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1 Introduction

The testability of the maximum cut density is stated in [4] based on ear-
lier algorithmic results of [1,8,7]. Roughly speaking, testable parameters are
nonparametric statistics on a large graph that can be approximated by ap-
propriate sampling. We are interested in the minimum cut density which is
somewhat different. We will show that it trivially tends to zero as the num-
ber of the graph’s vertices tends to infinity, whereas the normalized version
of it (cuts are penalized by the volumes of the clusters they connect) is not
testable. For example, if a single vertex is loosely connected to a dense part,
the minimum cut density of the whole graph is small, however, randomizing
a smaller sample, with high probability, it comes from the dense part with a
large minimum normalized cut density. Nonetheless, if we impose conditions
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on the cluster volumes in anticipation, the so obtained balanced minimum
cut densities are testable. Balanced multiway cuts are frequently looked for in
contemporary cluster analysis when we want to find groups of large networks’
vertices with sparse inter-cluster connections, where the clusters do not differ
significantly in sizes.

The organization of the paper is as follows. In Section 2, we adapt the no-
tion and equivalent statements of testability introduced by Borgs, Chayes,
Lovász, Sós, and Vesztergombi [5] to vertex- and edge-weighted graphs with
no dominant vertex-weights. In Section 3, testability of different kinds of min-
imum multiway cut densities is investigated using the equivalent statements
of Section 2 and statistical physics facts of Borgs, Chayes, Lovász, Sós, and
Vesztergombi [6]. In Section 4, continuous extensions of testable minimum
multiway cut densities to graphons are constructed and applied for fuzzy clus-
tering. In Section 5, convergence of special noisy weighted graph sequences is
established.

2 Testable weighted graph parameters

Let G = Gn be a weighted graph on the vertex set V (G) = {1, . . . , n} = [n]
and edge set E(G). Both the edges and vertices have weights: the edge-weights
are pairwise similarities βij = βji ∈ [0, 1] (i, j ∈ [n]), while the vertex-weights
αi > 0 (i ∈ [n]) indicate relative significance of the vertices. Let G denote the
set of all such weighted graphs.

We will intensively use the following notions of [5]. The volume of G ∈ G is
αG =

∑n
i=1 αi, while that of the vertex-subset T is αT =

∑
i∈T αi. Further,

eG(S, T ) =
∑

s∈S

∑
t∈T αsαtβst denotes the weighted cut between the vertex-

subsets S and T . The homomorphism density between the simple graph F (on
vertex set V (F ) = [k]) and the above weighted graph G is

t(F, G) =
1

(αG)k

∑
Φ:V (F )→V (G)

k∏
i=1

αΦ(i)

∏
ij∈E(F )

βΦ(i)Φ(j).

In their theory, the authors of [5] indirectly relate this quantity to the probabil-
ity that the following sampling results in F : k vertices of G are selected with re-
placement out of the n ones, with respective probabilities αi/αG (i = 1, . . . , n);
given the vertex-subset {Φ(1), . . . , Φ(k)}, the edges come into existence condi-
tionally independently, with probabilities of the edge-weights. Such a random
simple graph is denoted by ξ(k,G).

The weighted graph sequence (Gn) is said to-be (left-)convergent, if the se-
quence t(F, Gn) converges for any simple graph F (n → ∞). As other kinds
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of convergence are not discussed here, in the sequel we omit the word left and
simply use convergence. The authors in [9] also construct the limit object that
is a symmetric, bounded, measurable function W : [0, 1] × [0, 1] → R called
graphon. Let W denote the set of these functions. The interval [0,1] corre-
sponds to the vertices and the values W (x, y) = W (y, x) to the edge-weights.
In view of the conditions imposed on the edge-weights, the range is also the
[0,1] interval. The set of symmetric, measurable functions W : [0, 1]× [0, 1] →
[0, 1] is denoted by W[0,1]. The stepfunction graphon WG ∈ W[0,1] is assigned
to the weighted graph G ∈ G in the following way: the sides of the unit square
are divided into intervals I1, . . . , In of lengths α1/αG, . . . , αn/αG, and over the
rectangle Ii × Ij the stepfunction takes on the value βij.

