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Introduction



Number systems

Reminder
▶ N = {1, 2, 3, . . . } is the set of Natural numbers
▶ Z = {. . . ,−1, 0, 1, . . . } is the set of integers (Zahlen)

Remark
In general N might denote {0, 1, 2, 3, . . . } as well, but we will stick
to the terminology above. If we want to emphasize which one we
use we can write N+ or N0.

Reminder
▶ R is the set of Real numbers.
▶ Q = {p/q ∈ R|p, q ∈ Z, q ̸= 0} is the set of rational numbers

(Quotient numbers).
▶ The set R −Q containts the irrational numbers.



Remark
▶ It is easy to show that a number x is rational: it is enough to

show that there exists p, q such that x = p/q.
▶ It is also not hard to show that "most of" the real numbers are

irrational.
▶ But it is relatively hard to prove that a given number x is

irrational (as we should verify infinitely many pairs (p, q)).

Theorem
√

2 is irrational.

Remark
√
n is either irrational or an integer for n ∈ N.

Theorem
▶ e (the Euler’s number) is irrational (Euler, ∼ 1737).
▶ π (the length of the half perimeter of the unit circle) is

irrational (Lambert, 1761).



For the proof of the irrationality of
√

2 we introduce the notion of
ordering of a set:

Definition
Let X be a set.
▶ A relation < on X is an (total) ordering if

▶ it is trichotomic (for any x , y ∈ X exactly one of the following
holds: 1. x = y , 2. x < y and 3. y < x) and

▶ it is transitive (x < y , y < z implies x < z)

▶ A subset S ⊂ X is well ordered if for any T ⊂ S , T ̸= ∅ has
a least element.

Example
(R, <) is an ordered set.
N is well ordered – well ordering principle, but Z is not.



Definition
▶ x ∈ R is algebraic if there exists n ∈ N and a0, a1, . . . , an ∈ Z

(a polynomial f ∈ Z[x ]) such that

f (x) = anx
n + an−1x

n−1 + . . . a1x + a0 = 0

▶ x ∈ R is transcendental if it is not algebraic.

Example
▶ All x = p/q ∈ Q is algebraic: qx − p = 0 (n = 1).
▶
√

2 is algebraic: x2 − 2 = 0 (n = 2).

Again "most" of the real numbers are transcendental, but it is
much harder to prove that for a given x :

Theorem
▶ e is transcendental (Hermite, 1873).
▶ π is transcendental (von Lindemann, 1882).



Induction and recursion

Theorem (The technique of mathematical induction)

Let P(n) be statements
for all n ∈ N. If
1. P(1) is true and
2. P(n) =⇒ P(n+ 1)

for all n,
then P(n) is true
for all n.

⇐⇒

Let S ⊆ N such that
1. 1 ∈ S and
2. n ∈ S =⇒ n+1 ∈ S

for all n,
then S = N.

Example
The following identity holds for all n ∈ N:

1 · 2 + 2 · 3 + · · ·+ n · (n + 1) =
n∑

k=1

k(k + 1) =
n(n + 1)(n + 2)

3
.



Definition
A recursive sequence is a sequence of numbers defined by
▶ the exact value of the first (few) entries a1, a2, . . . , an0 and
▶ a formula f for the othes containing the earlier entries:

an = f (a1, . . . , an−1).

Example
▶ The Fibonacci numbers are f1 = f2 = 1 and fn = fn−1 + fn−2

for n ≥ 3. The first few entries are: 1, 1, 2, 3, 5, 8, 13, 21, 34.
▶ The Catalan numbers C0 = 1 and Cn =

∑n−1
k=0 CkCn−k−1. The

first few entries are: 1, 1, 2, 5, 14, 42, 132, 429, 1430.
▶ If the following number contains n fractions then

1 +
1

1 +
1

1 +
1

. . . +
1

1 + 1

=
fn+3

fn+2



Approximation with rationals

Definition
For x ∈ R let
▶ [x ] = ⌊x⌋ = max(n ∈ Z|n ≤ x) be the integral part of x ,
▶ ⌈x⌉ = min(n ∈ Z|x ≤ n) and
▶ {x} = x − [x ] be the fractional part of x .

Example
[0] = 0, [π] = 3, [−π] = −4, {4/3} = {1/3} = 1/3.

Remark
Note that the best approximation of x with integers is either ⌊x⌋ or
⌈x⌉.



Theorem (Dirichlet’s approximation theorem)
For all x ∈ R and n ∈ N there exists a, b ∈ Z, 1 ≤ a ≤ n such that
|ax − b| < 1/n.

Corollary
There is no "best approximation", in other words Q is dense in R.

Theorem (Diophantine approximation)
For all irrational number x there exist infinitely many pairs
a, b ∈ Z, a ̸= 0 such that ∣∣∣∣x − b

a

∣∣∣∣ < 1
a2 .

Remark
▶ We can get a fraction only from finitely many equivalent way.

▶ A stronger statement is true: we can write
1

2a2 instead of
1
a2 .



Definition
▶ Let a0, a1, . . . , an ∈ R − {0}. The continued fraction

[a0, a1, . . . , an] = a0 +
1

a1 +
1

a2 +
1

. . . +
1
an

▶ For x ∈ R let a0 = [x ] and x1 = {x}. If x1 ̸= 0 then let

a1 =

[
1
x1

]
and x2 =

{
1
x1

}
, so x = [a0, a1 + x2]. Similarly if

xn ̸= 0, then let an =

[
1
xn

]
and xn+1 =

{
1
xn

}
, so

x = [a0, a1, . . . , an + xn+1].
▶ The continued fraction form of x is [a0, a1, . . . , an] if

xn+1 = 0 for some n, and the infinite continued fraction
[a0, a1, a2, . . . ] if xn ̸= 0 for all n.



Example
▶
√

2 = [1, 2, 2, 2, . . . ]
▶
√

15 = [3, 1, 6, 1, 6, 1, 6, . . . ]
▶ e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, . . . ]
▶ π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, . . . ]

▶
1 +
√

5
2

= [1, 1, 1, . . . ]

Theorem
The continued fraction form of x is finite ⇐⇒ x ∈ Q.

Theorem
Let x = [a0, a1, a2, . . . ] be an irrational number and for any n ∈ N

let
pn
qn

= [a0, a1, . . . , an], with gcd(pn, qn) = 1. Then for all n ∈ N

a)
∣∣∣∣x − pn

qn

∣∣∣∣ < 1
q2
n

, and

b) either
∣∣∣∣x − pn

qn

∣∣∣∣ < 1
2q2

n

or
∣∣∣∣x − pn+1

qn+1

∣∣∣∣ < 1
2q2

n+1
.



Elementary arithmetic of integers



Rings

Reminder
Arithmetic properties of integers:
For any a, b, c ∈ Z we have:

addition multiplication
associativity (a+ b) + c = a+ (b + c) (ab)c = a(bc)
commutativity a+ b = b + a
identity ∃0 ∈ Z : 0 + a = a ∃1 ∈ Z : 1 · a = a
inverse ∃(−a) : a+ (−a) = 0
distributivity: a(b + c) = ab + ac .

Definition
Let R be a set and +, · be binary operations on it (i. e. +, · are
R × R → R functions). We call (R,+, ·) a ring if the above
properties hold for all a, b, c ∈ R .



Example
▶ Z,Q and R are rings with the usual operations.
▶ N is not a ring with the usual operations.
▶ For a ring R the set R[x ] of polynomials with variable x and

coefficients in R and the usual operations is also a ring. For
example Z[x ] is the ring of polynomials with integral
coefficients.

▶ The set of even numbers is a so called non-unital ring with the
usual operations.

▶ The set Zn of modulo n residue classes with the modular
operations form a ring for any n ∈ N.

▶ The set of n × n matrices with the usual operations (if you
know it) is a noncommutative ring for n > 1.

Remark
Parts of what we will do for integers can be done generally for
commutative rings.



Divisibility

Definition
The integer a is a divisor of the integer b – notation: a|b – if there
exists an integer d such that b = ad .
a is a proper divisor of b if a|b and a ̸= ±1,±b.

Theorem (Basic properties of divisibility)
For all integers a, b, c ,m, n we have

1. a|a,
2. a|b, b|c =⇒ a|c ,
3. a|b, a|c =⇒ a|(mb + nc) and
4. a|b,m|n =⇒ am|bn.

Example
▶ Either 4|n2 or 8|n2 − 1 for any n ∈ N.
▶ 7|(32n+1 + 2n+2) for all n ∈ N.



Units

Definition
Let R be a ring. a ∈ R is a unit if for all r ∈ R a|r .

Example
What are the units in
▶ Z,
▶ Q,
▶ the nonunital ring of even numbers and
▶ Z[

√
2] = {a+ b

√
2|a, b ∈ Z} ⊂ R?

Theorem
a ∈ R is a unit ⇐⇒ a|1 ∈ R .



Division with remainder

Theorem
For all a, b ∈ Z, b ̸= 0 there exists a unique pair of integers q, r ,
such that

a = qb + r and 0 ≤ r < b.

Remark
▶ q is the quotient, r is the residue

▶ in the theorem we might write −
[
|b|
2

]
< r ≤

[
|b|
2

]
instead of

0 ≤ r < b. Then we get the least residue in absolute value
instead of the least nonnegative residue.

Example
Divide ±20 by ±7 with remainders!



Numeral systems

Theorem
Let b > 1 be an integer. Then for any m ∈ N there exist unique
n ∈ N and ak ∈ {0, 1, . . . , b − 1} for k = 0, 1, . . . , cn such that

m = anb
n + an−1b

n−1 + · · ·+ a1b + a0 and an ̸= 0.

Definition
The representation of an integer m in base b is (anan−1 . . . a1a0)b.
We can omit the brackets or b if it does not lead to confusion.

Remark
If 10 < b ≤ 36 then most commonly the capital English letters
(A,B,C , . . . ) are used as numerals 10, 11, 12, . . . .

Example
25110 = 20015 = 3738 = FB16 = 33234 = 111110112.



Horner’s method

Theorem
A polynomial of degree n can be evaluated at x = c by n
multiplications and n additions:

anc
n + an−1c

n−1 + · · ·+ a1c + a0 =

(. . . ((an · c + an−1) · c + an−2) · c + · · ·+ a1) · c + a0.

Remark
The evaluation can be arranged in a table:

an an−1 an−2 . . . a1 a0

bn−1 bn−2 bn−3 . . . b0 b−1
,

where bn−1 = an and bi = c · bi+1 + ai+1 for i < n − 1. The value
of the polynomial at x = c is b−1.

Example

For f (x) = x3 + 2x2 − 3, c = 2:
1 2 0 −3

1 4 8 13
1 +2 +0 -3

2· 2· 2·



Greatest common divisor

Definition
For a, b ∈ Z an integer d is
▶ a common divisor (of a and b) if d |a and d |b.
▶ the greatest common divisor (of a and b) if

▶ d = 0 in case a = b = 0 and otherwise
▶ d is a common divisor and
▶ it is the greatest among the common divisors, i. e. for any

c ∈ Z, c |a, c |b we have c ≤ d .

The notation is gcd(a, b) = (a, b) = d .

Remark
▶ gcd(a, b) exists for any a and b.
▶ For the definition we used the ordering of Z.

Example
gcd(12, 18) = 6 as the common divisors of 12 and 18 are
±1,±2,±3 and ±6.



Definition
For a, b ∈ Z the greatest common divisor of a and b is the
integer gcd(a, b) = d ≥ 0 for which
▶ d is a common divisor, i. e. d |a and d |b and
▶ for any c ∈ Z, c|a, c |b we have c |d .

Theorem
gcd(a, b) exists and is unique for any a, b ∈ Z and
gcd(a, b) = gcd(a, b).

Remark
▶ Thus we can always use the black gcd.
▶ After dropping the condition d ≥ 0 this latter definition

generalizes for any (nonunital) commutative ring. However, in
general neither the existence nor the uniqueness are true any
more.



Euclidean algorithm

Proof of the theorem and a method for computing gcd(a, b).
If gcd(a, b) exists, then it is unique and equals gcd(a, b).
Method (Euclidean algorithm):

1. If b = 0, then set d = |a|. If b|a, then set d = |b|.
Otherwise set r0 = a and r1 = b.

k . If rk−1 = 0, then gcd(a, b) = rk−2.
Otherwise divide rk−2 by rk−1 with remainders:

rk−2 = qk−1rk−1 + rk
Repeat this until rk = 0.

Claims:
▶ This process is finite, since r1 > r2 > . . . are nonnegative

numbers. Let the last step be the n-th, and set d = rn−1.
▶ d is a common divisor of a, b.
▶ For any common divisor c we have c |d .
▶ Thus d = gcd(a, b).



Example
A graphical illustration of the Euclidean algorithm computing
gcd(24, 17):

24 = 1 · 17 + 7

17 = 2 · 7 + 3

7 = 2 · 3 + 1

3 = 3 · 1 + 0

gcd(24, 17) = 1

Remark
The Euclidean algorithm works also with the least residue in
absolute value as well.



Definition
a, b ∈ Z are relatively prime if gcd(a, b) = 1.

Theorem (Basic properties of the greatest common divisor)
For all a, b, n ∈ Z and c ∈ N

1. gcd(ca, cb) = c gcd(a, b),

2. if d = gcd(a, b) ̸= 0, then gcd

(
a

d
,
b

d

)
= 1,

3. gcd(a+ nb, b) = gcd(a, b) and
4. if c |ab and gcd(a, c) = 1, then c |b.

Corollary
▶ {ma+ nb|m, n ∈ Z} = {c · gcd(a, b)|c ∈ Z}.
▶ In particular there exist m, n ∈ Z such that

gcd(a, b) = ma+ nb.

In our method we can keep track of this in each step – that is
called Extended Euclidean algorithm.



Diophantine equations

Definition
A Diophantine equation is a polynomial equation in 2 or more
variables such that only the integer solutions are sought.

Example
▶ Pythagorean triples: x2 + y2 = z2.
▶ Fermat’s last theorem: If xn + yn = zn for fixed n ≥ 3, then

xyz = 0. (Proven by Wiles in 1995)
▶ Two-square problem: x2 + y2 = n for a fixed n ∈ N.

For which n-s do we have a solution?
▶ Four-square problem: x2 + y2 + z2 +w2 = n for a fixed n ∈ N.

