1. a) Recall the definition of orderings and well-ordered sets from the lecture!
b) Show that an ordered set $(X,<)$ is well ordered if and only if it does not contain an infinite descending chain $\left(x_{1}>x_{2}>x_{3}>\ldots\right)$.
c) Prove that if S is well ordered, then all of its subset is well ordered!
d) Show that if $S_{1}, S_{2}, \ldots, S_{n}$ are well ordered subsets of an ordered set $(X,<)$, then so is $\bigcup_{k=1}^{n} S_{k}$.
2. What is the sum of the first n Fibonacci numbers?
3. Show that $\sum_{k=1}^{n} k \cdot k!=(n+1)!-1$.
4. What is the number of those sequences of length n of entries $1,2,3$ or 4 , which starts with 1 and the difference between adjacent numbers in them are 1 ?
5. Prove that a) $[x]+\left[x+\frac{1}{2}\right]=[2 x]$ and b) $[\sqrt{[x]}]=[\sqrt{x}]$.
6. Write the continued fraction form of $\sqrt{2} \cong 1,414$.
7. a) Let S_{1}, S_{2}, \ldots be an infinite chain of well ordered subsets of an ordered set $(X,<)$ such that for all $i<j, x \in S_{i}$ and $y \in S_{j}$ we have $x<y$. Prove that $\bigcup_{k=1}^{\infty} S_{k}$ is also well ordered.
b) Show that \mathbb{Z} (with the standard ordering) is not well ordered and find an ordering \prec such that (\mathbb{Z}, \prec) is well ordered!
8. Let $g_{0}=a, g_{1}=b$ and $g_{n}=g_{n-1}+g_{n-2}$ for $n \geq 2$ - this is a generalized Fibonacci sequence. Show that $g_{n}=a f_{n-1}+b f_{n}$ for all n (f_{n} denotes the n-th Fibonacci number)!
9. What is the number of sequences of length n of entries 0 or 1 in which there are no two adjacent 0-s?
10. Write $\sqrt{3} \approx 1.732$ as a continued fraction! Compute the first 5 approximating rationals we get from it and the bound for the error. Are these the approximations strong (in the sense that whether $\left|\sqrt{3}-p_{k} / q_{k}\right|<1 / 2 q_{k}^{2}$ hold)?

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/