The so-called cut-distance between the graphons W and U is

δ�(W, U) = inf
ν
‖W − U ν‖� (1)

where the cut-norm of the graphon W ∈ W is defined by

‖W‖� = sup
S,T⊂[0,1]

∣∣∣∣∫∫
S×T

W (x, y) dx dy

∣∣∣∣ ,
and the infimum in (1) is taken over all measure preserving bijections ν :
[0, 1] → [0, 1], while U ν denotes the transformed U after performing the same
measure preserving bijection ν on both sides of the unit square. Graphons are
considered modulo measure preserving maps, and under graphon the whole
equivalence class is understood. We also cite the definition of the cut-distance
between weighted graphs and between a graphon and a graph:

δ�(G, G′) = δ�(WG, WG′) and δ�(W, G) = δ�(W, WG).

A function f : G → R is called a graph parameter if it is invariant under
isomorphism. In fact, a graph parameter is a statistic evaluated on the graph,
and hence, we are interested in weighted graph parameters that are not sensi-
tive to minor changes in the weights of the graph. The testability results of [5]
for simple graphs remain valid if we consider weighted graph sequences (Gn)

with no dominant vertex-weights, that is maxi
αi(Gn)
αGn

→ 0 as n →∞.

To use this condition imposed on the vertex-weights, we slightly modify the
definition of a testable graph parameter for weighted graphs.

Definition 1 A weighted graph parameter f is testable if for every ε > 0
there is a positive integer k such that if G ∈ G satisfies

max
i

αi(G)

αG

≤ 1

k
, (2)
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then

P(|f(G)− f(ξ(k,G))| > ε) ≤ ε, (3)

where ξ(k,G) is a random simple graph on k vertices selected randomly from
G as described above.

Note that for simple G, the condition (2) implies that |V (G)| ≥ k, giving
back the definition in [5]. By the above definition, a testable graph parameter
can be consistently estimated based on a fairly large sample. As the random-
ization depends only on the αi(G)/αG ratios, it is not able to distinguish
between weighted graphs whose vertex-weights differ only in a constant fac-
tor. Thus, a testable weighted graph parameter is invariant under scaling the
vertex-weights. Now, we introduce some equivalent statements of the testabil-
ity, indicating that a testable parameter depends continuously on the whole
graph. This is the straightforward generalization of Theorem 6.1 of [5] stated
for simple graphs. We omit the proof as it uses the ideas of the proof in [5],
where some details for such a generalization are also elaborated.

Theorem 2 For the weighted graph parameter f the following are equivalent:

(a) f is testable.
(b) For every ε > 0 there is a positive integer k such that for every weighted

graph G ∈ G satisfying the node-condition maxi αi(G)/αG ≤ 1/k,

|f(G)− E(f(ξ(k,G)))| ≤ ε.

(c) For every convergent weighted graph sequence (Gn) with maxi αi(Gn)/αGn →
0, f(Gn) is also convergent (n →∞).

(d) f can be extended to graphons such that the graphon functional f̃ is continu-
ous in the cut-norm and f̃(WGn)−f(Gn) → 0, whenever maxi αi(Gn)/αGn →
0 (n →∞).

(e) For every ε > 0 there is an ε0 > 0 real and an n0 > 0 integer such that if
G1, G2 are weighted graphs satisfying maxi αi(G1)/αG1 ≤ 1/n0, maxi αi(G2)/αG2 ≤
1/n0, and δ�(G1, G2) < ε0, then |f(G1)− f(G2)| < ε.

3 Balanced multiway cuts

In this section we investigate the testability of some balanced multiway cut
densities. For the proofs we use Theorem 2 and some notions of statistical
physics in the same way as in [6].

Let G ∈ G be a weighted graph on n vertices with vertex-weights α1, . . . , αn

and edge-weights βij’s. Let q ≤ n be a fixed positive integer, and Pq denote
the set of q-partitions P = (V1, . . . , Vq) of the vertex set V . The non-empty,
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disjoint vertex-subsets sometimes are referred to as clusters or states. The
factor graph or q-quotient of G with respect to the q-partition P is denoted
by G/P and it is defined as the weighted graph on q vertices with vertex- and
edge-weights

αi(G/P ) =
αVi

αG

(i ∈ [q]) and βij(G/P ) =
eG(Vi, Vj)