This is solvable for all n.
▶ Pell’s equation: x2 − ny2 = 1 for a fixed n ∈ N.

It has infinitely many solutions if n is not a perfect square.



Theorem (Solutions of linear Diophantine equations)
Let a, b and c be integers, a, b ̸= 0 and d = gcd(a, b). The linear
Diophantine equation

ax + by = c
is solvable if and only if d |c . If an integer solution is x0, y0 then all
of the solution is in the form

x = x0 +
b

d
t, y = y0 −

a

d
t for some t ∈ Z.

Remark (More variables)
The linear Diophantine equation

a1x1 + a2x2 + · · ·+ akxk = c

is solvable if and only if d |c for
d = gcd(a1, a2, . . . , ak) = gcd(. . . (gcd(gcd(a1, a2), a3), . . . ), ak).

and the solutions can be parametrized by some t1, t2, . . . tk−1 ∈ Z.



Example (Solutions of 3x + 4y = 5)
It is solvable since d = gcd(3, 4) = 1|5. Write d = 4− 3 (by the
first glimpse or by the extended Euclidean algorithm), so
5 = 3 · (−5) + 4 · 5 and hence x0 = −5, y0 = 5. So the general
solution is x = −5 + 4t, y = 5− 3t (t ∈ Z).

It can be interpreted as finding lattice points on the line
y = (5− 3x)/4:

(−5, 5)

(−1, 2)

(3,−1)

(7,−4)



Irreducible numbers

Definition
An integer p is irreducible if p is not a unit and p = ab ∈ Z implies
that either a or b is a unit.

Remark
▶ This makes sense for any (nonunital) commutative ring.
▶ Usually it is said that a natural number p is irreducible if

p ̸= 1 and p = ab ∈ N =⇒ a = 1 or b = 1. n ∈ N is a
composite number if n = ab for some a, b ∈ N, a, b < n.

Example
▶ 2, 3, 5, 7, 11 are irreducibles 4, 6, 8, 9 are composite numbers.
▶ 2, 7 ∈ Z[

√
2] are not irreducibles but 2+

√
2 =
√

2(1+
√

2) is.

Lemma
For any n > 1 be an integer there exists d ∈ N such that d |n and
d is irreducible.



Prime numbers

Definition
An integer p is a prime number if
▶ p ̸= 0 and p is not a unit,
▶ p|ab ∈ Z implies either p|a or p|b.

Remark
▶ This makes sense for any (nonunital) commutative ring.
▶ Usually it is said that a natural number p is irreducible if

p > 1 and p|ab ∈ N =⇒ p|a or p|b.

Theorem
p ∈ Z is irreducible ⇐⇒ p ∈ Z is prime.

Remark
▶ What happens in E – the nonunital ring of even numbers?
▶ ⇐= is true in a more general setting, =⇒ is not.



Theorem (Euclid, ∼300BC.)
In N (or in Z) there exist infinitely many prime numbers.

Lemma
If n is a composite number, then it has a prime divisor p ≤

√
n.

Remark
Sieve of Eratosthenes - see gif file.

Remark (Irreducibility tests and factorization)
▶ The AKS (Agrawal-Kayal-Saxena, 2002) test is a "fast"

(polynomial time) primality test.
▶ No "fast" algorithm is known for factorization.
▶ If there were some, then it would make lot of trouble: most of

open-key encryption systems (such as RSA) are based on that
factorization is "slow".



Remark (Theorems about the distribution of prime numbers)
▶ (Dirichlet, 1837) Let a, b ∈ N be relatively primes. There exist

infinitely many primes in the arithmetic progression an + b.
▶ (Green, Tao, 2006) For any n ∈ N there exists an arithmetic

progression of length n containing prime numbers.
▶ Prime number theorem (Hadamard,de la Vallée-Poussin, 1896)

Let π(x) denote the number of primes 2 ≤ p ≤ x , then

π(x) ∼ x

ln x
, i. e. lim

x→∞

π(x)

x/ ln x
= 1.

▶ Twin prime conjecture: There are infinitely many primes p
such that q = p + 2 is also prime.

▶ (Zhang, Maynard, Tao, 2013-2014) There are infinitely pairs of
primes p < q such that q − p ≤ 246.

▶ Goldbach’s conjecture: Every even integer greater than 2 is
the sum of two primes.

▶ Goldbach’s weak conjecture: Every integer larger than 5 is the
sum of three primes. Proven for sufficiently large integers
(Vinogradov, 1937) and in general (Helfgott, 2013).



The fundamental theorem of Number Theory

Theorem
Any natural number n > 1 decomposes as the product of finitely
many primes. This decomposition is unique up to the order of the
factors.

Definition
The canonical representation of an integer n is the above
decomposition with collecting the same primes to powers.

Example
30 = 2 · 3 · 5, 720 = 24 · 32 · 5 and 2020 = 22 · 5 · 101.

Theorem
Any integer n, which is nonzero and nonunit, decomposes as a
product of primes. This decomposition is unique up to the order of
the factors and multiplying with units.



Definition
Let a and b be nonzero integers. The least common multiple of
a and b is the least positive integer m such thet a|m and b|m. The
notation is lcm(a, b) = [a, b] = m.

Theorem
Let a, b > 1 integers and let {p1, p2, . . . , pr} be the set of prime
divisors of ab. Write a = pa1

1 pa2
2 . . . parr and b = pb1

1 pb2
2 . . . pbrr for

some ai , bi ∈ N ∪ {0}, i = 1, 2, . . . , r . Then
1. a|b ⇐⇒ ai ≤ bi for all i = 1, 2, . . . , r ,

2. gcd(a, b) = p
min(a1,b1)
1 p

min(a2,b2)
2 . . . p

min(ar ,br )
r ,

3. lcm(a, b) = p
max(a1,b1)
1 p

max(a2,b2)
2 . . . p

max(ar ,br )
r and

4. gcd(a, b) · lcm(a, b) = ab.

Theorem (Legendre’s formula)
In the canonical representation of n! the exponent of a prime p is[

n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ . . .



Modular arithmetic – Computing with residues



Congruences and residue classes

Definition
Let a, b ∈ Z and m ∈ N.
▶ The remainder of the division of a by m is called

"a modulo m" and denoted by a mod m.
▶ a is congruent to b modulo m if m|a− b. The notation is

a ≡ b (mod m).

Theorem
The modulo m congruence relation (≡ (mod m)) is an equivalence
relation, i. e. the following hold for all a, b, c ∈ Z:

1. Reflexivity: a ≡ a (mod m),
2. Symmetry: a ≡ b (mod m) ⇐⇒ b ≡ a (mod m) and
3. Transitivity: a ≡ b, b ≡ c (mod m) =⇒ a ≡ c (mod m).

Remark
In other words ≡(mod m) partitions Z to disjoint subsets (classes).



Definition
▶ The equivalnece classes of the above relation are called the

modulo m residue classes.
▶ A set of integers R is called a complete residue system or

CRS modulo m if it contains exactly one of each residue
classes modulo m.

Example
▶ {0, 1, 2, . . . ,m − 1} is a CRS modulo m.
▶ {100, 123, 116} is a CRS modulo 3.

Lemma

1.
{r1, r2, . . . , rm} is
a CRS mod m

⇐⇒ ri ̸≡ rj (mod m)
for all 1 ≤ i < j ≤ m.

2.
{r1, r2, . . . , rm} is
a CRS mod m

=⇒
for any a, b ∈ Z, gcd(a,m) = 1
{ar1 + b, ar2 + b, . . . , arm + b}

is also a CRS mod m.



Operations with congruences

Theorem
Let a, b, c, d ∈ Z, n ∈ N such that a ≡ c , b ≡ d (mod m). Then

1. a+ b ≡ c + d (mod m), especially a+ b ≡ c + b (mod m),
2. a− b ≡ c − d (mod m), especially a− b ≡ c − b (mod m) and
3. ab ≡ cd (mod m), especially ab ≡ cb (mod m).

Remark
So we can add, subtract or multiply congruences or residue classes
without changing the modulus.

Example
(1) : 5 ≡ 11 (mod 3) and (2) : 2 ≡ 14 (mod 3). Hence
▶ (1) + (2) : 7 ≡ 25 (mod 3),
▶ (1)− (2) : 3 ≡ −3 (mod 3) and
▶ (1) · (2) : 10 ≡ 156 (mod 3).



Dividing congruences

Example (Be careful with division!)
▶ 4 ≡ 10 (mod 3) divided by 2 is 2 ≡ 5 (mod 3),
▶ 6 ≡ 15 (mod 9) divided by 3 is 2 ≡ 5 (mod 3) and not

2 ≡ 5 (mod 9) – which is false.

Theorem
Let a, b, c ∈ Z, m ∈ N and d = gcd(c ,m) such that
ac ≡ bc (mod m). Then

1. a ≡ b (mod m/d) and
2. if d = gcd(c ,m) = 1, then a ≡ b (mod m).

Theorem
Let m1,m2, . . .mr ∈ N and m = lcm(m1,m2, . . . ,mr ). Then
a ≡ b (mod mk) for k = 1, 2, . . . , r =⇒ a ≡ b (mod m).



Computing powers of congruences

Theorem
m, n ∈ N, a ≡ b (mod m) =⇒ an ≡ bn (mod m).

Remark
For computing an (mod m) efficiently see the following scheme:
▶ If n is even, say n = 2k , then an ≡ (ak)2 (mod m) and
▶ If n is odd, say n = 2k + 1, then an ≡ (ak)2 · a (mod m).

Theorem
Let a, n ∈ N such that an − 1 is prime. Then a = 2 and n is prime.

Definition
A prime p ∈ N is a Mersenne prime, if p = 2n− 1 for some n ∈ N.



Linear congruences

Theorem
Let a, b ∈ Z, m ∈ N and d = gcd(a,m). Then

ax ≡ b (mod m) is solvable ⇐⇒ d |b.

If the congruence is solvable, then the number of incongruent
solutions modulo m is d .

Example
The solutions of 12x ≡ 15 (mod 21) are x ≡ 3, 10, 17 (mod 21).

Definition
If the congruence ax ≡ 1 (mod m) is solvable, then a solution is
called the modular inverse of a (mod m). The notation is
a−1 (mod m).

Example
A modular inverse of 3 (mod 10) is 7, but 2 (mod 10) has no
modular inverse.



Example
Are the following systems of linear congruences solvable?
a) x ≡ 1 (mod 3) b) y ≡ 2 (mod 3) c) z ≡ 2 (mod 3)

x ≡ 1 (mod 5) y ≡ 4 (mod 5) z ≡ 3 (mod 5)
x ≡ 1 (mod 7) y ≡ 6 (mod 7) z ≡ 4 (mod 7)

Theorem (Chinese remainder theorem)
Let m1,m2, . . . ,mr ∈ N pairwise relatively prime, b1, b2, . . . , br ∈ Z

and let M = m1 ·m2 · . . . ·mr . Then the system of congruences

x ≡ b1 (mod m1)

x ≡ b2 (mod m2)

...

x ≡ br (mod mr )

has a unique solution modulo M.



Some applications

▶ Division rule for 9. x ≡ the sum of digits of x (mod 9):
x =

∑n
k=0 xk10k ≡

∑n
k=0 xk (mod 9).

▶ Same for 11. x ≡ the alternating sum of digits of x (mod 11):
x =

∑n
k=0 xk10k ≡

∑n
k=0(−1)kxk (mod 11).

▶ ISBN-13 and EAN (European Article Number):
x1 + 3x2 + x3 + 3x4 + x5 + 3x6 + . . .+ 3x12 + x13 ≡ 0 (mod 10)

▶ Perpetual calendar: What day is a date (d −m − y)?

w = d +

⌊
13m − 32

5

⌋
+ y +

⌊y
4

⌋
−
⌊ y

100

⌋
+
⌊ y

400

⌋
(mod 7)+ 1

w = 1 is Monday, w = 2 is Tuesday, . . . and w = 7 is Sunday.



The ring of modulo m residue classes

Definition
Let m > 1 be an integer, Zm = {0, 1, 2, . . . ,m − 1} and define the
(binary) operations ⊕ : a⊕ b = a+ b (mod m) and
⊗ : a⊗ b = a · b (mod m).

Theorem
(Zm,⊕,⊗) is a ring for all integer m > 1.

Example (Operations on Z2)
+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

Definition
We use + and · instead of ⊕ and ⊗ – if it does not lead to
confusion – and denote Zm = (Zm,+, ·) the ring of modulo m
residue classes.



Domains and fields

Lemma
Let R be a ring and a ∈ R . Then a · 0 = 0 = 0 · a.

Definition
Let R be a commutative ring and a ∈ R .
▶ a ∈ R − {0} is a zero divisor if there exists b ̸= 0 such that

ab = 0,
▶ R is a domain if it has no zero divisors,
▶ R is a field if 0 ̸= 1 ∈ R and there exists multiplicative inverse:

for all a ∈ R − {0} there exists a−1 ∈ R such that a · a−1 = 1.

Example
Q,R are fields, but Z is not. All three are domains.

Theorem
R is a field =⇒ R is a domain.



Example (The operations on Z5 and Z6)
Z5 : + 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Z6 : + 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Theorem
Let m > 1 be an integer. The following are equivalent:

1. m is a prime number,
2. Zm is a field and
3. Zm is a domain.



Reduced residue systems and Euler’s totient function

Lemma
If a ≡ b (mod m), then gcd(a,m) = gcd(b,m).

Definition
Let m ∈ N, m > 1. Then
▶ a modulo m residue class is reduced if an (or every) element

of it is relatively prime to m,
▶ a set of integers R is a reduced residue system or RRS

modulo m if it contains exactly one of each reduced residue
classes modulo m,

▶ the number of reduced residue classes modulo m is denoted
φ(m) and φ is called Euler’s totient function.

Example (Some RRS-s)
{1, 2} (mod 3) =⇒ φ(3) = 2, {1, 11} (mod 6) =⇒ φ(6) = 2
and {n ∈ N|1 ≤ m < n, gcd(m, n) = 1} (mod m).



Lemma

1.
R = {r1, r2, . . . , rk}
is a RRS mod m

⇐⇒

|R| = φ(m),
gcd(ri ,m) = 1 and
ri ̸≡ rj (mod m)

for all 1 ≤ i < j ≤ k .

