joint distribution on a �nite produt probability spae. It willbe shown that the eigenvalues of the onditional expetation operator are thenumbers 1 > r1 � � � � � rn�1, where ri = 1 � �i and they are the so-alledanonial orrelations of the orrespondene analysis. Here r1 maximizes theorrelation between the two underlying disrete variables and it is the maximalorrelation introdued by R�enyi [14℄. The objetive funtions in (a) and (b) arelosely related, as well as the L2-norm minimum and maximum obtained fromthem.() Isoperimetry (k=2): The Cheeger onstant introdued in [6℄ �nds L1-norm min-imum of an analogous objetive funtion in terms of the vertex representationin (a). The minima of (a) and () are ompared in Setion 3.



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 3(d) Probabilisti setup (onditional probability): With the notation of (b) we �ndthe minimum of some onditional probabilities. An interesting result followsin omparison to (b) analogously to the results obtained as (a) and () areompared.(e) Isoperimetry (generalization of the Cheeger onstant for k > 2): As an extensionof () we de�ne the weighted k-density �k and estimate it with the sum of thek � 1 smallest positive Laplaian eigenvalues.The main purpose of the paper is to summarize and ompare the above frequentlyused optimization problems. New results are the omparisons of di�erent types ofproblems and the part (e).2. Conditional expetation and anonial orrelationsLet W denote the joint probability distribution of two disrete random variablestaking on at most n di�erent values. (Tipially, they are ategorial variables, suhas eye-olor, hair-olor, that have no preassigned values.) Suppose that the n � nmatrix W is symmetri and it has zero diagonal. Therefore, the two marginaldistributions are the same: d1; : : : ; dn, the diagonal of the matrix D of Setion 1.Sometimes, D also refers to the marginal. With this notations, the matrix form ofthe operator taking onditional expetation between the Hilbert spaes L2(V;A; D)and L2(V;A0; D) with respet to the joint distribution W is just In � CD. (HereL2(V;A; D) is the set of random variables with �nite variane on the probabilityspae (V;A; D), where both A and A0 are the indued �-algebras by V , but we aregoing to use di�erent notation for the two opies belonging to the two marginals.)To show this, let X be a random variable on L2(V;A; D) taking on values x1; : : : ; xnwith respetive probabilities d1; : : : ; dn and satisfying the onditions:(2:1) E(X) = nXi=1 xidi = 0; Var (X) = nXi=1 x2i di = 1:(E and Var stand for the expetation and variane of a random variable, respe-tively.) Put Y = EW (XjA0) and suppose that Y takes on values y1; : : : ; yn. Thenyi = nXj=1 wijdi xj = nXj=1 wijpdipdj xjpdjpdi ;and hene, pdiyi = nXj=1 wijpdipdj (pdjxj):With the notations x = (x1; : : : ; xn)T , u = D1=2x, y = (y1; : : : ; yn)T , and v =D1=2y we have v = D�1=2WD�1=2u;where kuk2 =Pni=1(pdixi)2 = 1 and obviously, D�1=2WD�1=2 = In �CD.The largest eigenvalue of D�1=2WD�1=2 is 1 with eigenvetor (pd1; : : : ;pdn)T(its Eulidean norm is 1), while the other eigenvalues are less then 1 and the orre-sponding eigenvetors are orthogonal to (pd1; : : : ;pdn)T . So, denoting by u suh