αVi
αVj

(i, j ∈ [q]),

respectively. Let Ŝq(G) denote the set of all q-quotients of G. The Hausdorff

distance between Ŝq(G) and Ŝq(G
′) is defined by

dHf(Ŝq(G), Ŝq(G
′)) = max{ sup

H∈Ŝq(G)

inf
H′∈Ŝq(G′)

d1(H, H ′) , sup
H′∈Ŝq(G′)

inf
H∈Ŝq(G)

d1(H, H ′)},

where

d1(H, H ′) =
∑

i,j∈[q]

∣∣∣∣∣αi(H)αj(H)βij(H)

α2
H

− αi(H
′)αj(H

′)βij(H
′)

α2
H′

∣∣∣∣∣+∑
i∈[q]

∣∣∣∣∣αi(H)

αH

− αi(H
′)

αH′

∣∣∣∣∣
is the l1-distance between two weighted graphs H and H ′ on the same number
of vertices. (If especially, H and H ′ are factor graphs, then αH = αH′ = 1.)

Given the real symmetric q× q matrix J and the vector h ∈ Rq, the partitions
P ∈ Pq also define a spin system on the weighted graph G. The so-called
ground state energy of such a spin configuration is

Êq(G,J,h) = −max
P∈Pq

∑
i∈[q]

αi(G/P )hi +
∑

i,j∈[q]

αi(G/P )αj(G/P )βij(G/P )Jij

 ,

where J is the so-called coupling-constant matrix with Jij representing the
strength of interaction between states i and j, and h is the magnetic field.
They carry physical meaning. We shall use only special J and h.

Sometimes, we need balanced q-partitions to regulate the proportion of the
cluster volumes. A slight balancing between the cluster volumes is achieved by
fixing a positive real number c (c ≤ 1/q). Let Pc

q denote the set of q-partitions

of V such that
αVi

αG
≥ c (i ∈ [q]), or equivalently, c ≤ αVi

αVj
≤ 1

c
(i 6= j). A more

accurate balancing is defined by fixing a probability vector a = (a1, . . . , aq)
with components forming a probability distribution over [q]: ai > 0 (i ∈ [q]),∑q

i=1 ai = 1. Let Pa
q denote the set of q-partitions of V such that

(
αV1

αG
, . . . ,

αVq

αG

)
is approximately a-distributed, that is

∣∣∣αVi

αG
− ai

∣∣∣ ≤ αmax(G)
αG

(i = 1, . . . , q).

Observe that the above difference tends to 0 as |V (G)| → ∞ for weighted
graphs with no dominant vertex-weights.
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The microcanonical ground state energy of G given a and J (h = 0) is

Êa
q (G,J) = −max

P∈Pa
q

∑
i,j∈[q]

αi(G/P )αj(G/P )βij(G/P )Jij.

Fact 3 In Theorem 2.14 of [6] it is proved that the convergence of the weighted
graph sequence (Gn) with no dominant vertex-weights is equivalent to the con-
vergence of its microcanonical ground state energies for any q, a, and J. Also,
it is equivalent to the convergence of its q-quotients in Hausdorff distance for
any q.

Fact 4 Under the same conditions, Theorem 2.15 of [6] states that the con-
vergence of the above (Gn) implies the convergence of its ground state energies
for any q, J, and h.

Using these facts, we investigate the testability of some special multiway cut
densities defined in the forthcoming definitions.

Definition 5 The minimum q-way cut density of G is

fq(G) = min
P∈Pq

1

α2
G

q−1∑
i=1

q∑
j=i+1

eG(Vi, Vj),

the minimum c-balanced q-way cut density of G is

f c
q (G) = min

P∈Pc
q

1

α2
G

q−1∑
i=1

q∑
j=i+1

eG(Vi, Vj),

and the minimum a-balanced q-way cut density of G is

fa
q (G) = min

P∈Pa
q

1

α2
G

q−1∑
i=1

q∑
j=i+1

eG(Vi, Vj).

Occasionally, we want to penalize cluster volumes that significantly differ. We
therefore introduce the notions of minimum normalized cut densities.

Definition 6 The minimum normalized q-way cut density of G is

µq(G) = min
P∈Pq

q−1∑
i=1

q∑
j=i+1

1

αVi
· αVj

· eG(Vi, Vj),

the minimum normalized c-balanced q-way cut density of G is

µc
q(G) = min

P∈Pc
q

q−1∑
i=1

q∑
j=i+1

1

αVi
· αVj

· eG(Vi, Vj),
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and the minimum normalized a-balanced q-way cut density of G is

µa
q (G) = min

P∈Pc
q

q−1∑
i=1

q∑
j=i+1

1

αVi
· αVj

· eG(Vi, Vj).