2.
R = {r1, r2, . . . , rk}
is a RRS mod m

=⇒
for any a ∈ Z, gcd(a,m) = 1

{ar1, ar2, . . . , ark}
is also a RRS mod m.

Example
▶ Z∗m = {a ∈ Zm|(a,m) = 1} ⊂ Zm is the subset of reduced

residue classes. This is not closed under the operation +, so
(Z∗m,+, ·) is not a ring.

▶ However the operation · is well defined is associative, has unit
and inverse. Z∗m = (Z∗m, ·) and such structures will be called
groups.



Theorem
φ is a multiplicative arithmetic function, i. e. if gcd(m, n) = 1 then
φ(mn) = φ(m)φ(n).

Remark
It is necessary, that gcd(m, n) = 1. For example
6 = φ(9) ̸= φ(3)φ(3) = 2 · 2 = 4.

Example (Chinese remainder theorem revisited)
Let m1 = 4 and m2 = 3. The Chinese remainder theorem produces
a mapping from pairs of modulo 3 and modulo 4 residue classes to
modulo 12 residue classes:

0 1 2 3 ← Z4
0 0 9 6 3

Z3 → 1 4 1 10 7 ← Z12
2 8 5 2 11

The operations and the reduced residue classes are also preserved.



Homomorphisms and isomorphisms

Definition
Let (R,+, ·), (R ′,⊕,⊗) be rings and f : R → R ′ be a function.
▶ f is a homomorphism if f (1R) = 1R′ and it preserves

operations, i. e. f (a+ b) = f (a)⊕ f (b) and
f (a · b) = f (a)⊗ f (b) for all a, b ∈ R .

▶ f is an isomorphism if it is a bijective homomorphism.

Example
Let m, n > 1 be integers.
▶ The map Z→ Zm, n 7→ (n mod m) is a homomorphism.
▶ If gcd(m, n) = 1, then the Chinese remainder theorem gives an

isomorphism Zm × Zn → Zmn (here × is the Cartesian
product on the sets and the operations work elementwise).

▶ If gcd(m, n) > 1, then there is no isomorphism
Zn × Zm → Zmn – check that the image of a unit should be a
unit and count units in both rings.



Lemma
Let q = pα be a prime power. Then φ(q) = (p − 1)pα−1.

Theorem (The canonical form of φ(m))
Let m = pα1

1 pα2
2 . . . pαr

r be the canonical representation of
1 < m ∈ N. Then

φ(m) = (p1 − 1)pα1−1(p2 − 1)pα2−1 . . . (pr − 1)pαr−1 =

n

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pr

)
or using

∏
sign : φ(m) =

r∏
k=1

(pk − 1)pαk−1
k = n

r∏
k=1

(
1− 1

pk

)
.

Example
▶ φ(1200) = φ(24 · 3 · 52) = (2− 1)23(3− 1)(5− 1)5 = 320,
▶ φ(2020) = φ(22 · 5 · 101) = (2− 1)2(5− 1)(101− 1) = 800.



Euler-Fermat theorem

Theorem (Euler-Fermat theorem)
Let m > 1 be an integer, and a ∈ Z such that gcd(a,m) = 1.
Then aφ(m) ≡ 1 (mod m).

Example
(±1)4 ≡ (±5)4 ≡ 1 (mod 12). But 24 ≡ 4, 34 ≡ 9, 44 ≡ 4 and
64 ≡ 0 (mod 12).

Corollary (Fermat’s little theorem)
Let p > 0 be a prime and a ∈ Z. Then
▶ First form: If p ∤ a, then ap−1 ≡ 1 (mod p) and
▶ Second form: ap ≡ a (mod p).

Example
14 = 1 ≡ 24 = 16 ≡ 34 = 81 ≡ 44 = 256 (mod 5).



Corollary

If gcd(a,m) = 1, then an ≡ (a mod m)n mod φ(m) (mod m).

Example
▶ 1853 ≡ (18 mod 13)53 mod φ(13) ≡ 55 =

(52)2 · 5 ≡ (−1)2 · 5 ≡ 5 (mod 13).

▶ 9189 ≡ (91 mod 11)89 mod φ(11) = 39 ≡

3−1 =
1
3
≡ 12

3
= 4 (mod 11).

Remark
For the method for computing powers modulo m we do not need
the prime factorization of m, but for computing φ(m) we do.
This makes the latter "slower", since no efficient algorithm is
known for prime factorization.

Theorem (Wilson’s theorem)
(p − 1)! ≡ −1 (mod p) for all prime numbers p > 0.



Complex numbers



Definition and algebraic properties

Definition (The set)
▶ i =

√
−1,

▶ C = {a+ bi |a, b ∈ R} is the set of complex numbers,
▶ the real part of z = a+ bi is Re z = a and
▶ the imaginary part of z = a+ bi is Im z = b.

Definition (The opertaions)
▶ Addition: (a+ bi) + (c + di) = (a+ c) + (b + d)i ,
▶ Multiplication: (a+ bi)(c + di) = (ac − bd) + (bc + ad)i

Example
(1 + 2i) + (3 + 4i) = (4 + 6i), (1 + 2i)(3 + 4i) = −5 + 10i .

Theorem
z1 = z2 ⇐⇒ Re z1 = Re z2 and Im z1 = Im z2.



Theorem
C = (C,+, ·) is a field.

Remark
▶ Complex numbers can be represented as a plane of numbers.

z = a+ bi corresponds to the point with coordinates (a, b).
Addition corresponds to addition of position vectors.

▶ The division goes as follows:
a+ bi

c + di
=

a+ bi

c + di
· c − di

c − di
=

ac + bd

c2 + d2 +
bc − ad

c2 + d2 i ∈ C

Example
1

3 + 4i
=

3− 4i
32 + 42 =

3
25
− 4

25
i

3 + 4i
1 + i

=
(3 + 4i)(1− i)

12 + 12 =
7 + i

2
=

7
2
+

1
2
i

Remark
The set C is not ordered: the relation z1 < z2 makes no sense in C.



The conjugate and the absolute value

Definition
▶ the conjugate of z = a+ bi is z = a− bi and
▶ the absolute value of z = a+ bi is |z | =

√
a2 + b2.

Theorem
If z = a+ bi , z1, z2 ∈ C then

▶ z = z ⇐⇒ z ∈ R

▶ z + z = 2a ∈ R,
▶ zz = a2 + b2 = |z |2 ∈ R,
▶ z1 + z2 = z1 + z2 és
▶ z1z2 = z1z2

▶ |z | ∈ R, |z | ≥ 0
▶ |z | = 0 ⇐⇒ z = 0,
▶ |z1 + z2| ≤ |z1|+ |z2| és
▶ |z1z2| = |z1||z2|.

Lemma

If p(x) is polynomial with real coefficients, then p(z) = p(z), thus
p(z) = 0 =⇒ p(z) = 0.



The fundamental theorem of Algebra

Definition
A field F is algebraically closed if any nonconstant polynomial
with coefficients in F has a solution in F .

Theorem (The fundamental theorem of Algebra)
C is algebraically closed.

Theorem
Every field F can be embedded into an algebraically closed field.

Definition
The smallest algebraically closed extension of a field F (with
respect to inclusion) is called the algebraic closure of F .

Remark
▶ The algebraic closure of R is C,
▶ but the algebraic closure of Q is not C.



Theorem
If w ∈ C is a nonzero complex number, then the equation z2 = w
has exactly two solutions.

Definition
Let z ∈ C and n ∈ N. The solutions of un = z in C are called the
n-th roots of z and the set of them is denoted n

√
z .

Remark (Reasons for defining
√
z to be multivalued)

What is wrong:
1= 1 · 1=

√
1
√

1=
√

1 · 1=
√
(−1)(−1) =

√
−1
√
−1= i · i =−1?

▶ There is no natural way to choose one of the roots and
▶ then

√
z1z2 =

√
z1
√
z2 holds.

Theorem (Solution of quadratic equations in C)

The complex solutions of az2 + bz + c = 0 (a, b, c ∈ C) are
−b +

√
b2 − 4ac
2a

(+ is written instead of ± intentionally).



Trigonometric form and geometric properties

Definition
▶ The argument of z ∈ C is the

angle of the line segments 0z
and 01 in the plane (modulo
360◦ or 2π). arg 0 is not
defined. The notation is arg z .

▶ The trigonometric form of
z ̸= 0 is z = r(cosφ+ i sinφ),
where r = |z | and φ = arg z .

▶ The (original) algebraic form
of z is z = Re(z) + Im(z)i .

r

1

φ

z

Remark
The notation z = re iφ = r(cosφ+ i sinφ) is commonly used, you
can understand the meaning of this with Taylor series (Calculus).
Here φ must be in radian.



Theorem (The trigonometric form’s non-uniqueness)
The following are equivalent:

1. r(cosφ+ i sinφ) = r ′(cosφ′ + i sinφ′),
2. r = r ′ and φ = φ′ + 2kπ for some k ∈ Z.

Theorem
▶ If z ̸= 0 has trigonometric form z = r · (cosφ+ i sinφ), then

its algebraic form is z = a+ bi , where a = r · cosφ and
b = r · sinφ.

▶ If z ̸= 0 has algebraic form z = a+ bi , then its trigonometric
form is z = r(cosφ+ i sinφ), where r = |z | =

√
a2 + b2 and

φ =



π/2, if a = 0 and b > 0
−π/2, if a = 0 and b < 0
arctan(b/a), if a > 0
arctan(b/a) + π, if a < 0 and b ≥ 0
arctan(b/a)− π, if a < 0 and b < 0



The geometric meaning of multiplication

Theorem
arg(z · z ′) = arg(z) + arg(z ′) and |z · z ′| = |z | · |z ′|.

Remark
Thus ”multiplying complex number we have to multiply the length
and add the argument”.



Powers and roots

Corollary
▶ arg(1/z) = − arg(z) and arg(z/z ′) = arg(z)− arg(z ′),
▶ (r(cosφ+ i sinφ))n = rn(cos(nφ) + i sin(nφ)),
▶ The n-th roots of z = r(cosφ+ i sinφ) ̸= 0 are

n
√
z = n
√
r

(
cos

(
φ+ 2kπ

n

)
+ i sin

(
φ+ 2kπ

n

))
for k = 0, 1, . . . , n − 1.

Example
6
√

1: 3
√
−i : 5

√
2i :

1

−i

2i



Remark (Which form is "comfortable" for different operations)

z1 + z2
z1 − z2

z1z2
z1/z2

zn
n
√
z

algebraic
form

OK OK X

trigonometric
form

X OK OK

Lemma
If w = r(cosφ+ i sinφ), then the map z 7→ z · w corresponds to
the following transformation of the plane: scaling with factor r and
rotation around 0 with angle φ counterclockwise.

Example
▶ Rotating around 0 with angle φ is z 7→ z(cosφ+ i sinφ).
▶ Rotating around u with angle φ is

z 7→ (z − u)(cosφ+ i sinφ) + u.
▶ Reflecting to the axis arg z = φ is z 7→ z(cos(2φ) + i sin(2φ)).



Roots of unity

Definition
ε ∈ C is a n-th root of unity (for n ∈ N) if εn = 1.

Example
▶ The 2nd roots of unity are 1 and −1.
▶ The 3rd roots of unity are 1, −1

2 +
√

3
2 i and −1

2 −
√

3
2 i .

▶ The 4th roots of unity are 1, i , −1 and −i .
▶ The 6th roots of unity are ±1, ±1

2 ±
√

3
2 i .

1 1 1

Remark
A d-th root of unity is also an nth root of unity if d |n.



Definition
▶ The (multiplicative) order ε ∈ C is

o(ε) = min(n ∈ N|εn = 1)
if there is such n and ∞ if not.

▶ ε ∈ C is a primitive n-th root of unity if o(ε) = n.

Lemma
If ε is an n-th root of unity, then o(ε)|n.

Example

2i and cos(
√

2π) + i sin(
√

2π) are not roots of unity.

Theorem

1. ε is a root of unity ⇐⇒ |ε| = 1 and arg(ε) = 2πr
for some r ∈ Q,

2. the order of ε is q, where r = p/q ∈ Q with gcd(p, q) = 1.



Theorem
Let ε be a primitive n-th root of unity. Then

1. the n-th roots of unity are 1, ε, ε2, . . . , εn−1 and
2. the primitive n-th roots of unity are εk for k ∈ N such that

1 ≤ k < n and gcd(n, k) = 1. That is the number of primitive
n-th roots of unity is φ(n).

Corollary

▶ ε is a primitive
n-th root of unity

⇐⇒ all n-th roots of unity
is a power of ε.

▶
∑
d |n

φ(d) = n for all n ∈ N.

Theorem
Let ε1, ε2, . . . , εn be the n-th roots of unity. Then
n∑

k=1

εk =

{
1, if n = 1
0, if n > 1

and
n∏

k=1

εk =

{
1, if n is odd
−1, if n is even



Binomial coefficients

Definition
For n, k ∈ Z, 0 ≤ k ≤ n the binomial coefficient (n choose k) is(

n

k

)
=

n(n − 1)(n − 2) . . . (n − k + 1)
1 · 2 · 3 . . . k

=
n!

k!(n − k)!
,

that is the number of k element subsets of an n element set.

Remark
0! = 1 and it is worth to define

(n
k

)
= 0 for k > n.

In fact one can define
(x
k

)
for any x ∈ R.

Theorem
1.
(n
0

)
=
(n
n

)
= 1,

2.
(n
k

)
=
( n
n−k
)
,

3.
(n
k

)
= n

k

(n−1
k−1

)
and

(n
k

)
= n−k+1

k

( n
k−1

)
,

4.
(n
k

)
+
( n
k+1

)
=
(n+1
k+1

)
.



Example (Pascal’s triangle)

(0
0

)
1(1

0

) (1
1

)
1 1(2

0

) (2
1

) (2
2

)
1 2 1(3

0

) (3
1

) (3
2

) (3
3

)
1 3 3 1(4

0

) (4
1

) (4
2

) (4
3

) (4
4

)
1 4 6 4 1

Theorem (Binomial theorem)

(a+ b)n = an + nan−1b + · · ·+ nabn−1 + bn =
n∑

k=0

(
n

k

)
akbn−k .

Remark
This is true in any commutative ring.



