Introduction to Algebra 1

- 1. Show that any 6-digit number we obtain by repeating the digits of a 3-digit number is divisible by 91. For example by repeating 123 we get $123123 = 1353 \cdot 91$.
- 2. Show that for all $n \in \mathbb{N}$ we have $133|11^{n+1} + 12^{2n-1}!$
- 3. Compute the value of $p(x) = x^5 3x^2 + x + 3$ at x = 5 using Horner's method!
- 4. Convert 26 to base 16, 8, 4, 2, 5, 26!
- 5. Prove that for any $a, m, n \in \mathbb{N}$, a > 1 we have $(a^m 1, a^n 1) = a^{(m,n)} 1$.
- 6. Using Euclidean algorithm, compute (288, 204) and present it in the form 288m + 204n for some $m, n \in \mathbb{Z}$!
- 7. Prove that if 23 divides 5a + 9b for some integers a, b, then 23 also divides 3a + 10b!
- 8. What is the decimal (base 10) representation of the number 120201_3 ?
- 9. Convert 2023 to base 2, 8 and 16!
- 10. Show that $\left\lfloor \frac{n}{ab} \right\rfloor = \left\lfloor \frac{\left\lfloor \frac{n}{a} \right\rfloor}{b} \right\rfloor$ for any $n, a, b \in \mathbb{N}!$
- 11. Let $x \in \mathbb{R}^+$ and $d \in \mathbb{N}$. Show that the number of integers *n* which are divisible by *d* and not greater than *x* is $\lfloor \frac{x}{d} \rfloor$.
- 12. Give all integral and all positive solutions of the following linear equations!
 - a) 288x + 204y = 1,
 - b) 288x + 204y = 30 and
 - c) 288x + 204y = 300.
- 13. * a) Show that $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\} \subset \mathbb{R}$ is a ring.

b) Which of the following are units in $\mathbb{Z}[\sqrt{2}]$: $\sqrt{2}, 3 - 2\sqrt{2}, 2 + 3\sqrt{2}$?

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/