Proposition 7 fq(G) is testable for any q ≤ |V (G)|.

PROOF. Observe that fq(G) is a special ground state energy: fq(G) =

Êq(G,J,0), where the magnetic field is 0 and the q × q symmetric matrix
J is the following: Jii = 0 (i ∈ [q]), further Jij = −1/2 (i 6= j). By Fact 4 and
the equivalent statement (c) of Theorem 2, the minimum q-way cut density is
testable for any q. 2

However, this statement is of not much use, since fq(Gn) → 0 as n → ∞, in
the lack of dominant vertex-weights. Indeed, the minimum q-way cut density
is trivially estimated from above by

fq(Gn) ≤ (q − 1)
αmax(Gn)

αGn

+

(
q − 1

2

)(
αmax(Gn)

αGn

)2

that tends to 0 provided αmax(Gn)/αGn → 0 as n →∞.

Proposition 8 fa
q (G) is testable for any q ≤ |V (G)| and probability vector a

over [q].

PROOF. Choose J as in the proof of Proposition 7. In this way, fa
q (G) is a

special microcanonical ground state energy:

fa
q (G) = Êa

q (G,J). (4)

Hence, by Fact 3, the convergence of (Gn) is equivalent to the convergence of
fa

q (Gn) for any q and any distribution a over [q]. Therefore, by the equivalent
statement (c) of Theorem 2, the testability of the minimum a-balanced q-way
cut density also follows. 2

Proposition 8 and Fact 3 together imply the following less obvious statement.

Theorem 9 f c
q (G) is testable for any q ≤ |V (G)| and c ≤ 1/q.

PROOF. Theorem 4.7 and Theorem 5.5 of [6] imply that for any two weighted
graphs G, G′

|Êa
q (G,J)− Êa

q (G′,J)| ≤ (3/2 + κ) · dHf(Ŝq(G), Ŝq(G
′)), (5)
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where κ = o(min{|V (G)|, |V (G′)|}) is a negligible small constant, provided
the number of vertices of G and G′ is sufficiently large. By Fact 3, we know
that if (Gn) converges, its q-quotients also converge in Hausdorff distance,
consequently, form a Cauchy-sequence. This means that for any ε > 0 there
is an N0 such that for n, m > N0: dHf(Ŝq(Gn), Ŝq(Gm)) < ε. We want to
prove that for n, m > N0: |f c

q (Gn)− f c
q (Gm)| < 2ε. On the contrary, suppose

that there are n, m > N0 such that |f c
q (Gn) − f c

q (Gm)| ≥ 2ε. Say, f c
q (Gn) ≥

f c
q (Gm). Let A := {a : ai ≥ c , i = 1, . . . , q} is the subset of special c-balanced

distributions over [q]. On the one hand,

f c
q (Gm) = min

a∈A
fa

q (Gm) = fa∗

q (Gm)

for some a∗ ∈ A. On the other hand, by (4) and (5), fa∗
q (Gn) − fa∗

q (Gm) ≤
(3

2
+ κ)ε, that together with the indirect assumption implies that f c

q (Gn) −
fa∗

q (Gn) ≥ (1
2
− κ)ε > 0 for this a∗ ∈ A. But this contradicts to the fact that

f c
q (Gn) is the minimum of fa

q (Gn)’s over A. Thus, f c
q (Gn) is also a Cauchy

sequence, and being a real sequence, it is also convergent. 2

Now consider the normalized density µq(G) = minP∈Pq

∑q−1
i=1

∑q
j=i+1 βij(G/P ).

It is not testable as the following example shows: let q = 2 and Gn be a simple
graph on n vertices such that about

√
n vertices are connected with a single

edge to the remaining vertices that form a complete graph. Then µ2(Gn) → 0,
but randomizing a sufficiently large part of the graph, with high probability, it
will be a subgraph of the complete graph, whose minimum normalized 2-way
cut density is of constant order. However, balanced versions of the minimum
normalized q-way cut density are testable.

Theorem 10 µa
q (G) is testable for any q ≤ |V (G)| and probability vector a

over [q].