Corollary

▶
(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ . . . =

n∑
k=0

(
n

k

)
= 2n,

▶
(
n

0

)
−
(
n

1

)
+

(
n

2

)
− . . . =

n∑
k=0

(−1)k
(
n

k

)
=

{
0, if n > 0
1, if n = 0

and

▶
(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ . . . =

[n/2]∑
k=0

(
n

2k

)
=

{
2n−1, if n > 0
1, if n = 0.

Lemma

1.
(
n

0

)
−
(
n

2

)
+

(
n

4

)
−
(
n

6

)
+ · · · = (

√
2)n cos

nπ

4
,

2.
(
n

1

)
−
(
n

3

)
+

(
n

5

)
−
(
n

7

)
+ · · · = (

√
2)n sin

nπ

4
.



Remark
Or in an other form:

(
n

0

)
−
(
n

2

)
+

(
n

4

)
− · · · =



2(n−1)/2, if n ≡ ±1 (mod 8)
−2(n−1)/2, if n ≡ ±3 (mod 8)
0, if n ≡ ±2 (mod 8)
−2n/2, if n ≡ 4 (mod 8)
2n/2, if n ≡ 0 (mod 8)

Example (Extra problem)
What is the explicit value of(
n

0

)
+

(
n

4

)
+

(
n

8

)
+

(
n

12

)
+ · · · =

[n/4]∑
k=0

(
n

4k

)
?



Polynomials



Basic notions

Definition
Let R be a commutative ring, n ∈ N and a0, a1, . . . , an ∈ R . The
formal expression anx

n + an−1x
n−1 + · · ·+ a1x + a0 is called

polynomial (in one variable x).
Let p(x) =

∑m
l=0 alx

l and q(x) =
∑m

l=0 blx
l be polynomials.

▶ The degree of p is max(m ≤ n|am ̸= 0). The notation is
deg(p). deg(0) = −∞.

▶ The leading coefficient of p is adeg(p). The leading
coefficient of 0 is 0. The constant term of p is a0,

▶ p and q are equal (or p = q) if ak = bk when both sides are
defined and the others are 0.

▶ The set of polynomials with coefficient in R is denoted R[x ].

Remark
The notion of equality is an equivalence relation and R[x ] is the set
containing the cosets of the relation =.



Polynomial functions

Definition
Let p ∈ R[x ] and r ∈ R

▶ the value of p at r is
p(r) = anr

n + an−1r
n−1 + · · ·+ a1r + a0 ∈ R .

▶ r is a root of p if p(r) = 0.
▶ f : R → R function is a polynomial function over R if there

exists p ∈ R[x ] such that p(r) = f (r) for all r ∈ R .

Remark
The set of polynomial functions might not be equivalent to the set
of polynomials, for example if R = Zp for some prime p ∈ N, then
by Fermat’s little theorem we have xp = x as functions.

Example
What is the number of roots of the polynomials x4 − 2 and x2 − 1
over Q,R,C and Z8.



The ring of polynomials

Definition (The operations)

+

(
m∑

k=0

akx
k

)
+

(
m∑
l=0

blx
l

)
=

max(m,n)∑
j=0

(aj + bj)x
j (set ak = 0

if k > deg(a) and bl = 0 if l > deg b).

·

(
m∑

k=0

akx
k

)
·

(
m∑
l=0

blx
l

)
=

m+n∑
j=0

(cj)x
j , where cj =

∑
k+l=j

akbl .

Theorem
1. deg(p + q) ≤ max(deg(p), deg(q)) and
2. if R is a domain, then deg(pq) = deg(p) + deg(q).

Example
(x2 + 2x) + (−x2 + x) = 3x − 1, so there is no equality in the first.
3x · (2x + 1) = 3x over Z6, so the second is not true in rings with
zero divisors.



Theorem
1. R[x ] = (R[x ],+, ·) is a commutative ring and
2. if R is a domain, then R[x ] is also a domain.

Remark
▶ For a fixed r ∈ R the map R[x ]→ R , p 7→ p(r) is a

homomorphism.
▶ So is R → R[x ], r 7→ r , where the second r is the constant

polynomial.
▶ For a fixed p ∈ R[x ] the map R → R , r 7→ p(r) is not a

homomorphism in general: if R = R and p(x) = x + 1, then
3 = p(1 + 1) ̸= p(1) + p(1) = 4.



Horner’s method revisited

Lemma
Let r be a root of a polynomial p ∈ R[x ]. Then there exists
q ∈ R[x ] such that p(x) = (x − r)q(x).

Example
A root of p(x) = x3 − 1 is r = 1 and x3 − 1 = (x − 1)(x2 + x + 1).

Theorem (Horner’s method – second form)

Let a(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0 ∈ R[x ] polynomial
and r ∈ R . Consider the following table:

an an−1 an−2 . . . a1 a0

bn−1 bn−2 bn−3 . . . b0 b−1
,

where bn−1 = an and bi = r · bi+1 + ai+1 for i < n − 1.
Let q(x) = bn−1x

n−1 + bn−2x
n−2 + b1x + b0.

Then a(x) = (x − r)q(x) + b−1, so f (r) = b−1.
In particular r is a root⇐⇒b−1 = 0 and then a(x) = (x − r)q(x).



Example
For a(x) = x3 + 2x2 − 3 and r = 2:

1 2 0 −3

1 4 8 13

és ekkor q(x) = 1x2 + 4x + 8 = x2 + 4x + 8, f (2) = 13 és
a(x) = (x − 2)q(x) + a(2).

1 +2 +0 -3

2· 2· 2·

Theorem
If R is a domain and p ∈ R[x ] is nonzero, then p has at most
deg(p) roots.

Example (It is necessary, that R is a domain)

In Z8 the polynomial x2 − 1 has 4 roots: x2 − 1 = (x − 1)(x + 1),
so ±1 are roots. But ±3 are also roots, since
x2 − 1 = (x − 3)(x + 3) and we don’t have a contradiction since
(3− 1)(3 + 1) = 0 ∈ Z8.



Number theory of polynomials over fields

Reminder
The fundamental theorem of number theory states that any integer
decomposes as product of primes and this decomposition is unique
up to order and units.
The structure of the proof was as follows:

1. Introduction the notions of divisibility, units, primes and
irreducibles,

2. Development a method for division with remainder,
3. Proof of the existence of the greatest common divisor

with the help of the Euclidean algorithm and
4. Proof of "irreducibles = primes" and the theorem.

Remark
Our next goal is to reproduce this for polynomials.
Those rings, for which this can be done are called Euclidean rings.



Step 1 – The notions

Lemma
Let R be a domain. Then p ∈ R[x ] is a unit ⇐⇒ p is a constant,
and p(0) ∈ R is a unit.

Example
If R has zero divisors this is not true: (2x + 1)2 = 1 ∈ Z4[x ].

Lemma
Let F be a field and p ∈ F [x ].

1. If deg(p) = 1, then p is irreducible and
2. If deg(p) = 2 or 3, then p is irreducible ⇐⇒ p has no roots

in F .

Example
If deg(p) ≥ 4 this 2 is not true: (x2 + 1)2 ∈ R[x ] is not irreducible
and it has no roots in R.



Step 2 – Division with remainder

Reminder
For integers: dividing a by b we get a quotient q, and a remainder
r , such that 0 ≤ r < b and a = qb + r .

Theorem
Let F be a field and a, b ∈ F [x ] such that b ̸= 0. Then there exist
unique q, r ∈ F [x ] for which deg(r) < deg(b) and a = qb + r .

Remark
▶ It is necessary that we have a field: in Z[x ], for example if

a(x) = x2, b(x) = 2x , we have no such q and r ∈ Z[x ].
▶ Horner’s method is actually a division with remainder: a and q

are as above, b(x) = x − r and the remainder is the constant
r(x) = b−1.



Step 3 – The gcd and the Euclidean algorithm

Reminder
gcd(a, b) is the positive integer d such that it is a common divisor
and it is divisible by all of the common divisors.

Theorem
Let a, b ∈ F [x ]. Then there exists a d ∈ F [x ] unique up to
multiplying with units (=constants), such that
▶ d |a and d |b and
▶ if c |a and c |b for some c ∈ F [x ] then c |d .

Definition
Let a, b ∈ F [x ]. The greatest common divisor of a and b is those
d which has leading coefficient 1.



Proof (Euclidean algorithm for polynomials).
Method:

1. If b = 0, then set d = a. If b|a, then set d = b.
Otherwise set r0 = a and r1 = c · b.

k . If rk−1 = 0, then gcd(a, b) = rk−2.
Otherwise divide rk−2 by rk−1 with remainders:

rk−2 = qk−1rk−1 + rk
Repeat this until rk = 0.

Claims:
▶ This process is finite, since deg(r1) > deg(r2) > . . . are

nonnegative integers or −∞. Let the last step be the n-th,
and set d = rn−1.

▶ d is a common divisor of a and b.
▶ For any common divisor c we have c|d .
▶ d is unique up to units, so gcd(a, b) = c · d for some c ∈ F .
▶ The extended algorithm also works: there exist x , y ∈ F [x ]

such that gcd(a, b) = ax + by .



Step 4 – Proof of "irreducibles = primes" and the theorem

Theorem
Let p ∈ F [x ]. Then p is irreducible ⇐⇒ p is prime.

Theorem
Let a ∈ F [x ] such that deg(a) > 0. Then a decomposes as a
product of irreducibles and this decomposition is unique up to the
order of the factors and multiplying with units.

Example (The decomposition of x4 + 1)

x4 + 1 = (x2 + 1)2 − (
√

2x)2 = (x2 −
√

2x + 1)(x2 +
√

2x + 1).
In R[x ] these are irreducibles, but in C[x ]:

x4+1 =

(
x − 1 + i√

2

)(
x − 1− i√

2

)(
x − −1 + i√

2

)(
x − −1− i√

2

)
.



Example
▶ It is necessary that R is a field. In

(x − 1)(x + 1) = (x − 3)(x + 3) ∈ Z8.
▶ Moreover x = (2x + 3)(3x + 2) ∈ Z6.

Remark
The notion of least common multiple also makes sense in F [x ].
The same statements about gcd and lcm is true as for integers.

Example
▶ What are the irreducibles of degree 2 and 3 over F2?
▶ Decompose x5 + 3x − 1 to product of irreducibles over Z2 and

Z!

Remark
Let p ∈ N be a prime. Z and Zp[x ] are very similar in some sense,
but "life is much nicer" in Zp[x ]. The analogues of main theorems
and conjectures about primes (such as Prime number theorem and
Riemann hypothesis) can be proven in a simple way.



The case of C[x ] and R[x ]

Theorem
1. p ∈ C[x ] is irreducible ⇐⇒ deg(p) = 1,
2. p ∈ R[x ] is irreducible if and only if

a) deg(p) = 1 or
b) deg(p) = 2 and p has no real roots.

Corollary
1. (Fundamental theorem of Algebra, second form)

Every p ∈ C[x ] decomposes as p(x) = c
n∏

j=1

(x − αj)

for some c , αj ∈ C.
2. Every p ∈ R[x ] decomposes as

p(x) = c
n∏

j=1

(x − αj)
m∏

k=1

(x2 + βkx + γk) for some

c, αj , βk , γk ∈ R such that β2
k − 4γk < 0 for all k .



The case of Q[x ] and Z[x ]

Remark
▶ In Q[x ] every polynomial p can be written as p = cq, where c

is a constant (unit) and q ∈ Z[x ].
▶ In Z[x ] the whole machinery fails, since there is no division

with remainder.

Definition

p(x) =
n∑

k=0

akx
k ∈ Z[x ] is primitive if gcd(a0, a1, . . . , an) = 1.

In other words there is no prime p0 ∈ Z such that p0|ak for all k .

Lemma
For any p ∈ Q[x ]−{0} there are c ∈ Q and q ∈ Z[x ] primitive such
that p = cq. Moreover the pair c and q is unique up to the sign.

Example
6
5x

3 + 14
5 x − 2

3 = 1
15

(
18x3 + 14x − 10

)
= 2

15

(
9x3 + 7x − 5

)
.



Gauss lemma

Lemma (Gauss lemma)
If p and q are primitive, then pq is also primitive.

Corollary
If p ∈ Z[x ] is decomposes as a nontrivial product in Q[x ]
(i. e. the terms has lower degree), then so does in Z[x ].

Example
1/2 is a root of 2x3 + 5x2 − x − 1, so we can divide by (x − 1/2):

2x3+5x2−x−1 =

(
x − 1

2

)
(2x2+6x+2) = (2x−1)(x2+3x+1).

Corollary
For any p ∈ Z[x ] nonconstant primitive we have
p is reducible in Q[x ] ⇐⇒ p is reducible in Z[x ].



Theorem
1. p ∈ Q[x ] is irreducible if p is a unit (= nonzero constant)

multiple of a primitive irreducible polynomial.
2. p ∈ Z[x ] is irreducible if

a) p is a constant and p ∈ Z is prime, or
b) p is primitive and irreducible in Q[x ].

Example
5 is irreducible in Z[x ], but not in Q[x ] (as it is a unit).
2x − 4 = 2(x − 2) is irreducible in Q[x ], but not in Z[x ].

Theorem (Fundamental theorem of Number theory in Z[x ])
In Z[x ] every nonconstant polynomial decomposes as product of
irreducibles and this decomposition is unique up to the order of the
terms and multiplying with units (sign).

Remark
Thus in Z[x ] there is gcd without Euclidean algorithm. It worked
the other way round: we get it from the fundamental theorem.



Schönemann-Eisenstein criterion

Reminder
In C[x ] the irreducible polynomials have degree 1.
In R[x ] the irreducible polynomials have degree at most 2.
Question: is there D ∈ N such that if a ∈ Q[x ] (or Z[x ]) is
irreducible, then deg(a) ≤ D?

Theorem (Schönemann-Eisenstein criterion)

Let a(x) =
n∑

k=0

akx
k ∈ Z[x ] and p ∈ Z prime such that

p ∤ an, p|an−1, an−2, . . . a0 and p2 ∤ a0.

Then a is irreducible in Q[x ].

Corollary
▶ If a is also primitive, then it is irreducible in Z[x ].
▶ For any d ∈ N there are irreducible polynomials of degree d in

Q[x ] and Z[x ]: for example a(x) = xd − 2.



Corollary (Reversed Schönemann-Eisenstein criterion)

Let a(x) =
n∑

k=0

akx
k ∈ Z[x ] and p ∈ Z prime such that

p ∤ a0, p|a1, a2, . . . an and p2 ∤ an.
Then a is irreducible in Q[x ].
If moreover a is primitive, then it is irreducible in Z[x ].

