1. What is 2^{67} modulo 61 ?
2. Solve the congruences (in \mathbb{Z})
a) $12 x \equiv 15(\bmod 21)$,
b) $12 x \equiv 4(\bmod 6)$,
c) $12 x \equiv 4(\bmod 2)$ and
d) $30 x \equiv 4(\bmod 37)$.
3. Compute the table of the operations of $\mathbb{Z} / 3 \mathbb{Z}$ and $\mathbb{Z} / 8 \mathbb{Z}$! What is the table of multiplication in $(\mathbb{Z} / 8 \mathbb{Z})^{*}$?
4. Determine the following values:
a) $\varphi(23), \varphi(21), \varphi(63)$ and $\varphi(10!)$,
b) $120^{24} \bmod 23,115^{21} \bmod 21,68^{111} \bmod 63$ and $111^{68} \bmod 63$ (be careful, 63 and 111 are not relatively prime!) and
c) the last two digits of $3^{3^{3^{4}}}$.
5. * Prove Wilson's theorem: $(p-1)!\equiv-1(\bmod p)$ for all prime numbers $p>0$.

Hints:
(a) Make pairs of the form $\left(a, a^{-1}\right)$! (why can this be done?)
(b) Which pairs are not really pairs? (try it for some prime $p>3$ and prove it using the fact that \mathbb{Z}_{p} has no zero divisors as it is a domain.
(c) Compute the product "pairwise".
6. Solve the following system of congruences:

$$
\begin{aligned}
x & \equiv 2(\bmod 3) \\
x & \equiv 3(\bmod 8) \\
x & \equiv-4(\bmod 11)
\end{aligned}
$$

7. What is 3^{32} modulo 13 ?
8. a) What is $5^{-1}(\bmod 26)$?
b) Is 4 invertible modulo 26 ?
9. For which positive integers n is $\varphi(n)=6$?
10. * Show that if H is a set, then $(\mathcal{P}(H), \cap, \Delta)$ is a domain. Here $\mathcal{P}(H)$ is the power set of H : the set of subsets of H, \cap is the intersection and Δ is the symmetric difference: $A \Delta B=(A \cup B)-(A \cap B)$. Is $(\mathcal{P}(H), \cup, \cap)$ a ring?

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/