PROOF. By the definition of Hausdorff distance, the convergence of q-quotients
guarantees the convergence of

µa
q (G) = min

P∈Pa
q

q−1∑
i=1

q∑
j=i+1

βij(G/P ) (6)

for any a and q in the following way. Let Ŝa
q (G) denote the set of factor graphs

of G with respect to partitions in Pa
q . As a consequence of Lemma 4.5 and

Theorem 5.4 of [6], for any two weighted graphs G, G′

max
a

dHf (Ŝa
q (G), Ŝa

q (G′)) ≤ (3 + κ) · dHf (Ŝq(G), Ŝq(G
′)), (7)

where κ = o(min{|V (G)|, |V (G′)|}).
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By Fact 3, for a convergent graph-sequence (Gn), the sequence Ŝq(Gn) con-

verges, and by the inequality (7), Ŝa
q (Gn) also converges in Hausdorff distance

for any distribution a over [q]. As they form a Cauchy sequence, ∀ε ∃N0 such
that for n, m > N0

dHf (Ŝa
q (Gn), Ŝa

q (Gm)) < ε

uniformly for any a. In view of the Hausdorff distance’s definition, this means
that for any q-quotient H ∈ Ŝa

q (Gn) there exists (at least one) q-quotient

H ′ ∈ Ŝa
q (Gm), and vice versa, for any H ′ ∈ Ŝa

q (Gm) there exists (at least

one) H ∈ Ŝa
q (Gn) such that d1(H, H ′) < ε. Therefore, the maximum distance

between the elements of the above pairs is less than ε. (Note that the symmetry
in the definition of the Hausdorff distance is important: the pairing exhausts
the sets even if they have different cardinalities.)

Using the fact that the vertex-weights of such a pair H and H ′ are almost the
same (the coordinates of the vector a), by the notation a = mini∈[q] ai, the
following argument is valid for n, m large enough:

2a2
∑
i6=j

|βij(H)− βij(H
′)| ≤

q∑
i,j=1

a2|βij(H)− βij(H
′)| ≤

≤
q∑

i,j=1

|αi(H)αj(H)βij(H)− αi(H
′)αj(H

′)βij(H
′)| = d1(H, H ′) < ε.

Therefore

|
q−1∑
i=1

q∑
j=i+1

βij(H)−
q−1∑
i=1

q∑
j=i+1

βij(H
′)| < ε

2a2
:= ε′,

and because
∑q−1

i=1

∑q
j=i+1 βij(H) and

∑q−1
i=1

∑q
j=i+1 βij(H

′) are individual terms
behind the minimum in (6), the above inequality holds for their minima over
Pa

q as well:

|µa
q (Gn)− µa

q (Gm)| < ε′. (8)

Consequently, the sequence µa
q (Gn) is a Cauchy sequence, and being a real

sequence, it is also convergent. Thus µa
q is testable. 2

Proposition 11 µc
q(G) is testable for any q ≤ |V (G)| and c ≤ 1/q.

PROOF. The proof is analogous to that of Theorem 9 using equation (8)
instead of equation (5). By the pairing argument of the proof of Theorem 10,
the real sequence µc

q(Gn) is a Cauchy sequence, and therefore, convergent.
This immediately implies the testability of µc

q. 2
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4 Balanced minimum cuts and fuzzy clustering

In cluster analysis of large data sets, the testable parameters f c
q (G) and µc

q(G)
have the greatest relevance as they require only a slight balancing between
the clusters. Now, they are continuously extended to graphons by an explicit
construction.

Proposition 12 Let us define the graphon functional f̃ c
q in the following way:

f̃ c
q (W ) := inf

Q∈Qc
q

q−1∑
i=1

q∑
j=i+1

∫∫
Si×Sj

W (x, y) dx dy = inf
Q∈Qc

q

f̃q(W ; S1, . . . , Sq) (9)

where the infimum is taken over all the c-balanced Lebesgue-measurable par-
titions Q = (S1, . . . , Sq) of [0,1]. For these,

∑q
i=1 λ(Si) = 1 and λ(Si) ≥ c

(i ∈ [q]), where λ denotes the Lebesgue-measure, and Qc
q denotes the set of

c-balanced q-partitions of [0,1]. We state that f̃ c
q is the extension of f c

q in the
following sense: If (Gn) is a convergent weighted graph sequence with no dom-
inant vertex-weights and edge-weights in the [0,1] interval, then denoting by
W the essentially unique limit graphon of the sequence, f c

q (Gn) → f̃ c
q (W ) as

n →∞.