Lemma
Let F be a field, a, b ∈ F , a ̸= 0 and f ∈ F [x ]. Then f (x) is
irreducible ⇐⇒ f (ax + b) is irreducible.

Example
Show that x5 − 4 ∈ Z[x ] is irreducible!

Remark (Factorization in Q[x ] and Z[x ])
The Schöneman-Eisenstein criterion gives a sufficient (but not
necessary!) condition for irreducibility.
The LLL (Lenstra-Lenstra-Lovász) algorithm is a "fast"
(polynomial time) tool to factorize a polynomial.



Cyclotomic polynomials

Definition
For n ∈ N the n-th cyclotomic polyinomial is

Φn(x) =

φ(n)∏
k=1

(x − εk),

where ε1, ε2, . . . , εφ(n) are the primitive n-th roots of unity.

Lemma

1. xn − 1 =
∏
d |n

Φd(x) and

2. Φn(x) ∈ Z[x ].

Example
Φp(x) is irreducible in Z[x ] for any prime p ∈ Z.

Theorem
Φn(x) is irreducible for any n ∈ N.



Roots of polynomials

Remark (Finding roots of polynomials)
▶ Linear: ax + b = 0 =⇒ x = −b/a.

▶ Quadratic: ax2 + bx + c = 0 =⇒ x =
−b ±

√
b2 − 4ac
2a

.

▶ Cubic: ax3 + bx2 + cx + d = 0 =⇒ one of its roots is

▶ Quartic:
I did not put it here, since there is not enough space.

▶ Quintic:
There is no general formula (with basic algebraic operations)!



Rational root test

Theorem

Let a(x) =
n∑

k=0

akx
k ∈ Z[x ]. If p/q ∈ Q with gcd(p, q) = 1 is a

root of a, then p|a0 and q|an.

Corollary
Let a ∈ Z[x ] with leading coefficient 1 (then a is called monic).
The rational roots of a are integer and are divisors of the constant
term.

Example
Find the roots of 2x4 − 5x3 − 8x2 + 17x − 6!
Hint: this theorem and Horner’s method makes it very quick!

Remark
The theorem does not guarantee the existence of rational roots.



Multiple roots

Definition
Let R be a domain, r ∈ R and p ∈ R[x ].
▶ r is an m-fold root of p for some m ∈ N, if (x − r)m|p,
▶ the root r has multiplicity m if there is q ∈ R[x ] such that

p(x) = (x − r)mq(x) and q(r) ̸= 0 and
▶ r is a multiple root if its multiplicity is at least 2.

Example

If p(x) = c
∏k

j=1(x − rj)
mj , then the multiplicity of rj is mj .

Definition

Let F be a field and p(x) =
n∑

k=0

akx
k ∈ F [x ].

The (formal) derivative of p is p′(x) =
n∑

k=1

kakx
k−1 ∈ F [x ].



Theorem (Properties of the formal derivative)
Let p, q ∈ F [x ], c , r ∈ F and n ∈ N. Then

1. c ′ = 0 (the constants have 0 derivative),
2. (p + q)′ = p′ + q′,
3. (cp)′ = cp′,
4. (pq)′ = p′q + pq′ and
5. ((x − r)n)′ = n(x − r)n−1.

Theorem
r is a multiple root of p ⇐⇒ p(r) = p′(r) = 0.

Corollary
The multiple roots of p are the common roots of p and p′.

Example
What are the multiple roots of x5 + 2x + 1 ∈ C[x ] and
x3 + 1 ∈ Z3[x ]?



Relations between roots and coefficients - Vieta’s formulas

Theorem
Let p ∈ F [x ] be a polynomial. If p decomposes as product of linear
factors, say

p(x) =
n∑

k=0

akx
k = an

n∏
k=1

(x − αk),

for some ak , αk ∈ F , then
−an−1

an
= α1 + α2 + · · ·+ αn,

an−2

an
= α1α2 + · · ·+ α1αn + α2α3 + · · ·+ αn−1αn,

...

(−1)n
a0

an
= α1α2 . . . αn.

Or for 1 ≤ k ≤ n

(−1)k
an−k
an

=
∑

0≤i1<i2<···<ik≤n

(
k∏

l=1

αil

)



Remark
If F is algebraically closed (especially if F = C), then the condition
always holds.

Definition

ek(x1, x2, . . . , xn) =
∑

0≤i1<i2<···<ik≤n

(
k∏

l=1

xil

)
is the kth

elementary symmetric polynomial in n variable.

Corollary

When p is monic, then (−1)kan−k = ek(α1, α2, . . . , αn).

Example
▶ What is the sum, product, sum of squares of the roots of

2x4 − x3 + 3x2 − 5? Show that it has not only real roots!
Determine the number of the real roots!

▶ What is the sum and product of the nth roots of unity?
▶ What is the sum and product of 15th primitive roots of unity?



Solution of cubic equations

Remark
Any cubic equation can be reduced to one in the form
x3 + px + q = 0: we can divide by the leading coefficient and then
make a substitution y = x + a2/3, where a2 is the coefficient of x2.

Example
Transform 2x3 − 18x2 + 72x = 56 to such form!

Theorem (Cardano’s formula)

The solutions of x3 + px + q = 0 are in the form

x = u + v , where u =
3

√
−q

2
+

√(q
2

)2
+
(p

3

)3
and v = − p

3u
.

Example
Solve the equation y3 + 9y + 26 = 0!



Remark

Let f (x) = x3 + px + q ∈ R[x ] and D =
(q

2

)2
+
(p

3

)3
. It can be

shown that
▶ if D > 0, then f (x) = 0 has 1 real and 2 non-real roots,
▶ if D = 0, then f (x) = 0 has a multiple root (that implies 3

real roots),
▶ if D < 0, then f (x) = 0 has 3 real roots, but for computing

them complex numbers must be used in Cardano’s formula.

Example
Solve the equation x3 − 7x − 6 = 0!

Definition
D is the discriminant of the cubic polynomial f (x).

Corollary
f has multiple roots ⇐⇒ D = 0.



Symmetric polynomials

Definition
Let R[x1, x2, . . . , xn] = (. . . ((R[x1])[x2]) . . .)[xn] be the polynomial
ring in n variables x1, x2, . . . xn for a commutative ring R .

Example
x3y2 + 2x2y2 − x3y + 2xy − y2 + 6 =
(x3 + 2x2 − 1)y2 + (−x3 + 2x)y + 6 ∈ Z[x , y ].

Theorem
The units of R[x1, x2, . . . , xn] are the constant units (in R).
If R is a domain, then so is R[x1, x2, . . . , xn].

Definition
▶ The degree of a monomial ax i11 x i22 . . . x

in
n is i1 + i2 + · · ·+ in

for a ∈ R − {0} and ik ∈ N ∪ {0}.
▶ The degree of a polynomial p ∈ R[x1, x2, . . . , xn] is the

maximum of the degree of the monomials.



Definition
A p ∈ R[x1, x2, . . . , xn] is symmetric if for all permutations
p(x1, x2, . . . , xn) = p(xi1 , xi2 , . . . , xin).

Example
▶ x + y ∈ R[x , y ] is symmetric, but x − y is not,
▶ ek(x1, x2, . . . , xn) (defined at Vieta’s formulas) is symmetric.

Theorem
Any symmetric polynomial p ∈ R[x1, x2, . . . , xn] can be written as a
polynomial of elementary symmetric polynomials. In other words
there exists q ∈ R[x1, x2, . . . , xn] such that

p(x1, x2, . . . , xn) = q(e1(x1, x2, . . . xn), . . . , en(x1, x2, . . . xn)).

Example
Let p(x) = x3 − 3x + 1
▶ What is the sum of the cubes of the roots of p?
▶ What is the monic polynomial which has roots αβ, βγ and γα,

where α, β and γ are the roots of p?



Polynomial interpolation

Theorem
Let F be a field, and xk , yk ∈ F for k = 1, 2, . . . , n such that
xk ̸= xl for any k ̸= l . Then there exists a unique polyinomial
p ∈ F [x ] of degree at most n − 1 such that p(xk) = yk for all k .

Example
▶ Interpolate sin x with low degree polynomials! (xk = k/100)

▶ What is the lowest degree polynomial p ∈ R[x ] such that
p(−1) = −5, p(0) = 5, p(1) = 5 and p(2) = 7?



1st method for constructing p: Lagrange interpolation.

Let Lk(x) =
n∏

j=1
j ̸=k

x − xj
xk − xj

∈ F [x ], then Lk(xj) =

{
1, if j = k

0, if j ̸= k

Thus p(x) =
n∑

k=1

ykLk(x) is a good choice.

2nd method for constructing p: Newton interpolation.
Let N1(x) = y1 and for k > 1

Nk(x) = Nk−1(x) + c
k−1∏
j=1

x − xj
xk − xj

, such that Nk(xk) = yk .

Then Nk(xj) = yj for j ≤ k , thus p = Nn is a good choice.

Remark (Which is better to use?)
▶ Lagrange interpolation is more efficient when you have to

interpolate several data sets on the same data points.
▶ Newton interpolation is more efficient when you have to

interpolate data incrementally.



A cryptographic application

Example (SSS (Shamir’s Secret Sharing) algorithm)
Task: Share a secret integer S ∈ Z between n people such that

1. any k of them can recover S together, but
2. any k − 1 of them does not know anything about S!

Method: Choose a polynomial p ∈ Z[x ] such that p(0) = S and
deg(p) < k . Share the value p(k) with the kth person.

Verification: This works by the interpolation theorem, since
1. any k of the people can find p (uniqueness) and
2. based on the knowledge of any k − 1 of the people the value

of p(0) can be any integer (existence).



Systems of linear equations



Linear equations

Definition
Let F be a field, m, n ∈ N.
▶ A linear equation in n variables x1, x2, . . . , xn is an equation

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, a2, . . . , an, b ∈ F .
▶ A system of linear equations in n variables x1, x2, . . . , xn is a

system of equations
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm,

were ajk , bk ∈ F for 1 ≤ j ≤ m and 1 ≤ k ≤ n.
▶ The ajk -s are the coefficients, the xk -s are the variables and

the bj -s are the constants.



Example (Some systems of linear equations)

x + y = 3
x − y = 1

x + y = 3
3x − y = 5

2y = 2

2x + z = 4
y + z = 1

Definition
▶ A solution of the above system of equations is a tuple

(x1, x2, . . . , xn) ∈ F n (i. e. xk ∈ F for 1 ≤ k ≤ n) such that it
satisfies each linear equations.

▶ The system of the linear equations is homogeneous if bj = 0
for all j and inhomogeneous otherwise.

Lemma
The following are equivalent:

1. x1 = x2 = · · · = xn = 0 is a solution and
2. the system of linear equations is homogeneous.



Definition
Two systems of linear equations are equivalent if the sets of
solutions are the same.

Example
The first and second systems of the previous example are
equivalent, but not the third.

Lemma (Row operations)
The following operations results equivalent systems of linear
equations:

1. Swap the positions of two rows,
2. Multiply a row by a non-zero λ ∈ F and
3. Add to one row a multiple of another.

Example{
3x + 4y = 5
x + 2y = 8

⇒
{

x = −11
x + 2y = 8

⇒
{

x = −11
2y = 19

⇒
{

x = −11
y = 8.5



Definition
The matrix resp. augmented matrix of the system of linear

equations
n∑

k=1

ajkxk = bj for j = 1, 2, . . . ,m is
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 resp.


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
. . .

...
...

am1 am2 . . . amn bm


Remark
▶ We will define the notion of matrices later.
▶ This enables us to give the solution in a more compact form.

Example (The previous equations in augmented matrix form)(
3 4 5
1 2 8

)
(1)−2(2)
=⇒

(
1 0 −11
1 2 8

)
(2)−(1)
=⇒(

1 0 −11
0 2 19

) 1
2 (2)=⇒

(
1 0 −11
0 1 8.5

)



Row echelon form

Definition
▶ A matrix is in row echelon form if

1. its zero rows (if there are) are the lasts and
2. for any two adjacent nonzero rows the latter begins with at

least one more 0 than the previous.

▶ The first nonzero element in a row is called pivot of the row.

Example (Which of the following are in row echelon form?)(
2 3
0 4

) (
0 0
0 1

) 2 3 1
0 4 2
0 1 0

 1 2 −3
0 0 4
0 0 0


Theorem
Any matrix can be transformed to row echelon form with
elementary row operations.



Gaussian elimination

Example (Gaussian elimination = solving equations this way)

x + y + 2z = 0
2x + 2y + 3z = 2
x + 3y + 3z = 4
x + 2y + z = 5

−→


1 1 2 0
2 2 3 2
1 3 3 4
1 2 1 5


(2)− 2(1)
(3)− (1)
(4)− (1)
−→


1 1 2 0
0 0 −1 2
0 2 1 4
0 1 −1 5


(2)↔(3)−→


1 1 2 0
0 2 1 4
0 0 −1 2
0 1 −1 5

 (4)− 1
2 (2)−→


1 1 2 0
0 2 1 4
0 0 −1 2
0 0 −3

2 3

 (4)− 3
2 (3)−→


1 1 2 0
0 2 1 4
0 0 −1 2
0 0 0 0

 −→
x + y + 2z = 0

2y + z = 4
− z = 2

0 = 0

−→
x = 1
y = 3
z = −2

Thus the only solution is (x , y , z) = (1, 3,−2).



Definition
A matrix is in reduced row echelon form if

1. it is in row echelon form,
2. each pivot element is 1 and
3. the other elements in the columns of pivot elements are 0.

Theorem
1. Any matrix can be transformed to reduced row echelon form

with elementary row operations.
2. The process always ends up at the same form not depending

on which elementary row operations were used.

Definition
The reduced row echelon form of a matrix A is the unique result of
the above process, and is denoted by rref(A).