4 MARIANNA BOLLA, G�ABOR MOLN�AR-S�ASKAan eigenvetor, the oordinates of x = D�1=2u will satisfy the onditions (2.1), inother words, x is a harmoni eigenvetor.Let 1 = r0 > r1 � r2 � � � � � rn�1 � �1denote the eigenvalues of D�1=2WD�1=2 in dereasing order.It is easy to see that �i = 1 � ri (i = 0; : : : ; n � 1). Note that r1 is the max-imum orrelation. The orresponding eigenvetors are the same as in Setion 2:u0;u1; : : : ;un�1 in this order. In [3℄, it was shown that ri-s are orrelation-likequantities. For them, jrij � 1 holds, therefore 0 � �i � 2, i = 0; : : : ; n� 1. In aseof 0-1 weights �n�1 = 2 is attained if and only if G is bipartite.The seond largest eigenvalue r1 and the orresponding eigenvetor u1 an befound by the spetral deomposition of the matrix D�1=2WD�1=2. Finally, theharmoni eigenvetor is obtained by the transformation D�1=2u1. This eigenvetorof the onditional expetation operator an be also determined by the so-alled ACE(Alternating Conditional Expetation) algorithm of [4℄. The algorithm developedby Breiman and Friedman starts with an X satisfying (2.1), it alulates Y =EW (XjA0), and statndardizes it. Let Y 0 denote the standardized Y , take X 0 =EW (Y 0jA), and so on : : : If W is symmetri then the series of the so onstrutedonseutive standardized Xs and Y s both onverge to the harmoni eigenvetorbelonging to r1.Now, let us investigate the objetive funtions the maximum/minimum of whihis found by the algorithm. In [3℄, it was proved that the following two tasks areequivalent:(2:2) supX;Y 2L2(V;A;D) i.d.E(X)=0Var (X)=1 EWXY = r1;where i.d. means identially distributed random variables. The supremum is at-tained for the X;Y pair both taking on values x1; : : : ; xn (the oordinates of theharmoni eigenvetor ofD�1=2WD�1=2) with probabilities d1; : : : ; dn, and the jointdistribution of them is W, while r1 is the symmetri maximal orrelation.
(2:3) infX;Y 2L2(V;A;D) i.d.E(X)=0 EW kX �X 0k2Var (X) = infX;Y 2L2(V;A;D) i.d.E(X)=0Var (X)=1 EWkX �X 0k2 =infX;Y 2L2(V;A;D) i.d.E(X)=0Var (X)=1 nXi=1 nXj=1 kxi � xjk2wij = 2�1;where the in�mum is attained for the same X as the supremum in (2.2), and�1 = 1� r1 is the smallest positive eigenvalue of CD. Here both X and Y take onvalues x1; : : : ; xn, as in (2.2), their joint distribution being W. �1 also gives theminimum of L(X) in (a).In fat, the equivalene of the two statements an be proven in a more generalform for an appropriate joint distribution (the matrix W is neither symmetri nor



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 5square, so the two marginals are di�erent). The maximum possible orrelationof the zero-expetation, one-variane fator pairs is also alled maximal orrela-tion. R�enyi [14℄ uses the notion for ontinuous distributions, too. More exatly, helooks for maximum orrelated funtions of two random variables with a given jointdistribution.The proess an be ontinued. On the one hand, after �nding the maximumorrelated pair, we look for the next pair, that are unorrelated to the previousones, and have the possible largest orrelation, et. In this way, we an hoose asmany pairs as the rank of the matrix ontaining the joint probabilities (inludingthe trivial pair with 1 orrelation). This proess is the so-alled orrespondeneanalysis used in multivariate statistis. The maximum orrelated pairs are alledorrespondene fators. With formulas(2:4) supX;Y 2L2(V;A;D) i.d.E(X)=0Var (X)=1Cov (X;Xi)=0; (i=1;:::;k�1)Cov (Y;Yi)=0; (i=1;:::;k�1) EWXY = rk (k = 1; : : : ; rank (W));
where the pair (Xi; Yi) gives the supremum in the ith step (X0 and Y0 are onstantly1). In the kth step the supremum is attained for the pair (Xk; Yk) taking on thesame values with probabilities d1; : : : ; dn, and the joint distribution of them is W,while rk is the kth anonial orrelation.The orresponding in�mum problem is just (1.1) based on the k-dimensionalrepresentatives xis.On the other hand, the values taken on by the orrespondene fator pairs alsogive rise to an Eulidean representation of the variable ategories. If the �rst kfators { with the largest possible orrelations { are used for the representationthen we obtain a k-dimensional representation of the variable ategories that isequivalent to the k-dimensional representation of the weighted graph G in part (a)of Setion 1. Numerially, the transformed (by D�1=2) eigenvetors orrespondingto the k � 1 smallest positive eigenvalues of the weighted Laplaian CD are usedfor the representation that are idential to the harmoni eigenvetors of the ondi-tional expetation operator belonging to its k� 1 largest (exluding the number 1)eigenvalues. This representation is widely used in the orrespondene analysis forthe visual illustration of the variable ategories.