PROOF. First we show that f̃ c
q is continuous in the cut-distance. As f̃ c

q (W ) =

f̃ c
q (W

ν), where ν : [0, 1] → [0, 1] is a measure preserving bijection, it suffices
to prove that to any ε we can find ε′ such that for any two graphons W, U
with ‖W − U‖� < ε′, the relation |f̃ c

q (W ) − f̃ c
q (U)| < ε also holds. Indeed,

by the definition of the cut-norm, for any Lebesgue-measurable q-partition
(S1, . . . , Sq) of [0,1], the relation

|
∫∫

Si×Sj

(W (x, y)− U(x, y)) dx dy| ≤ ε′ (i 6= j)

holds. Summing up for the i 6= j pairs

|
q−1∑
i=1

q∑
j=i+1

∫∫
Si×Sj

W (x, y) dx dy −
q−1∑
i=1

q∑
j=i+1

∫∫
Si×Sj

U(x, y) dx dy| ≤
(

q

2

)
ε′.

Therefore

inf
(S1,...,Sq)∈Qc

q

q−1∑
i=1

q∑
j=i+1

∫∫
Si×Sj

W (x, y) dx dy ≥ inf
(S1,...,Sq)∈Qc

q

q−1∑
i=1

q∑
j=i+1

∫∫
Si×Sj

U(x, y) dx dy−
(

q

2

)
ε′

and vice versa,

inf
(S1,...,Sq)∈Qc

q

q−1∑
i=1

q∑
j=i+1

∫∫
Si×Sj

U(x, y) dx dy ≥ inf
(S1,...,Sq)∈Qc

q

q−1∑
i=1

q∑
j=i+1

∫∫
Si×Sj

W (x, y) dx dy−
(

q

2

)
ε′.
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Consequently the absolute difference of the two infima is bounded from above
by

(
q
2

)
ε′. Thus, ε′ = ε/

(
q
2

)
will do.

Let (Gn) be a convergent weighted graph sequence with no dominant vertex-
weights and edge-weights in the [0,1] interval. By Theorem 3.9 of [5], there is
an essentially unique graphon W such that Gn → W , i.e., δ�(WGn , W ) → 0
as n →∞. By the continuity of f̃ c

q ,

f̃ c
q (WGn) → f̃ c

q (W ), n →∞. (10)

Suppose that
f̃ c

q (WGn) = f̃q(WGn ; S∗1 , . . . , S
∗
q ),

that is the infimum in (9) is attained at the c-balanced Lebesgue-measurable
q-partition (S∗1 , . . . , S

∗
q ) of [0,1].

Let G∗
nq be the q-fold blown-up of Gn with respect to (S∗1 , . . . , S

∗
q ). It is a

weighted graph on at most nq vertices defined in the following way. Let
I1, . . . , In be consecutive intervals of [0,1] such that λ(Ij) = αj(Gn), j =
1, . . . , n. The weight of the vertex labeled by ju of G∗

nq is λ(Ij∩S∗u), u ∈ [q], j ∈
[n], while the edge-weights are βju,iv(G

∗
nq) = βji(Gn). Trivially, the graphons

WGn and WG∗
nq

essentially define the same stepfunction, hence f̃ c
q (WGn) =

f̃ c
q (WG∗

nq
). Therefore, by (10),

f̃ c
q (WG∗

nq
) → f̃ c

q (W ), n →∞. (11)

As δ�(Gn, G
∗
nq) = δ�(WGn , WG∗

nq
) = 0, by part (e) of Theorem 2 it follows

that
|f c

q (G
∗
nq)− f c

q (Gn)| → 0, n →∞. (12)