Gauss-Jordan elimination

Example (Gauss-Jordanelimination=solving equations this way)
x + y + 2z = 0

2x + 2y + 3z = 2
x + 3y + 3z = 4
x + 2y + z = 5

−→


1 1 2 0
2 2 3 2
1 3 3 4
1 2 1 5

 ...−→


1 1 2 0
0 2 1 4
0 0 −1 2
0 0 0 0

 1
2 (2)−→


1 1 2 0
0 1 1/2 2
0 0 −1 2
0 0 0 0

 (1)−(2)−→


1 0 3/2 −2
0 1 1

2 2
0 0 −1 2
0 0 0 0

 −(3)−→


1 0 3
2 −2

0 1 1
2 2

0 0 1 −2
0 0 0 0


(1)− 3

2 (3)
(2)− 1

2 (1)−→


1 0 0 1
0 1 0 3
0 0 1 −2
0 0 0 0

 −→
x = 1
y = 3
z = −2
0 = 0

Thus the only solution is (x , y , z) = (1, 3,−2).



Definition
The variable xk in a system of linear equations is
free if the corresponding column in the reduced row echelon form
are no pivots and bounded otherwise.

Theorem
Consider a system of linear equations and the reduced row ecelon
form of its augmented matrix.

1. If there is a row, which is zero in the matrix, but the constant
in the augmented matrix is nonzero, then there is no solution.

2. Otherwise there is exactly one solution for each possible values
of the free variables.

Corollary
▶ If F is infinite, then the number of the solutions is either 0, or

1, or ∞.
▶ If |F | = q <∞, then the number of solutions is either 0 or qf ,

where f = #(free variables).



Example (No solution)

x + y = 3
3x + 4y = 10

2y = 4
−→

 1 1 3
3 4 10
0 2 4

 (2)−3(1)−→

 1 1 3
0 1 1
0 2 4


(1)− (2)
(3)− 2(2)
−→

 1 0 2
0 1 1
0 0 2

 −→ x = 2
y = 1
0 = 2 E

Example (Many solutions)

2x + z = 4
y + z = 1

−→
(

2 0 1 4
0 1 1 1

) 1
2 (1)−→

(
1 0 1

2 2
0 1 1 1

)

−→ x + 1
2z = 2

y + z = 1
−→

x = 2− 1
2z

y = 1− z
z = z

, for any z ∈ F .

The vectorial form of the solution is

x
y
z

 =

2
1
0

+ t

−1
2
−1
1





Vectorspaces



The vectorspace F n

Definition
Let F be a field and n ∈ N. Consider the set
F n = {(v1, v2, . . . , vn)|vk ∈ F } of ordered n-tuples of F .
▶ The elements of F are the scalars. The elements of F n are the

vectors. The notation is v = (v1, v2, . . . , vn). We often write

w as a column vector v = (v1, v2, . . . , vn)
T =


v1
v2
...
vn

.

▶ 0 = (0, 0, . . . 0) ∈ F n is the zero vector.
▶ the addition is u + v = (u1 + v1, u2 + v2, . . . , un + vn) for any

u, v ∈ F and
▶ the scalar multiplication is λv = (λv1, λv2, . . . , λvn) for any
λ ∈ F and v ∈ F n.

Remark
This is consistent to the standard Euclidean vectors in R2 and R3.



Lemma (Basic properties of the operations)
Let u, v ,w ∈ F n and λ, µ ∈ F . Then

A1 u + v = v + u

A2 (u + v) + w = u + (u + w)

A3 v + 0 = v

A4 ∃(−v) ∈ F n : v + (−v) = 0

M1 λ(u + v) = λu + λv

M2 (λ+ µ)v = λv + µv

M3 (λµ)v = λ(µv)

M4 1v = v

Remark
▶ Thus (F n,+) is an abelian ( = commutative) group, but

(F n,+, ·) is not a ring.
▶ In general (V ,+, ·) is a vectorspace over F , if V is a set

containing an element 0, + is an operation and · : F × V → V
is a function satisfying the above properties.

Theorem (Some useful properties and notation)
1. λv = 0 ⇐⇒ λ = 0 or v = 0.
2. −v = (−1)v and u − v := u + (−v).



Definition
A linear combination of vectors v1, v2, . . . , vk ∈ F n is
λ1v1 + λ2v2 + · · ·+ λkvk for some λ1, λ2, . . . , λk ∈ F .

Example
In F n every vector is a linear combination of
e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1):
(v1, v2, . . . , vn) = v1e1 + v2e2 + · · ·+ vnen.

Definition
A subset V ⊆ F n is a subspace if
1) V ̸= ∅, 2) u, v ∈ V =⇒ u + v ∈ V and
3) λ ∈ F , v ∈ V =⇒ λv ∈ V . The notation is V ≤ F n.

Corollary
The following are equivalent for a nonempty subset V ⊆ F n:

1. V ≤ F n (is a subspace),
2. V is closed under the operations and
3. V is closed under linear combinations.



Corollary
If U,V ≤ F n are subspaces, then so is U ∩ V .

Definition
The subspace spanned (or generated) by v1, v2, . . . , vk ∈ F n is
Span(v1, v2, . . . , vk)={λ1v1+λ2v2+· · ·+λkvk |λ1, λ2, . . . , λk ∈ F }.

Span(∅) = {0}.

Remark
The spanned subspace of a finite subset is indeed a subspace in F n.

Example
Question: What are the subspaces in R3?
Answer: After identifying points of R3 with their position vectors
▶ the origin,
▶ the lines passing through the origin,
▶ the planes passing through the origin and
▶ the whole space.



The nullspace of systems of linear equations

Theorem
Let (A|0) be the augmented matrix of a homogeneous system of
linear equations in n variables over F . Then the set of solutions is a
subspace in F n.

Definition
The set of solutions of a homogeneous system of linear equations
with matrix A is called the nullspace of A and denoted by N (A).

Example
What is the nullspace corresponding to the following equations:

x + y = 0
{

x + y = 0
y + z = 0


x + y = 0
y + z = 0
z + x = 0



Definition
A subset U ⊆ F n is an affine subspace if there exists u ∈ F n and
V ≤ F n such that U = u + V = {u + v |v ∈ V }.

Example
Question: What are the affine subspaces of R3?
Answer: Points, lines, planes and the whole space.

Lemma
Let u1, u2 ∈ F n and V1,V2 ≤ F n. Then
u1 + V1 = u2 + V2 =⇒ V1 = V2 and u1 − u2 ∈ V1 = V2.

Theorem
Let (A|b) be the augmented matrix of a system of linear equations
in n variables over F . Then the set of solutions is an affine
subspace in F n. More precisely if x0 is a solution then the set of
solutions is x0 +N (A).



Hyperplanes

Definition
Let a ∈ F n − {0} and b ∈ F .
▶ The set of solutions of the linear equation

a1x1 + a2x2 + · · ·+ anxn = b is called a hyperplane.
▶ The above equation is the implicit equation. The solutions

parametrized by the free variables is the explicit equation.

Example
▶ The hyperplanes of R2 (resp. R3) are the lines (resp. planes).
▶ The explicit equation of the hyperplane corresponding to

x + 2y − z = 3 is


x = 3− 2s + t
y = s
z = t

or in vectorial formx
y
z

 =

3
0
0

+ s

−2
1
0

+ t

1
0
1

.



Example
▶ Possible configurations of two hyperplanes in R3:

▶ Possible configurations of three hyperplanes in R3:



Remark
We can think about the solutions of a system of linear equations
▶ as the intersection of hyperplanes (point of view: rows),
▶ as possible coefficients of the linear combinations for the

vector of constants (point of view: columns).
We can solve several systems of linear equations simultaneously if
only the constants are different.

Example
Solve the following systems of linear equations:

x+ y+ z = 3
x+ 2y+ 4z = 7
x+ 4y+ 10z = 15


x+ y+ z = 5
x+ 2y+ 4z = −2
x+ 4y+ 10z = 1

What does it mean in the above senses?



Linear independence

Definition
The vectors v1, v2, . . . , vk ∈ F n are linearly independent if
λ1v1 + λ2v2 + · · ·+ λkvk = 0 =⇒ λ1 = λ2 = · · · = λk = 0.

That is, that only the trivial linear combination gives 0.
Otherwise the vectors are linearly dependent.

Example
▶ 0 is linearly dependent,
▶ u, v ∈ R3 are linearly dependent ⇐⇒ they are collinear and
▶ u, v ,w ∈ R3 are linearly dependent ⇐⇒ they are complanar.

Theorem
1. v1 ∈ F n is linearly independent ⇐⇒ v1 ̸= 0.
2. v1, v2, . . . , vk ∈ F n are linearly independent for k > 1 if and

only if none of the vectors is the linear combination of the
others.



Definition
Let X be a set and H ⊆ P(X ), where P(X ) is the power set
(containing the subsets of X ).
▶ A ∈ H is maximal if A ⊆ B ∈ H =⇒ A = B ,
▶ A ∈ H is the largest in H if B ⊆ A for all B ∈ H,
▶ A ∈ H is minimal if A ⊇ B ∈ H =⇒ A = B and
▶ A ∈ H is the smallest in H if B ⊇ A for all B ∈ H.

Example
▶ Span(v1, v2, . . . , vk) is the smallest subspace containing

v1, v2, . . . , vk .
▶ In the set {(1, 0), (0, 1), (1, 1)} the subsets {(1, 0), (1, 1)} and
{(0, 1), (1, 1)} are maximal linearly independent subsets, but
there is no largest linearly independent subset.



Definition
Let V ≤ F n and U ⊆ V a possibly infinite subset.
▶ The subspace spanned by U is

Span(U) =
⋂

U⊆W≤V
W .

▶ U is a generating set in V if Span(U) = V ,
▶ U is an independent set if u /∈ Span(U − {u}) for all u ∈ U.

Remark (This is consistent with the earlier definitions)
If U = {v1, v2, . . . , vk}, then
▶ Span(U) = Span(v1, v2, . . . , vk),
▶ U is independent ⇐⇒ v1, v2, . . . , vk are linearly independent.

Definition
U is a basis of V if it is independent and generating in V .



Lemma (Basic properties of independent and generating sets)
Let U ⊆W ⊆ V ≤ F n. Then

1. U is generating in V =⇒ W is generating in V ,
2. if U is generating in V and u ∈ Span(U − {u}),

then U − {u} is generating in V ,
3. W is independent =⇒ U is independent,
4. W is independent and w /∈ Span(W ) =⇒ W ∪ {w} is

independent.

Theorem (Properties of bases)
Let U ⊆ V ≤ F n. Then the following are equivalent:

1. U is a basis of V ,
2. U is a minimal generating set of V ,
3. U is a maximal independent set in V ,
4. all v ∈ V is a linear combination of the elements of U

and the coefficients in the combination are unique.



Theorem (Existence of bases)
1. For any V ≤ F n there exists a basis.
2. The cardinality of the basis is same for all bases and it is at

most n.

Example
▶ The basis of {0} is ∅,
▶ e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1) is

a basis of F n. This is called the standard basis of F n.

Remark
A similar statement is not true for rings (instead of vectorspaces),
for example {1} and {2, 3} are both minimal generating sets in the
ring Z6.

Definition
The dimension of a subspace V ≤ F n is the cardinality of a basis.
The notation is dim(V ).



Lemma (Basic properties of the dimension)
▶ dim(F n) = n, thus all of the bases has n elements.

If V ≤ F n such that dim(V ) = d , then
▶ every generating set of V has at least d elements,
▶ every independent set in V has at most d elements and
▶ if U ⊂ V has m elements, then U is a basis ⇐⇒ U is

generating in V ⇐⇒ U is independent.
If moreover U ≤ V , then
▶ dim(U) ≤ dim(V ),
▶ U = V ⇐⇒ dim(U) = dim(V ).

Definition
Let B = {b1, b2, . . . , bk} be a basis of V ≤ F n. For any v ∈ V the
coordinate vector of v with respect to B is

[v ]B = (λ1, λ2, . . . , λk)
T , where v =

k∑
j=1

λjbj .



Matrices and linear maps



Matrices

Definition
Let F be a field and n,m ∈ N.
▶ A rectangular array containing m rows and n columns of

elements of F is called an m × n matrix (over F ).
▶ The set of m × n matrices over F is denoted by Fm×n.

Example
A matrix of a system of m linear equations with n variables is a
matrix in Fm×n.

Remark
▶ We can view a matrix as a list of column (or row) vectors.
▶ We usually denote the matrices with latin capital letters and

refer the entries of the matrix with the lowercase letters: if A
is a matrix then a11 is its upper left entry. In most cases the
underlined lowercase letters refer to the column vectors: a1 is
its first column.



Definition
Let A ∈ Fm×n be a matrix and x ∈ F n = F n×1 a column vector.
The product is the following column vector in Fm = Fm×1:

Ax = x1a1 + x2a2 + · · ·+ xnan.

Example
▶ Let B = {b1, b2, . . . , bn} be a basis of F n and denote B also

the matrix in F n×n with the corresponding column vectors. If
[v ]B = x , then v = Bx .

▶ If (A|b) is the augmented matrix of a system of linear
equations, then it can be written in matrix form: Ax = b.
Here x ∈ Fm the vector of the variables. Then equations
corresponds to the equations for the entries of the vectors.

Lemma
For any A ∈ Fm×n, x , y ∈ F n and λ ∈ F

1. A(x + y) = Ax + Ay

2. λ(Ax) = A(λx).



The column and row space of a matrix

Definition
Let A ∈ Fm×n.
▶ The column space of A is C(A) = Span(a1, a2, . . . , an) ≤ Fm

– the span of its colum vectors.
▶ Similarly the row space of A is R(A) ≤ F n is the span of its

row vectors.

Theorem
1. A basis of C(A) is the set of column vectors of A

corresponding to the columns of the pivots of rref(A).
2. A basis of R(A) is the set of nonzero row vectors of rref(A).

Remark
The elementary row operations preserve the row space (but not the
column space!), so for the row space any reduced echelon form
suffices instead of the reduced one.



The rank of a matrix

Definition
The rank of a matrix A ∈ Fm×n is rk(A) = dim(C(A)).

Example
▶ Compute rk(A) and a basis of C(A) and R(A). What are the

coordinates of the column vectors with respect to the previous
basis?

A =


1 0 1 0 2
2 −1 0 1 3
0 1 2 1 3
1 −1 −1 1 1


▶ What is the rank of the following matrices? 1 2 −1

2 4 −2
−1 −2 1

 ,


0 . . . 0 1
0 . . . 1 0
... . .

. ...
...

1 . . . 0 0

 ,


1 2 . . . n

n + 1 n + 2 . . . 2n
...

...
. . .