6 MARIANNA BOLLA, G�ABOR MOLN�AR-S�ASKA3. The isoperimetri number and �1.Now, let us turn to L1-based minima. For graphs, there are ombinatorial mea-sures (e.g., edge density in [12℄, minimal weighted ut in [3℄, isoperimetri numberand Cheeger onstant in [1℄, [5℄, [6℄, [7℄, [9℄, [10℄) that indiate the two-lusteringproperties of the graph. The so-alled Cheeger onstant de�ned for the weightedgraph G = (V;W) an be best ompared to the smallest positive eigenvalue of theweighted Laplaian CD:(3:1) h = minU�VVol (U)�1=2 Pi2UPj2 �U wijVol (U)where Vol (U) = Pi2U di is the weight sum of edges with at least one endpointin U , while the numerator ontains the weight sum of edges with one endpointin U and other endpoint in �U . Therefore, h � 1 is trivial. Note that h an be\small" if \low-weight" edges onnet together two disjoint vertex-sets with \notsigni�antly" di�ering volumes; therefore, h reets the lustering ability of thegraph.In the framework of joint distributions, h an be formulated byh = minB�R Borel-setX;Y 2L2(V;A;D) i.d.PD(X2B)�1=2 PW (Y 2 �BjX 2 B) = minU�VVol (U)�1=2EW (� �U j�U );where X and Y are identially distributed (their values are immaterial here), andtheir joint distribution is given by W , while �U is the indiator random variablebelonging to the set U .In [7℄ it is proved that with our notationsh = minX2L2(V;A;D)X is not onstantmax2R Pn�1i=1 Pnj=i+1 jxi � xj jwijPni=1 jxi � jdi= 12 minX;Y 2L2(V;A;D) i.d.X is not onstant max2R EW jX � Y jEDjX � j :If we take advantage of the fat that the median of X minimizes the expetationEDjX � j in , we an simplify the above formula to(3:2) h = 12 minX;Y 2L2(V;A;D) i.d.X is not onstant EW jX � Y jEDjX �medX j ;the denominator ontaining the absolute deviation of X from its median, medX .Thus (3.2) is the L1-norm analog of the L2-norm based minimum problem in (2.3).Utilizing this analog, the following proposition an easily be proved.Proposition 3.1. Let G = (V;W) be a weighted graph. The diagonal matrix D andthe weighted Laplaian CD are de�ned as in Setion 2. Let �1 denote the smallestpositive eigenvalue of CD with harmoni eigenvetor x�. Let X� 2 L2(V;A; D) be



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 7a random variable with range vetor x� taking on values with the diagonal entriesof D. Then the Cheeger onstant h of G satis�esh � p�1p2EDjX� �medX� jwith medX� being the median of X�.A diret relation between h and �1 are stated in the following theorem. Similarstatements are proved in [7℄ and [12℄ for unweighted graphs. To be self-ontained,we inlude the proof of this theorem.Theorem 3.2. Let G = (V;W) be a weighted graph. If h denotes its Cheegeronstant and �1 is the smallest positive eigenvalue of its weighted Laplaian CDthen �12 � h � minf1;p2�1gholds true. If �1 � 1 then the upper estimate an be improved toh �p�1(2� �1):Proof. With the notations used throughout the paper, �1 is the smallest positiveeigenvalue of CD, and x� is a harmoni eigenvetor belonging to it.Lower bound. It follows easily by the optimum property of �1 and x�. Let U�denote a vertex-subset at whih the minimum of (3.1) is attained. Thus Vol (U�) �1=2 holds. Let us de�ne the following representation of the verties:xi := � 1=Vol (U�); if i 2 U��1=Vol ( �U�); if i 2 �U� :Then (2.3) gives that�1 � Pn�1i=1 Pnj=i+1(xi � xj)2wijPni=1 x2i di = Pi2U�Pj2 �U� � 1Vol (U�) + 1Vol ( �U�)�2 wij1Vol (U�) + 1Vol ( �U�)� Vol (U�) + Vol ( �U�)Vol (U�)Vol ( �U�) Xi2U� Xj2 �U�wij � 2Pi2U�Pj2 �U� wijVol (U�) = 2h;whih implies �1=2 � h.Upper bound. Let x� be a harmoni eigenvetor of CD belonging to �1 diretedsuh that Xi: x�i<0 di � Xi:x�i�0 di:To simplify notation we drop � from x� from now on. We rearrange the oordinatesof x in inreasing order:x1 � � � � � xr�1 < 0 � xr � � � � � xn:



8 MARIANNA BOLLA, G�ABOR MOLN�AR-S�ASKAAtually, we took advantage of the fat that there are both negative and positivenumbers among the oordinates. Say, the number of stritly negative oordinatesis r � 1, r � 2. The vertex set V = f1; : : : ; ng is rearranged, aordingly. PutV� := f1; : : : ; r � 1g and V+ := fr; : : : ; ng. By the above assumption, for theoordinates of x we have that(3:3) r�1Xi=1 di � nXi=r di:Set y := x+, that is the oordinates of the vetor y areyi = � xi; if xi � 00; otherwise.We shall hoose speial two-partitions of the rearranged vertex-set indued bythe subsets Uk = fk; : : : ; ng and put(3:4) k = Xi2Uk Xj2 �Uk wij ; (k = 2; : : : ; n):Obviously,(3:5) h �  = min2�k�n kminfVol (Uk);Vol ( �Uk)g :We remark that in view of (3.3), the relation(3:6) minfVol (Uk);Vol ( �Uk)g = Vol (Uk) = nXi=k di for k = r; : : : ; nis valid.As x is a harmoni eigenvetor of CD = In�D�1=2WD�1=2 with eigenvalue �1,�1Dx = Dx�Wxholds, equivalently for the oordinates(3:7) �1dixi = dixi � nXj=1wijxj = nXj=1wij(xi � xj); (i = 1 : : : ; n):Multiplying both sides of (3.7) by xi and summing up for indies i 2 V+ we getthat �1 Xi2V+ dix2i = Xi2V+ xi nXj=1wij(xi � xj);or equivalently,(3:8) �1 = Pi2V+ xiPnj=1 wij(xi � xj)Pi2V+ dix2i = APni=1 diy2i :



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 9We shall estimate the numerator (A) from below as follows:
A = Xi2V+ Xj2V+wijxi(xi � xj) + Xi2V+ Xj2V� wijxi(xi � xj)= Xi2V+; j2V+i>j [wijxi(xi � xj) + wjixj(xj � xi)℄++ Xi2V+ Xj2V� wijx2i � Xi2V+ Xj2V� wijxixj(1)= Xi2V+; j2V+i>j wij(xi � xj)2 + Xi2V+ Xj2V�wijy2i � Xi2V+ Xj2V� wijxixj(2)� Xi2V+; j2V+i>j wij(yi � yj)2 + Xi2V+ Xj2V�wij(yi � yj)2(3)= Xi2V+Xj<i wij(yi � yj)2 = 12 nXi=1 nXj=1wij(yi � yj)2:

In the steps (1) and (2) we used the fat that yi is equal to xi on V+ and 0 on V�.We dereased the expression between the two steps by �Pi2V+Pj2V� wijxixj thatis a nonnegative quantity due to the di�erent signs of xi and xj for indies i 2 V+and j 2 V�. In the step (3) we utilized that for suh indies i > j automatiallyholds true. We also used the symmetry of W several times.Now, let us go bak to (3.8). Using the lower estimate for A we get that
(3:9) �1 � 12Pni=1Pnj=1 wij(yi � yj)2Pni=1 diy2i = Q:
The quantityQ de�ned above will be important later when we improve the estimate.



