1. Show that
a) the product of integers in the form $4 k+1$ is again in the form $4 k+1$,
b) there exists infinitely many prime in the form $4 k+3$.
(Hint: what are the prime divisors of $4 n!-1$)
2. Show that $\log _{5} 20$ is irrational! (Hint: use the Fundamental Theorem of Number Theory)
3. What is the exponent of 2 in the canonical representation of 17 ! (17 factorial)?
4. Show that $17^{2} \nmid(n-5)(n+12)+51$ for all $n \in \mathbb{Z}$!
5. Show that if $\left(a^{2}, b\right)=\left(a, b^{2}\right)$, then $\left(a^{3}, b^{7}\right)=\left(a^{7}, b^{3}\right)$.
6. * What are those even numbers which have unique factorization in E (the nonunital ring of even numbers)?
7. * Consider the map $N: \mathbb{Z}[\sqrt{2}] \rightarrow \mathbb{Z}, N(a+b \sqrt{2})=a^{2}-2 b^{2}$. Show that
a) $N(x y)=N(x) N(y)$ for all $x, y \in \mathbb{Z}[\sqrt{2}]$,
b) $x \in \mathbb{Z}[\sqrt{2}]$ is a unit $\Longleftrightarrow|N(x)|=1$,
c) if $N(x) \in \mathbb{Z}$ is a prime number, then x is irreducible in $\mathbb{Z}[\sqrt{2}]$,
d) $p \in \mathbb{Z}$ is a prime congruent to 3 or 5 modulo 8 , then $p \in \mathbb{Z}[\sqrt{2}]$ is irreducible and
e) 7,17 and 23 are not irreducible in $\mathbb{Z}[\sqrt{2}]$!
8. What is the greatest common divisor and least common multiple of the following integers?
a) $2^{23} 3^{10} 7^{13}$ and $2^{15} 7^{10} 13^{5}$
b) $2^{23} 3^{10} 7^{13}, 2^{15} 7^{10} 13^{5}$ and $3^{15} 7^{20} 11^{2}$ (here first define the gcd and lcm of 3 integers!)
9. Show that any nonnegative integer can be written as a product of a square number and a squarefree number (n is squarefree if $p^{2} \nmid n$ for all primes p, for example 6 and 30 are squarefree, but 12 and 18 are not squarefree as $2^{2} \mid 12$ and $\left.3^{2} \mid 18\right)$.
10. How many zero digits are at the end of the number 100 ! (100 factorial)?
11. Show, that for any a, b positive integers there exists m, n positive integers such that $m|a, n| b$, $(m, n)=1$ and $m n=[a, b]$.
12. * For which primes p is the number $\left(2^{p}-1\right) / p$ a square?

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/