...
. . . n2





Theorem
rk(A) = dim(C(A)) = dim(R(A)) = #(pivots in rref(A)) =
#(nonzero rows in rref(A)).

Corollary
If A ∈ Fm×n, then rk(A) ≤ min(m, n).

Theorem (Solvability of SLE and rank)

Let A ∈ Fm×n and b ∈ Fm and consider the system of linear
equations with augmented matrix (A|b).

1. It is solvable ⇐⇒ rk(A) = rk(A|b) and
2. It has a unique solution ⇐⇒ rk(A) = rk(A|b) = n.



Linear maps of vectorspaces

Definition
Let V and W be vectorspaces over the field F . A function
φ : V →W is linear, if

1. φ(u + v) = φ(u) + φ(v) for all u, v ∈ V and
2. φ(λv) = λφ(v) for all λ ∈ F and v ∈ V .

Remark
φ(0) = φ(0 · 0) = 0 · φ(0) = 0.

Example
▶ The isometries of R3 which leave the origin fixed are linear.

For example reflections to a plane containing the origin,
rotations around an axis through the origin are linear.

▶ The map projection R3 → R2, (x , y , z) 7→ (x , y) is linear.
▶ For a fixed basis B of the vector space F n the map V → V ,

v 7→ [v ]B is also linear.



Lemma
For any a1, a2, . . . , an ∈ Fm there exists a unique linear map
φ : F n → Fm such that φ(ek) = ak for all k = 1, 2, . . . , n
(here ek ∈ F n is the standard basis vector).

Definition
The (standard) matrix of a linear map φ : F n → Fm is
A = (φ(ek)j)1≤j≤m

1≤k≤n
∈ Fm×n - i. e. ak = φ(ek). Then φ(x) = A · x .

Remark
Thus m × n matrices are naturally in one-to-one correspondence
with linear maps F n → Fm.

Example
What is the matrix of following linear maps?
▶ the rotation by the z-axis with angle α,
▶ the projection (x , y , z) 7→ (x , y) and
▶ the reflection to the plane x − y + 2z = 0 – hard to see now,

we will return to it later.



Definition
Let φ : V →W be a linear map.
▶ The image of φ is Im(φ) = {φ(v)|v ∈ V }.
▶ The kernel of φ is Ker(φ) = {v ∈ V |φ(v) = 0}.
▶ The rank of φ is the rank of its matrix.

Remark (In the language of matrices:)
▶ Ker(x 7→ Ax) = N (A) – the nullspace and
▶ Im(x 7→ Ax) = C(A) – the column space.

Lemma
1. Im(φ) ≤W and Ker(φ) ≤ V (are subspaces).
2. φ is surjective ⇐⇒ Im(φ) = W .
3. φ is injective ⇐⇒ Ker(φ) = {0}.

Example
What is the image and the kernel of the projection to the plane
x + 2y + 3z = 0?



Theorem (Dimension theorem)
If φ : V →W is linear then dim(V ) = dim(Ker(φ)) + dim(Im(φ)).

Remark
Thus if A ∈ Fm×n then dim(N (A)) + dim(C(A)) = n.

Corollary
Let A ∈ Fm×n. Then a basis of N (A) is the set of coefficient
vectors of the parameters in the solution of the homogeneous
system of linear equations.

Example

Find a basis of N (A), where A =

1 2 3 4
5 6 7 8
9 10 11 12

!



Operations

Definition (Vector space operations)

Let F be a field, λ ∈ F and A,B ∈ Fm×n.
▶ A+ B ∈ F n the matrix such that (A+ B)jk = ajk + bjk and,
▶ λA ∈ F n the matrix such that (λA)jk = λ · ajk for all

1 ≤ j ≤ m and 1 ≤ k ≤ n.

Remark
In other words (Fm×n,+, ·) is an mn dimensional vectorspace over
F . A basis of it contains the matrices Ejk - which have a unique
nonzero entry: in the jth row and kth column is a 1.

Definition
The transpose of A ∈ Fm×n is the matrix AT such (AT )jk = akj
for all 1 ≤ j ≤ m and 1 ≤ k ≤ n.

Remark (This is compatible with the notation of vectors:)

vT is the matrix transpose of the row vector.



Product of matrices

Definition
If A ∈ F ℓ×m and B ∈ Fm×n, then the matrix AB ∈ F ℓ×n is such
that (AB)jk =

∑m
t=1 ajtbtk .

Remark
▶ This is compatible with the earlier: Ab equals to the matrix

product for A ∈ Fm×n and column vectors in b ∈ F n.
▶ It is important that the product is defined only for matrices

with "matching size":
b1k
b2k
...

btk


aj1 aj2 . . . ajt

 cjk



A
ℓ×m

B
m′ × n

assuming that
m = m′

AB is
ℓ× n

▶ If φ : Fm → F ℓ, x 7→ Ax and ψ : F n → Fm, y 7→ By , then the
compostion ψ ◦ φ : F n → F ℓ is the map x 7→ (AB)x .



Example

Let A =

(
1 0
−1 2

)
, B = (1 2 4), C =

1
1
1

 and D =

 3 1
−1 2
1 0

.

Compute those which are defined: BC , CB , 5A, A+ D, AD, DA,
DTD + A.

Lemma
Let A ∈ F ℓ×m and B ∈ Fm×n.

1. The columns of AB are the colums A multiplied the columns
of B : A(b1 b2 . . . bn) = (Ab1 Ab2 . . .Abn).

2. Similarly the rows of AB are the rows of A multiplied by B .
3. The columns of AB are the linear combinations of the columns

of A with coefficients of the corresponding column of B .
4. Similarly the rows of AB are the linear combinations of the

rows of B with coefficients of the corresponding row of A.



Corollary
The map X 7→ AX performs row operations and X 7→ XB performs
column operations.

Definition
▶ The n × n identity matrix is I = In such that

ijk =

{
1, if j = k

0, otherwise
▶ A matrix E is elementary if X 7→ EX performs an elementary

row operation.

Lemma
1. AI = A and IB = B for all A and B where it makes sense
2. We can get a matrix of an elementary row operation if we

perform it on the identity matrix.

Example
What is the elementary matrix corresponding to adding the double
of the first row to the third in a matrix with 5 rows?



Theorem (Operations and rank)

Let A,B ∈ F ℓ×m and C ∈ Fm×n. Then
1. rk(AT ) = rk(A),
2. rk(A+ B) ≤ rk(A) + rk(B) and
3. rk(AC ) ≤ min(rk(A), rk(C )).

Definition
A ∈ Fm×n has full rank if rk(A) = min(m, n).

Theorem (Rank factorization)

Let A ∈ Fm×n with rk(A) = r ≥ 1. Then there exist C ∈ F n×r and
R ∈ F r×m of full rank such that A = CR :
C can be chosen to contain the columns of A corresponding to the
pivots in rref(A) and R to be the nonzero rows of rref(A).

Example

What is the rank factorization of the matrix
1 0 1

2 −1 0
0 1 2

?



Reminder
The scalar product is a matrix product: for u, v ∈ F n = F n×1 we
have ⟨u, v⟩ = uT · v ∈ F = F 1×1.

Definition
Let u ∈ Fm and v ∈ F n (column vectors) and A ∈ Fm×n.
▶ The dyadic or tensor product is u ⊗ v = u · vT ∈ Fm×n.
▶ A is dyadic if it is a dyadic product of two vectors.

Corollary
A is dyadic ⇐⇒ rk(A) ≤ 1.

Theorem (Dyadic decomposition)

Any A ∈ Fm×n can be written as a sum of r dyadic matrices.
This is minimal in the sense, that A is not the sum of r − 1 dyadics.

Example
What is the dyadic decomposition of the previous matrix?



Properties of operations

Remark
(Fm×n,+) is a vectorspace over F , so it has the usual properties.

Theorem
Let A,B and C be matrices over F and λ ∈ F . If the following
expressions make sense then they are equal:

1. λ(AB) = (λA)B = A(λB),
2. A(B + C ) = AB + AC and (A+ B)C = AC + BC ,
3. AI = A and IA = A and
4. (AB)C = A(BC ).

Remark
▶ The product is not commutative:(

1 −1
0 2

)(
1 1
2 5

)
=

(
−1 −4
4 10

)
̸=

(
1 1
2 8

)
=

(
1 1
2 5

)(
1 −1
0 2

)
▶ The product might be zero even if the terms are nonzero:(

0 1
0 0

)(
1 1
0 0

)
=

(
0 0
0 0

)



Remark
▶ (F n×n,+, ·) is a ring: the unit is I = In, it is not commutative

and has zero divisors (if n > 1).
▶ (Fm×n,+, ·) is not a ring if n ̸= m, since · is not an operation

on Fm×n.

Theorem
Let A and B be matrices over F and λ ∈ F . If the following
expressions make sense then they hold:

1. (λ · A)T = λ · AT ,
2. (A+ B)T = AT + BT and
3. (AB)T = BTAT .

Remark
Thus ·T : Fm×n → F n×m is a linear map.



Inverse of matrices and linear maps
Definition
Let f : X → Y and g : Y → X be functions (or homomorphisms,
or linear maps). g is an inverse of f if f ◦ g = idX and
g ◦ f = idY , where id is the identity function (or homomorphism).

Remark (Both are needed:)

For f : n 7→ n + 1 and g : n 7→
{

n − 1, if n > 1
1, if n = 1

as functions N→ N

we have f ◦ g = idN ̸= g ◦ f .

Definition
Let A be a matrix over F . Then
▶ the matrix B is an inverse of A if AB = I and BA = I and
▶ A is invertible if it has an inverse.

Example

Consider A =
(

1 0 1
0 1 1

)
and B =

(
1 0 0
0 1 0

)T
. Are they inverses?



Lemma
If a matrix A is invertible then

1. its inverse is unique (and denoted by A−1),
2. A is a square matrix of full rank

(i. e. A ∈ F n×n for some n ∈ N and rk(A) = n)
3. the linear map F n×n → F n×n, X 7→ AX is invertible, its unique

inverse is Y 7→ A−1Y .

Definition
If a matrix A is invertible, then its unique inverse is denoted by A−1.

Theorem
Let A ∈ F n×n. The following are equivalent:

1. A is invertible,
2. rk(A) = n and
3. rref(A) = In.

Then A−1 can be computed by solving the systems of linear
equations (A|I ) simoultaneously: the result is (I |A−1).



Corollary
If the matrix A is invertible, the equations Ax = b or AX = B can
be solved by multiplying with A−1 from left: x = A−1b and
X = A−1B .

Example
Compute the inverse of the following matrices (if it exists):

A =
(

1 2
3 4

)
, B =

(
1 1 1
0 2 1
3 1 2

)
, C =

(
2 1 2
1 0 3
4 1 7

)
Solve the equations Ax = e1 and CX = B .

Lemma
Let A,B ∈ F n×n invertible matrices and λ ∈ F − {0}. Then

1.
(
A−1)−1

= A,
2. (λA)−1 = λ−1A−1 = (1/λ)A−1,
3. AB is invertible and (AB)−1 = B−1A−1,

in particular (Ak)−1 = (A−1)k for k ∈ N and
4. (AT )−1 = (A−1)T .



Linear transformations

Definition
A linear transformation is a linear map φ : V → V of
vectorspaces.

Reminder
Let B ⊂ F n be a basis.
▶ For a vector v ∈ F n the coordinate vector [v ]B is the unique

vector such that v = B · [v ]B .
▶ For a linear map φ : F n → Fm the matrix of φ is the matrix

A = (φ(e1)|φ(e2)| . . . |φ(en)) ∈ Fm×n, where ek ∈ F n are the
vectors in the standard basis. Then φ(v) = Av .

Remark
The goal is to do the latter in any basis.



Definition
Let B = {b1, b2, . . . , bn} be a basis of F n and φ : F n → F n linear.
The matrix of φ with respect to B is
[φ]B = ([φ(b1)]B |[φ(b2)]B | . . . |[φ(bn)]B).

Theorem
Then [φ]B [v ]B = [φ(v)]B .

Example
▶ Let φ be the projection to the plane x − 2y + z = 0 ⊂ R3.

Find a basis B , for which [φ]B is "nice"!
▶ What is the matrix of the reflection to this plane with respect

to B?

▶ A linear transformation of R3 has matrix
1 0 0

0 1 0
0 0 −1

 with

respect to some basis. Is it a reflection?



Definition
Let B,C ⊂ F n bases. The transformation matrix TC←B ∈ F n×n

is the unique matrix for which [v ]C = TC←B [v ]B .

Example
▶ TE←B = (b1|b2| . . . |bn), where E is the standard basis.
▶ TC←B = T−1

B←C for any bases B and C .

Theorem (Change of bases)
Let φ : F n → F n be a linear transformation, B,C ⊂ F n bases and
P = TB←C . Then [φ]C = P−1[φ]BP .

Example
Let φ be the projection to the plane x − 2y + z = 0 ⊂ F 3. What is
the matrix of φ (in the standard basis)?



Special matrices

Definition
Let A ∈ F n×n and a ∈ F .
▶ The diagonal of A is the vector of elements in the form ajj :

diag(A) = (a11, a22, . . . , ann) ∈ F n.
▶ A is diagonal if j ̸= k =⇒ ajk = 0.
▶ The diag(a) is the diagonal matrix with diagonal a.
▶ A is upper triangular (resp. lower triangular) if

j > k =⇒ ajk = 0 (resp j < k =⇒ ajk = 0).

Lemma
Let A,B ∈ F n×n have property (P) from above and λ ∈ F . Then

1. λA, A+ B and AB have property (P).
2. The diagonal elements are λajj , ajj + bjj and ajjbjj respectively.
3. A is invertible ⇐⇒ a11a22 . . . ann ̸= 0.
4. If A is invertible A−1 has also property (P).



Definition
A ∈ Fm×n has LU decomposition if there exist a lower triangular
matrix L and an upper triangular matrix U such that A = LU.

Example (Solving SLE-s with LU decomposition)
Using

A =

1 2 4
3 8 14
2 5 13

 =

1 0 0
3 1 0
2 1 1

1 2 4
0 2 2
0 0 3


solve the equation Ax = b = (1, 3, 6)T : write y = Ux and then
solve Ly = b and Ux = y .

Remark

▶ Not all matrices have LU decomposition, for example
(

0 1
1 0

)
has not, but "most" of them have.