Finally, by the construction of G∗
nq, f̃ c

q (WG∗
nq

) = f c
q (G

∗
nq), and hence,

|f c
q (Gn)− f̃ c

q (W )| ≤ |f c
q (Gn)− f c

q (G
∗
nq)|+ |f̃ c

q (WG∗
nq

)− f̃ c
q (W )|

which, in view of (11) and (12), implies the required statement. 2

The above continuous extension of f c
q (G) to graphons is essentially unique (the

proof of Theorem 6.1 of [5] can be adapted to this situation), and part (d) of

Theorem 2 implies that for a weighted graph sequence (Gn) with maxi
αi(Gn)
αGn

→
0, the limit relation f̃ c

q (WGn) − f c
q (Gn) → 0 also holds as n → ∞. This gives

rise to approximate the minimum c-balanced q-way cut density of a weighted
graph on a large number of vertices with no dominant vertex-weights by the
extended c-balanced q-way cut density of the stepfunction graphon assigned to
the graph. In this way, the discrete optimization problem can be formulated as
a quadratic programming task with linear equality and inequality constraints,
and fuzzy clusters are obtained.

11



To this end, let us investigate a fixed weighted graph G on n vertices (n
is large). To simplify notation we will drop the subscript n, and G in the
arguments of the vertex- and edge-weights. As f c

q (G) is invariant under scaling
the vertex-weights, we can suppose that αG =

∑n
i=1 αi = 1. As βij ∈ [0, 1], WG

is uniformly bounded by 1. Recall that WG(x, y) = βij, if x ∈ Ii, y ∈ Ij, where
λ(Ij) = αj (j = 1, . . . , n) and I1, . . . , In are consecutive intervals of [0,1].

For fixed q and c ≤ 1/q, fq(G; V1, . . . , Vq) = 1
α2

G

∑q−1
i=1

∑q
j=i+1 eG(Vi, Vj) is a

function taking on discrete values over c-balanced q-partitions P = (V1, . . . , Vq) ∈
Pc

q of the vertices of G. As n →∞, this function approaches f̃q(WG; S1, . . . , Sq)
that is already a continuous function over c-balanced q-partitions (S1, . . . , Sq) ∈
Qc

q of [0,1]. In fact, this continuous function is a multilinear function of the
variable

x = (x11, . . . , x1n, x21, . . . , x2n, . . . , xq1, . . . , xqn)T ∈ Rnq

where the coordinate indexed by ij is

xij = λ(Si ∩ Ij), j = 1, . . . , n; i = 1, . . . q.

Hence,

f̃q(WG; S1, . . . , Sq) = f̃q(x) =
q−1∑
i=1

q∑
i′=i+1

n∑
j=1

n∑
j′=1

xijxi′j′βjj′ =
1

2
xT (A⊗B)x,

where – denoting by 1q×q and Iq×q the q × q all 1’s and the identity matrix,
respectively – the eigenvalues of the q × q symmetric matrix A = 1q×q − Iq×q

are the number q − 1 and -1 with multiplicity q − 1, while those of the n ×
n symmetric matrix B = (βij) are λ1 ≥ · · · ≥ λn. The eigenvalues of the
Kronecker-product A ⊗ B are the numbers (q − 1)λi (i = 1, . . . , n) and −λi

with multiplicity q − 1 (i = 1, . . . , n). Therefore the above quadratic form is
indefinite.

Hence, we have the following quadratic programming task:

minimize f̃q(x) =
1

2
xT (A⊗B)x

subject to x ≥ 0;
q∑

i=1

xij = αj (j ∈ [n]);
n∑

j=1

xij ≥ c (i ∈ [q]).
(13)

The feasible region is the closed convex polytope of (13), and it is, in fact,
in an n(q − 1)-dimensional hyperplane of Rnq. The gradient of the objective
function ∇f̃q(x) = (A⊗B)x cannot be 0 in the feasible region, provided the
weight matrix B, or equivalently, A⊗B is not singular.

The arg-min x∗ of the quadratic programming task (13) is one of the Kuhn–
Tucker points (giving relative minima of the indefinite quadratic form over the

12



feasible region), that can be found by numerical algorithms, see [2]. In this
way, for large n, we also get fuzzy clustering of the vertices, whereas x∗ij/λ(Si)
is the probability that vertex j belongs to cluster i. The index i giving the
largest proportion can be regarded as the cluster membership of vertex j. We
conjecture that most of the vertices j can be uniquely assigned to a cluster i for
which x∗ij = αj, and there will be Θ(q) vertices with 0 < x∗ij < αj (i = 1, . . . , q).
Indeed, the minimum is more likely to be attained at a low-dimensional face,
as here a lot of inequality constraints of (13) are satisfied by equalities that
causes many coordinates of x∗ to be zeros. On higher dimensional faces the
small number of equalities may come from the last q ones.

