Introduction to Algebra 1

Problem sheet 2.

2023.09.11-14.

1. Show that any 6 -digit number we obtain by repeating the digits of a 3 -digit number is divisible by 91. For example by repeating 123 we get $123123=1353 \cdot 91$.
2. Show that for all $n \in \mathbb{N}$ we have $133 \mid 11^{n+1}+12^{2 n-1}$!
3. Compute the value of $p(x)=x^{5}-3 x^{2}+x+3$ at $x=5$ using Horner's method!
4. Convert 26 to base $16,8,4,2,5,26$!
5. Prove that for any $a, m, n \in \mathbb{N}, a>1$ we have $\left(a^{m}-1, a^{n}-1\right)=a^{(m, n)}-1$.
6. Using Euclidean algorithm, compute $(288,204)$ and present it in the form $288 m+204 n$ for some $m, n \in \mathbb{Z}$!
7. Prove that if 23 divides $5 a+9 b$ for some integers a, b, then 23 also divides $3 a+10 b$!
8. What is the decimal (base 10) representation of the number 120201_{3} ?
9. Convert 2023 to base 2,8 and 16 !
10. Show that $\left\lfloor\frac{n}{a b}\right\rfloor=\left\lfloor\frac{\left[\frac{n}{a}\right\rfloor}{b}\right\rfloor$ for any $n, a, b \in \mathbb{N}$!
11. Let $x \in \mathbb{R}^{+}$and $d \in \mathbb{N}$. Show that the number of integers n which are divisible by d and not greater than x is $\left\lfloor\frac{x}{d}\right\rfloor$.
12. Give all integral and all positive solutions of the following linear equations!
a) $288 x+204 y=1$,
b) $288 x+204 y=30$ and
c) $288 x+204 y=300$.
13. * a) Show that $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\} \subset \mathbb{R}$ is a ring.
b) Which of the following are units in $\mathbb{Z}[\sqrt{2}]: \sqrt{2}, 3-2 \sqrt{2}, 2+3 \sqrt{2}$?

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/