▶ A has LU decompostion ⇐⇒ in the Gaussian elimination
there was no need to swap rows. Then solving simoultaneously
the systems of equations (A|I ) we get (U|L−1), where U is in
row echelon form (hence upper triangular) and L is lower
triangular (because the rows were not swapped).In general this
is "better".



Definition
A ∈ F n×n is a permutation matrix if the set of columns of A is
the set of standard basis vectors (i. e. each column / row contains
a unique entry equal to 1 and the others are 0).

Remark
Then the rows are permuted byX 7→AX and the columns byX 7→XA.

Lemma
If A,B ∈ F n×n are permutation matrices, then so do AB and
A−1 = AT .

Theorem (LUP decomposition)

For any matrix A ∈ F n×n there exist
▶ a permutation matrix P ,
▶ a lower triangular matrix L and
▶ an upper triangular matrix U

such that A = LUP .



Remark
Here the method is to clear lower entries of the columns without
reaching row echelon form. Then with some column operations we
get P : simoultaneously solving the systems of equations (A|I ) we
arrive to (UP|L−1).

Example

Find the LUP decomposition of

1 2 1
1 2 2
2 1 1

!

 1 2 1 1 0 0
1 2 2 0 1 0
2 1 1 0 0 1

 −→
 1 2 1 1 0 0

0 0 1 −1 1 0
0 −3 −1 −2 0 1


−→

 1 2 1 1 0 0
0 0 1 −1 1 0
0 −3 0 −3 1 1

 −→ P =

1 0 0
0 0 1
0 1 0

 ,

U =

1 1 2
0 1 0
0 0 −3

 and L =

 1 0 0
−1 1 0
−3 1 1

−1

=

1 0 0
1 1 0
2 −1 1

 .



Motivation

Reminder (Signed area of parallelograms)
Let f (u, v) be the area of the parallelogram with sides u, v . Then

1. f (cu, v) = cf (u, v) = f (u, cv) = cf (u, v)
u

c1v

c2v

v

2. f (u, v) = −f (v , u) u

v

+ v

u

−

3. f (u, v) = f (u + cv , v) = f (u, v + cu)
u

u + cv
v

u

v
v + cu

4. f (e1, e2) = 1.

Example
What is the area of the paralelogram with sides (2, 5), (−3, 1)



The determinant as a function of the rows

Theorem
Let F be a field and n ∈ N. There exists a unique map
φ : F n×n → F such that if B is the matrix what is obtained from A

1. by multipliyng a row by c ∈ F , then φ(B) = cφ(A),
2. by swapping two rows of A, then φ(B) = −φ(A),
3. by adding a constant multiple of a row of A to an other row,

then φ(B) = φ(A),
4. φ(I ) = 1.

Remark
▶ the second is implied by the others,
▶ this could have been done with columns (instead of rows)

Definition
The above map is the determinant and its value is denoted by
det(A) or |A|.



Lemma
If A is triangular (upper or lower), then det(A) = a11a22 . . . ann.

Corollary
▶ The determinant can be computed with Gaussian elimination

(without multiplying the rows). If B is the resulting matrix in
row echelon form, and the number of row swaps is s, then
det(A) = (−1)s det(B).

▶ The rows can be multiplied as well, but then some
bookkeeping must be done.

▶ The determinant map is unique (if it exists).

Example

Compute

∣∣∣∣∣∣
2 1 3
1 −1 5
5 3 1

∣∣∣∣∣∣ and

∣∣∣∣∣∣∣∣
1 2 −3 1
0 1 1 0
2 −1 3 5
1 1 1 1

∣∣∣∣∣∣∣∣!



Corollary
The following are equivalent:

1. det(A) ̸= 0,
2. A is invertible,
3. rk(A) = n,
4. rref(A) = In,
5. the equation Ax = 0 has only the trivial solution and
6. the equation Ax = b is solvable for all b ∈ F n.

Example
What is the determinant of
▶ the elementary matrices,
▶ diagonal matrices,
▶ permutation matrices and
▶ products of a diagonal and a permutation matrix?



Properties of the determinant
Lemma
Each invertible matrix A ∈ F n×n can be written as a product of
elementary matrices.

Theorem
If λ ∈ F and A,B ∈ F n×n, then

1. det(λA) = λn det(A),
2. det(AB) = det(A) det(B),
3. det(A−1) = 1/ det(A) if A is invertible and
4. det(AT ) = det(A).

Remark
det(A+ B) can not be expressed from det(A) and det(B):

Let A =

(
1 0
0 0

)
, B =

(
0 0
0 1

)
, A′ =

(
1 1
0 0

)
and B ′ =

(
0 0
1 1

)
.

Then det(A) = det(B) = det(A′) = det(B ′) = det(A′ + B ′) = 0
but det(A+ B) = 1.



Theorem∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1
a2
...
ak
...
an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1
a2
...
bk
...
an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1
a2
...

ak + bk
...
an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(the rows are equal but the kths)

Remark
▶ Thus the determinant is multilinear: it "preserves linear

combinations" of rows.
▶ We can decompose the determinants as a sum of determinants

of products of a diagonal and a permutation matrix.

Example

Compute
∣∣∣∣ 4 2

3 1

∣∣∣∣ in the above way. How many nontrivial terms

will be in the decomposition of the determinant of a 3× 3 matrix?



The determinant as a function of the entries

Definition
Let π be a permutation of {1, 2, . . . , n} (i. e. a bijective function
π : S → S). We denote it by π(1)π(2) . . . π(n).
▶ The elements i and j are an inversion of π if i < j and
π(i) > π(j).

▶ The inversion number of π is the number of inversions of π.
The notation is i(π).

▶ π is even (resp. odd) if i(π) is even (resp. odd).

Example
▶ What is i(3241)?
▶ What is the maximum number of inversions of a permutation

of {1, 2, . . . , 6}?
▶ Find a permutation π of {1, 2, . . . , 6} such that i(π) = 7!



Remark
We can assign a permutation matrix P to a permutation π: the

matrix where pjk =

{
1, if π(j) = k

0, otherwise
.

Theorem
Let P and π as above. Then det(P) = (−1)i(π).

Definition
Let det : F n×n → F be the following

det(A) =
∑
π

(−1)i(π)a1,π(1)a2,π(2) . . . an,π(n),

where the sum goes through all the permutations of
S = {1, 2, . . . , n}.

Remark
This can be defined over commutative rings (not only over fields).



Lemma
1. det is multilinear in the rows of the matrix.
2. If A has two equal rows, then det(A) = 0.

Theorem
det satisfies the defining properties of the determinant, so
det = det and thus the determinant exists.

Corollary
If A ∈ Zn×n ⊂ Qn×n, then det(A) ∈ Z.

Example

What is

∣∣∣∣∣∣∣∣∣∣∣

a b 0 . . . 0
0 a b . . . 0
0 0 a . . . 0
...

...
...

. . .
...

b 0 0 . . . a

∣∣∣∣∣∣∣∣∣∣∣
?



Remark

▶ 2× 2 determinants:
∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.

▶ The rule of Sarrus:

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
(a11a22a33 + a12a23a31 + a13a21a32)− (a11a23a32 + a12a21a33 + a13a22a31).

Example

Compute
∣∣∣∣ 1 2

3 4

∣∣∣∣ and

∣∣∣∣∣∣
8 1 3
−1 2 1
4 5 1

∣∣∣∣∣∣!



Reducing the determinant to smaller ones

Definition
Let A ∈ F n×n and 1 ≤ j , k ≤ n. The cofactor of A corresponding
to ajk is (−1)j+k times the (n− 1)× (n− 1) determinant which we
get by omitting the jth row and kth column. The notation is Ajk .

Lemma
If in the jth row of A the single nonzero element is ajk , then
det(A) = ajkAjk .

Remark
The above statement is true for columns instead of rows, as
det(AT ) = det(A).

Example

What is

∣∣∣∣∣∣∣∣∣
1 2 0 3 4
1 2 0 8 4
6 0 0 7 0
8 9 8 7 6
5 4 0 3 2

∣∣∣∣∣∣∣∣∣?



Theorem (Laplace expansion)

For any A ∈ F n×n and 1 ≤ j ≤ n we have

det(A) =
n∑

k=1

ajkAjk =
n∑

k=1

akjAkj .

Example

▶ Compute

∣∣∣∣∣∣∣∣∣∣∣

a b 0 . . . 0
0 a b . . . 0
0 0 a . . . 0
...

...
...

. . .
...

b 0 0 . . . a

∣∣∣∣∣∣∣∣∣∣∣
again with Laplace expansion!

▶ It is worth combining the techniques we have learnt:∣∣∣∣∣∣∣
1 1 −1 0 1
0 1 0 3 0
2 1 0 2 3
3 1 1 3 0
−1 1 2 −1 1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1 1 −1 −3 1
0 1 0 0 0
2 1 0 −1 3
3 1 1 0 0
−1 1 2 −4 1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣

1 −1 −3 1
2 0 −1 3
3 1 0 0
−1 2 −4 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
4 −1 −3 1
2 0 −1 3
0 1 0 0
−7 2 −4 1

∣∣∣∣∣∣=−
∣∣∣∣ 4 −3 1

2 −1 3
−7 −4 1

∣∣∣∣=− ∣∣∣∣ 0 0 1
−10 8 3
−11 −1 1

∣∣∣∣=−98.



Applications of the determinant

Definition
Let x1, x2, . . . , xn ∈ F .

▶ The matrix V (x1, x2, . . . , xn) =

1 x1 x2
1 . . . xn−1

1
1 x2 x2

2 . . . xn−1
2

...
...

...
. . .

...

1 xn x2
n . . . xn−1

n

 is

called the Vandermonde matrix and
▶ det(V (x1, x2, . . . , xn)) is the Vandermonde determinant.

Theorem

det(V (x1, x2, . . . , xn)) =
∏
j<k

(xk − xj).

Corollary
▶ det(V (x1, x2, . . . , xn)) ̸= 0 ⇐⇒ the xj -s are distinct
▶ This gives an other proof of the polynomial interpolation

theorem.



Adjugate and inverse

Lemma ("Skew expansion")
n∑

k=1

ajkAlk =
n∑

k=1

akjAkl = 0 for any A ∈ F n×n and j ̸= l .

Definition
The adjugate of A ∈ F n×n is the matrix where the entry in the
j-th row and k-th column is Akj . The notation is adj(A).

Example

Compute adj

1 −1 3
2 0 1
1 1 5

. What is A · adj(A)?



Theorem
A · adj(A) = det(A) · I

Corollary

▶ if A is invertible, then A−1 =
1

det(A)
adj(A)

▶ in particular
(
a b
c d

)−1

=
1

ad − bc

(
d −b
−c a

)
if det = ad − bc ̸= 0.

Remark
This is not so efficient in general if n ≥ 4.

Example
Show that if A ∈ Zn×n then

A−1 ∈ Zn×n ⇐⇒ det(A) = ±1.



Cramer’s rule

Definition
Let A ∈ F n×n with column vectors a1, a2, . . . an and let
b ∈ F n = F n×1. Denote Aj ,b = (a1, a2, . . . aj−1, b, aj+1, . . . an) -
the matrix which we get by replacing the jth column with b in A.

Theorem (Cramer’s rule)

Let A ∈ F n×n with det(A) ̸= 0 and b ∈ F n. The equation Ax = b

has a unique solution and xj =
det(Aj ,b)

det(A)
.

Example
Solve the following system of linear equations with Cramer’s rule:

2x + 5y = 4
5x + 3y = 6



Rank and determinant

Theorem
Let A ∈ Fm×n. rk(A) is the maximal integer r such that A has a
nonzero r × r subdeterminant.

Example

What is the rank of


1 2 0 −3
1 0 1 1
0 1 3 0
2 0 2 2

?

A figure for the proof.



Block matrices

Definition
A block matrix is a matrix partitioned to blocks with respect to a
partition of the set of the rows and one of the columns.

Example( 1 2 3
4 5 6
7 8 9

)
=

(
A B
C D

)
, where A = (1 2), B = (3),

C =
(

4 5
7 8

)
and D =

(
6
9

)
. The partition of the rows is

{1} ∪ {2, 3} and the one of the columns is {1, 2} ∪ {3}.

Lemma (Operations with block matrices)
1. If A and B are block matrices of the same size and partitions

then in A+ B the corresponding blocks are summed.
2. If A and B are block matrices such that AB is defined and the

column partition of A equals the row partition of B , then AB
can be computed by multiplying the corresponding blocks.



Definition
Let A ∈ F n×n be a block matrix with the same row and column
partition.

▶ A is block diagonal if all the blocks
outside the diagonal are 0 matrices,

▶ A is block upper triangular if all the
blocks below the diagonal are 0 matrices
and

▶ A is block lower triangular if all the
blocks above the diagonal are 0 matrices.

Lemma
Let A be a block triangular matrix with diagonal blocks
D1,D2, . . . ,Dk . Then det(A) = det(D1) det(D2) . . . det(Dk).

Corollary
Let A,B,C ,D ∈ F n×n such that det(A) ̸= 0 and AC = CA and let

M =

(
A B
C D

)
. Then det(M) = det(AD − BC ).



Table of contents
1. Introduction

1. Number systems
2. Induction and recursion
3. Approximation with rationals

2. Elementary arithmetic of integers
1. Divisibility
2. Division with remainder
3. Greatest common divisor
4. Linear Diophantine equations
5. Prime numbers
6. The fundamental theorem of Number Theory

3. Modular arithmetic – Computing with residues
1. Congruences and residue classes
2. Operations with congruences
3. Linear congruences
4. The ring of modulo m residue classes
5. Reduced residue systems and the Euler-Fermat theorem



4. Complex numbers
1. Definition and algebraic properties
2. The fundamental theorem of Algebra
3. Trigonometric form and geometric properties
4. Roots of unity
5. Binomial sums

5. Polynomials
1. Basic notions and properties
2. Number theory of polynomials over fields
3. The case of C[x ] and R[x ]
4. The case of Q[x ] and Z[x ]
5. Roots of polynomials

6. Systems of linear equations

7. Vectorspaces
1. The vectorspace F n

2. Independent and generating subsets, bases and dimension

8. Matrices and linear maps
1. Matrices and rank



2. Linear maps
3. Operations
4. Inverse of matrices and linear maps
5. Linear transformations
6. Special matrices
7. The determinant
8. Applications of the determinant


	Summary

