1. What is the algebraic form $(a+b i)$ of the following complex numbers?
a) $(3-4 i)(7+8 i)$,
b) $(3-4 i) /(2-i)$,
c) i^{2020} and
d) $(1+i)^{9}$.
2. Solve the equation $z^{2}+2 i z-1+i=0$ in \mathbb{C} !
3. Represent the solutions of the following equations on the plane!
a) $|z-5+i|=2$,
b) $|z-i|=|z+i|$,
c) $|(z-3+4 i) /(z-i)| \geq 1$,
d) $|z|=3 i z$,
e) $|z|=i z$ and
f) $z+\bar{z}<4$.
4. a) Give an explicit formula for $\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\ldots$ by comparing the algebraic and trigonometric form of $(1+i)^{n}$!
b) Compute $(\cos x+i \sin x)^{3}$ in two different ways! With the help of this express $\cos (3 x)$ as a funciton of $\cos x$!
5. Let z_{1}, z_{2} and $z_{3} \in \mathbb{C}$ and $w=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Prove that the following are equivalent:
1) $z_{1} z_{2} z_{3}$ is an equilateral triangle with vertices in counterclock wise order and
2) $z_{1}+z_{2} w+z_{3} w^{2}=0$.
6. What is the sum and the product of primitive 5th and 8th roots of unity?
7. a) Show that the units of $\mathbb{Z} / m \mathbb{Z}$ are exactly the reduced residue classes!
b) Show that the following are equivalent:
8. m is a prime
9. $\mathbb{Z} / m \mathbb{Z}$ is a domain
$3 . \mathbb{Z} / m \mathbb{Z}$ is a field
10. Let $\mathbb{H}=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\}$ be a set and define the following operations:

+ in the obvious way (i. e. $\left.(a+b i+c j+d k)+\left(a^{\prime}+b^{\prime} i+c^{\prime} j+d^{\prime} k\right)=(a+a)^{\prime}+\left(b+b^{\prime}\right) i+\left(c+c^{\prime}\right) j+\left(d+d^{\prime}\right) k\right)$
- by extending the relations $i^{2}=j^{2}=k^{2}=-1, i j=-j i=k, j k=-k j=i$ and $k i=-i k=j$ distributively (for example $(j+2 k)(j-3 i)=j^{2}-3 j i+2 k j-6 k i=-1+3 k-2 i-6 j$)
a) Show that $(\mathbb{H},+, \cdot)$ is a non-commutative ring! (It is called the ring of Hamilton quaternions)
b) Show that any nonzero element has an inverse! (Thus $(\mathbb{H},+, \cdot)$ is a skew field).

Hint: $(a+b i+c j+d k)(a-b i-c j-d k) \in \mathbb{R}$ for any $a, b, c, d \in \mathbb{R}$.
9. Let $z=1+3 i$ and $w=2-i$. Compute
a) $z \bar{z}$,
b) w / \bar{w},
c) $|z-w|$,
d) $|2 z-z w| \quad$ and
e) $\left|w / z \bar{w}^{3}\right|$.
10. What are the square roots of the complex number $1-2 i$? (i. e. the numbers $w=x+y i$ such that $\left.w^{2}=1-2 i\right)$
11. Let ε be a primitive n-th root of unitiy. What are the possible orders of a) $-\varepsilon$ and b) ε^{k} ?
12. What are the fifth roots of $-\sqrt{3}+i$?
13. 2 and i are two vertices of a square. What can be the other vertices?
14. Prove that in any ring R the identity $r \cdot 0=0=0 \cdot r$ holds for any $r \in R$.

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/