10 MARIANNA BOLLA, G�ABOR MOLN�AR-S�ASKAQ will be further dereased as follows.Q = 12 hPni=1Pnj=1 wij(yi � yj)2i � hPni=1Pnj=1 wij(yi + yj)2iPni=1 diy2i � hPni=1Pnj=1wij(yi + yj)2i= 12 hPni=1Pnj=1wij jyi � yj j2i � hPni=1Pnj=1wij jyi + yj j2iPni=1 diy2i � hPni=1Pnj=1 wij(yi + yj)2i� 12 hPni=1Pnj=1wij jyi � yj j � jyi + yj ji2Pni=1 diy2i � hPni=1Pnj=1wij(yi + yj)2i= 12 hPni=1Pnj=1wij jy2i � y2j ji2Pni=1 diy2i � hPni=1Pnj=1wij(yi + yj)2i2= 12 h2Pi>j wij jy2i � y2j ji2Pni=1 diy2i � hPni=1Pnj=1wij(yi + yj)2i= 2 hPi>j wij(y2i � y2j )i2Pni=1 diy2i � hPni=1Pnj=1wij(yi + yj)2i = 2A21B :(3:10)
In the third line we used the Cauhy{Shwarz inequality for the expetation ofrandom variables jY � Y 0j and jY + Y 0j with joint distribution W (Y and Y 0 areidentially distributed with range vetor y).To estimate A1 from below, we shall use the fat that yi � yj for i > j and writethe members y2i � y2j as a telesopi sum:y2i � y2j = (y2i � y2i�1) + � � �+ (y2j+1 � y2j ) for i > j:By this,A1 =Xi>j wij(y2i � y2j ) = nXk=2(y2k � y2k�1) Xi�k>jwij (4)= nXk=2(y2k � y2k�1)k= nXk=r(y2k � y2k�1)k (5)� nXk=r(y2k � y2k�1) nXi=k di � nXk=r(y2k � y2k�1)h nXi=k di= h nXk=r(y2k � y2k�1) nXi=k di (6)= h nXk=r y2kdkwhere in (4) we used the de�nition of k, in (5) the relations (3.5) and (3.6) wereexploited, while in (6) a partial summation was performed.



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 11The denominator B is estimated from above:B = nXi=1 diy2i � 24 nXi=1 nXj=1wij(yi + yj)235 � nXi=1 diy2i � 24 nXi=1 nXj=1wij(2y2i + 2y2j )35= nXi=1 diy2i � 4 nXi=1 y2i di = 4 nXi=1 y2i di!2 :There remains to ollet the terms together:�1 � 2A21B � 2h2 �Pnk=1 y2kdk�24 (Pni=1 y2i di)2 = h22 ;and so, the upper estimate h � p2�1 follows.We an improve this upper bound by using the exat value of B and going bakto (3.9) that implies nXi=1 nXj=1wij(yi � yj)2 = 2Q nXi=1 diy2i :An equivalent form of B isB = nXi=1 diy2i � 24 nXi=1 nXj=1wij(yi + yj)235 = nXi=1 diy2i � 24 nXi=1 nXj=1wij(2y2i + 2y2j � (yi � yj)2)35= nXi=1 diy2i � 244 nXi=1 y2i di � nXi=1 nXj=1wij(yi � yj)235 = 2 nXi=1 diy2i!2 (2�Q):Starting the estimation of Q at (3.10) and ontinuing with the B above, yieldsQ � 2A21B � 2 h2(Pnk=1 y2kdk)22(Pni=1 diy2i )2(2�Q) = h22�Q:By (3.9), Q is non-negative implyingQ � h22�Q or equivalently, 1�p1� h2 � Q � 1 +p1� h2:Summarizing, we derive that�1 � Q � 1�p1� h2 or equivalently, p1� h2 � 1� �1:For �1 > 1 this is a trivial statement. For �1 < 1 it implies that h �p�1(2� �1) <1 while for �1 = 1 we get the trivial bound h � 1. This �nishes the proof. �In terms of the symmetri maximal orrelation the result of Theorem 3.2 an bewritten in an equivalent form as follows.