More generally, the above problem can be solved with other equality or in-
equality constraints making it possible to solve individual fuzzy clustering
problems by quadratic programming. Similarly, the extension of the testable
weighted graph parameter µc

q(G) to graphons can be given and used for fuzzy
clustering.

5 Noisy graph sequences

Now, we use the above theory for perturbations, showing that special noisy
weighted graph sequences converge in the sense of Section 2. If not stated
otherwise, the vertex-weights are equal (say 1), and a weighted graph G on n
vertices is determined by its n×n symmetric weight matrix A. Let GA denote
the weighted graph with unit vertex-weights and edge-weights that are entries
of A. We will use the following definitions of [3].

Definition 13 Let wij (1 ≤ i ≤ j ≤ n) be independent random variables
defined on the same probability space, and wji = wij. E(wij) = 0 (∀i, j) and
the wij’s are uniformly bounded, i.e., there is a constant K > 0 – that does
not depend of n – such that |wij| ≤ K, ∀i, j. The n×n symmetric real random
matrix Wn = (wij)1≤i≤n, 1≤j≤n is called a Wigner-noise.

Definition 14 The n × n symmetric real matrix B is a blown-up matrix, if
there is a q× q symmetric so-called pattern matrix P with entries 0 < pij < 1,
and there are positive integers n1, . . . , nq with

∑q
i=1 ni = n, such that – after

rearranging its rows and columns – the matrix B can be divided into q × q
blocks, where block (i, j) is an ni × nj matrix with entries all equal to pij

(1 ≤ i, j ≤ n).

Let us fix P, blow it up to an n×n matrix Bn, and consider the noisy matrix
An = Bn + Wn as n1, . . . , nq →∞ at the same rate. While perturbing Bn by
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Wn, suppose that for the uniform bound of the entries of Wn the condition

K ≤ min{min
i,j∈[q]

pij , 1− max
i,j∈[q]

pij} (14)

is satisfied. In this way, the entries of An are in the [0,1] interval, and hence,
GAn ∈ G. We remark that GWn /∈ G, but WGWn

∈ W and the theory of
bounded graphons applies to it. In [3] we show that by adding an appropriate
Wigner-noise to Bn, we can achieve that An becomes a 0-1 matrix: its entries
are equal to 1 with probability pij and 0 otherwise within the block of size
ni×nj (after rearranging its rows and columns). In this case, the corresponding
noisy graph GAn is a random simple graph, called generalized random graph,
see e.g., [11].

By routine large deviation techniques we are able to prove that the cut-norm
of a stepfunction graphon assigned to a Wigner-noise tends to zero with prob-
ability 1 as n →∞.

Theorem 15 For any sequence Wn of Wigner-noises

lim
n→∞

‖WGWn
‖� = 0 (n →∞)

almost surely.

The main idea of the proof is that by the definition of the cut-norm of a
stepfunction graphon and by using formulas (7.2), (7.3) of [5]:

‖WGWn
‖� =

1

n2
max

U,T⊂[n]

∣∣∣∣∣∣
∑
i∈U

∑
j∈T

wij

∣∣∣∣∣∣ ≤ 6 max
U⊂[n]

1

n2

∣∣∣∣∣∣
∑
i∈U

∑
j∈[n]\U

wij

∣∣∣∣∣∣ ,
where the entries behind the latter double sum are independent random vari-
ables. Hence, the Azuma’s inequality is applicable, and the statement follows
by the Borel-Cantelli lemma.

Let An := Bn + Wn and n1, . . . , nq → ∞ in such a way that limn→∞
ni

n
= ri

(i = 1, . . . , q), n =
∑q

i=1 ni; further, for the uniform bound K of the entries of
the matrix Wn the condition (14) is satisfied. Under these conditions, The-
orem 15 implies that the noisy graph sequence (GAn) ⊂ G converges almost
surely in the δ� metric. It is easy to see that the almost sure limit is the
stepfunction WH , where the vertex- and edge-weights of the weighted graph
H are

αi(H) = ri (i ∈ [q]), βij(H) = pij (i, j ∈ [q]).

By adding a special Wigner-noise, the noisy graph sequence (GAn) becomes a
generalized quasirandom graph sequence with the model graph H, see [10].
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