Introduction to Algebra 1

- 1. What is 2^{67} modulo 61?
- 2. Solve the congruences (in \mathbb{Z})
 - a) $12x \equiv 15 \pmod{21}$,
 - b) $12x \equiv 4 \pmod{6}$,
 - c) $12x \equiv 4 \pmod{2}$ and
 - d) $30x \equiv 4 \pmod{37}$.
- 3. Compute the table of the operations of $\mathbb{Z}/3\mathbb{Z}$ and $\mathbb{Z}/8\mathbb{Z}$! What is the table of multiplication in $(\mathbb{Z}/8\mathbb{Z})^*$?
- 4. Determine the following values:
 - a) $\varphi(23)$, $\varphi(21)$, $\varphi(63)$ and $\varphi(10!)$,
 - b) $120^{24} \mod 23$, $115^{21} \mod 21$, $68^{111} \mod 63$ and $111^{68} \mod 63$ (be careful, 63 and 111 are not relatively prime!) and
 - c) the last two digits of $3^{3^{3^4}}$.
- 5. * Prove Wilson's theorem: $(p-1)! \equiv -1 \pmod{p}$ for all prime numbers p > 0. Hints:
 - (a) Make pairs of the form $(a, a^{-1})!$ (why can this be done?)
 - (b) Which pairs are not really pairs? (try it for some prime p > 3 and prove it using the fact that \mathbb{Z}_p has no zero divisors as it is a domain.
 - (c) Compute the product "pairwise".
- 6. Solve the following system of congruences:

$$x \equiv 2 \pmod{3}$$
$$x \equiv 3 \pmod{8}$$
$$x \equiv -4 \pmod{11}$$

- 7. What is 3^{32} modulo 13?
- 8. a) What is $5^{-1} \pmod{26}$? b) Is 4 invertible modulo 26?
- 9. For which positive integers n is $\varphi(n) = 6$?
- 10. * Show that if H is a set, then $(\mathcal{P}(H), \cap, \Delta)$ is a domain. Here $\mathcal{P}(H)$ is the power set of H: the set of subsets of H, \cap is the intersection and Δ is the symmetric difference: $A\Delta B = (A \cup B) (A \cap B)$. Is $(\mathcal{P}(H), \cup, \cap)$ a ring?

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/