12 MARIANNA BOLLA, G�ABOR MOLN�AR-S�ASKACorollary 3.3. Let W be a symmetri joint distribution of two disrete randomvariables taking on at most n di�erent values. If the symmetri maximal orrelation(r1 of Setion 3) is non-negative then the estimation(3:11) 1� r12 � minB�R Borel-setX;Y 2L2(V;A;D) i.d.PD(X2B)�1=2 PW (X 0 2 �BjX 2 B) �q1� r21holds.Proof. Sine �1 = 1 � r1, the lower bound trivially follows. r1 � 0 implies that�1 � 1, so the improved upper bound of Theorem 4.2 beomes p(1� r1)(1 + r1).This �nishes the proof. �Consequently, the symmetri maximal orrelation somehow regulates the min-imum onditional probability that provided a random variable takes values in aategory set (with probability less than 1/2) then another one with the same distri-bution (their joint distribution is given by W) will take values in the omplementategory set. In partiular, if r1 is the eigenvalue of I�CD with the largest abso-lute value (apart from 1), then r1 is the usual maximal orrelation, and in this aseinequality (3.11) also holds for it.4. k-density, a generalization of the isoperimetri numberWe an generalize the notion of the Cheeger onstant for k � 2. Let Pk =(V1; : : : ; Vk) be a given k-partition. The k-density of Pk is de�ned as�(Pk) = k�1Xl=1 kXm=l+1� 1V ol(Vl) + 1V ol(Vm)�w(Vl; Vm);where for l 6= m we set w(Vl; Vm) =Pi2VlPj2Vm wij , and let�k = minPk2Pk �(Pk)be the k-density of G, where Pk denotes the set of all possible k-partitions intodisjoint, non-empty subsets of a set of ardinality n. (The ardinality of Pk is theStirling number of seond order.)It is easy to see that �k punishes k-partitions with \many" inter-luster edges of\large" weights and with \strongly" di�ering volumes. Further, �2 � 2h. The quan-tity �2 was also introdued in Mohar [12℄ for ordinary graphs (with 0-1 weights).Theorem 4.1. Suppose that G = (V;W) is onneted. With the notations of theprevious setions k�1Xi=1 �i � �kand in the ase when the optimal k-dimensional representatives an be lassi�ed intok well-separated lusters in suh a way that the maximum luster diameter " satis�es



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 13the relation " � minf1=p2k;p2minippig { where pi = V ol(Vi), i = 1; : : : ; k, withk-partiton (V1; : : : ; Vk) indued by the lusters above { then�k � 2 k�1Xi=1 �i;where  = 1 + "0=(p2� "0) and 0 = 1=minippi.Proof. Lower bound. Let P �k = (V �1 ; : : : ; V �k ) be a k-partition with �(P �k ) = �k andX = (x1; : : : ;xn) be the following representation:xij = � 1=pV ol(V �i ); if j 2 V �i ;0; otherwise,where xijs are the entries of X. In this representation the objetive funtion (1.1)beomes L(X) = �k(P �k ), but this is greater than or equal to Pk�1i=1 �i, latter onebeing the minimum of L(X) that �nishes the proof of the �rst part.Upper bound. To prove the reversed statement, let Pk = (V1; : : : ; Vk) be a k-partition obtained by k-means lassi�ation of the optimal k-dimensional Eulideanrepresentatives, x�1; : : : ;x�n (their �rst oordinates are identially 1). As they fallinto k well-separated lusters (the maximum luster diameter being less than orequal to the minimum distane of x�j s of di�erent lusters), the MaQueen method[11℄ onverges to a unique solution. Aording to our assumption" = maxi�j kx�i � x�jk � minf 1p2k ;p2mini ppig;where the relation i � j denotes that the verties i and j belong to the same luster.The representatives satisfy the ondition: Pnj=1 djx�jx�j T = X�DX�T = Ik.Let �x(i) denote the enter of the ith luster:�x(i) = 1pi Xj2Vi djxj ; i = 1; : : : ; k:Furthet, let yi denote the k-dimensional vetor with oordinates(4:1) yij = � 1=ppi; if j 2 Vi;0; otherwise,and Y =: (y1; : : : ;yk). In fat, with P = diag (p1; : : : ; pk) the relation Y = P�1=2holds. Let R be a k � k orthogonal matrix. With the notations y0i = Ryi andY0 = RY we are looking for a systemY0 suh that y0i is \lose" to the luster enter�x(i) for i = 1; : : : ; k. To this end, we use the so-alled MANOVA (MultivariateANalysis Of VAriane) deomposition of the k � k ovariane matrix of x�j s intowithin-lusters and between-lusters ovarianes (the mean of the omponents ofx�j s is zero exept the �rst one that is identially 1, but it will not ontribute to thevarianes):(4:2) nXj=1 djx�jx�j T = kXi=1 Xj2Vi dj(x�j � �x(i))(x�j � �x(i))T + kXi=1 pi�x(i)�x(i)T ;



14 MARIANNA BOLLA, G�ABOR MOLN�AR-S�ASKAor briey,(4:3) Ik = kXi=1Ai +B = A+B;where Ai = Pj2Vi dj(x�j � �x(i))(x�j � �x(i))T , i = 1; : : : ; k. Here trAi is the k-variane of representatives in luster i, therefore trAi � P(j)=i dj"2 = pi"2, andtrA = Pki=1 trAi � "2. As A is symmetri, positive semide�nite, its maximumeigenvalue is at most "2. So, A will be regarded as a perturbation on B. Thematrix B = Ik � A is also positive semide�nite and by the Weyl's perturbationtheory it follows that denoting by �1; : : : �k its eigenvalues, for them the relation(4:4) 0 � 1� �i � "2; i = 1; : : : ; kholds. With the notation �X = (�x(1); : : : ; �x(k)) our matrix B is equal to �XP �XT .Now, let us �nd suh an R that with (y01; : : : ;y0k) = RY the sumPki=1 pik�x(i) � y0ik2 be the least possible.kXi=1 pik�x(i) � y0ik2 = tr ( �X�RY)P( �X�RY)T= tr �XP �XT + trRYPYTRT � 2tr �XPYTR � kXi=1 �i + k � 2 kXi=1 si;(4:5)
where s1; : : : sk are the singular values of the matrix �XPYT . I.e., the �rst term istrB, the seond is tr Ik, while to the third one the following theorem is appliable.With our notations, tr �XPYTR is maximum (with respet to R) if the matrix�XPYTR is symmetri and the maximum is equal to the sum of the singular valuesof �XPYT . By hoosing suh an R, equality an be attained. Taking into aountthat ( �XPYT )( �XPYT )T = �XPYTYP �XT = �XPP�1P �XT = �XP �XT = B;the eigenvalues of B an be enumerated in suh an order that �i = s2i , i = 1; : : : ; k.But we saw that s2i is of order 1�"2, therefore via Taylor's expansion 1�si � "22 + "44is a good approximation. Hene, with the hoie of R giving equality in (4.5) wehave thatkXi=1 pik�x(i) � y0ik2 = kXi=1 s2i � k + 2k � 2 kXi=1 si = kXi=1(s2i � 1) + 2 kXi=1(1� si) � 2k"4that is less than "2 provided that " � 1=p2k holds. Consequently, pik�x(i)�y0ik2 �"2 and k�x(i) � y0k � "0.Let the y0i nearest to �x(i) be denoted by y(x�j ) for every js in Vi (thus y(x�j ) = y0i,8 j 2 Vi). Let Æ denote the minimum distane between the di�erent y0is, that isÆ = minl6=m ky0l � y0mk = minl6=m kyl � ymk = minl6=mr 1pl + 1pm � p2:



ISOPERIMETRIC PROPERTIES OF WEIGHTED GRAPHS 15With them,�k � �(V1; : : : ; Vk) = L(y(x�1); : : : ;y(x�n)) = n�1Xi=1 nXj=i+1wijky(x�i )� y(x�j )k2� n�1Xi=1 nXj=i+1wij(kx�i � x�jk)2 � 2 n�1Xi=1 nXj=i+1wijkx�i � x�jk2= 2L(x�1; : : : ; x�n) = 2 k�1Xi=1 �i;where  = ÆÆ � "0 = 1 + "0Æ � "0 � 1 + "0p2� "0 ;that implies our statement. �The �rst part of the theorem gives �1 � �2 � 2h for k = 2; therefore, italso implies the lower estimate of the Cheeger onstant. The onstant  of theseond part is greater than 1, and it is the loser to 1, the smaller " is. The latterrequirement is satis�ed if there exists a \very" well-separated k-partition of thek-dimensional Eulidean representatives. From the above theorem, we an alsoonlude that the gap in the spetrum is a neessary but not a suÆient onditionof a good lassi�ation. In addition, the Eulidean representatives should be welllassi�ed in the appropriate dimension.AknowledgementsWe would like to thank Profs. G�abor Tusn�ady and Bojan Mohar for their valuableomments.
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