Introduction to Algebra 1

Problem sheet 5.

- 1. What is the algebraic form (a + bi) of the following complex numbers? c) i^{2020} b) (3-4i)/(2-i), a) (3-4i)(7+8i), and d) $(1+i)^9$.
- 2. Solve the equation $z^2 + 2iz 1 + i = 0$ in $\mathbb{C}!$
- 3. Represent the solutions of the following equations on the plane! c) $|(z-3+4i)/(z-i)| \ge 1$, f) $z + \overline{z} < 4$. b) |z - i| = |z + i|, a) |z - 5 + i| = 2, d) |z| = 3iz, e) |z| = iz and
- a) Give an explicit formula for $\binom{n}{0} \binom{n}{2} + \binom{n}{4} \dots$ by comparing the algebraic and trigonometric 4. form of $(1+i)^n!$
 - b) Compute $(\cos x + i \sin x)^3$ in two different ways! With the help of this express $\cos(3x)$ as a function of $\cos x!$
- 5. Let z_1, z_2 and $z_3 \in \mathbb{C}$ and $w = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. Prove that the following are equivalent: 1) $z_1 z_2 z_3$ is an equilateral triangle with vertices in counterclockwise order and 2) $z_1 + z_2 w + z_3 w^2 = 0$.
- 6. What is the sum and the product of primitive 5th and 8th roots of unity?
- 7. a) Show that the units of $\mathbb{Z}/m\mathbb{Z}$ are exactly the reduced residue classes! b) Show that the following are equivalent:

2. $\mathbb{Z}/m\mathbb{Z}$ is a domain 1. m is a prime $3.\mathbb{Z}/m\mathbb{Z}$ is a field

- 8. Let $\mathbb{H} = \{a + bi + cj + dk | a, b, c, d \in \mathbb{R}\}$ be a set and define the following operations:
 - + in the obvious way (i. e. (a+bi+cj+dk)+(a'+b'i+c'j+d'k) = (a+a)'+(b+b')i+(c+c')j+(d+d')k) • by extending the relations $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i and ki = -ik = jdistributively (for example $(j + 2k)(j - 3i) = j^2 - 3ji + 2kj - 6ki = -1 + 3k - 2i - 6j)$
 - a) Show that $(\mathbb{H}, +, \cdot)$ is a non-commutative ring! (It is called the ring of Hamilton quaternions)
 - b) Show that any nonzero element has an inverse! (Thus $(\mathbb{H}, +, \cdot)$ is a skew field). Hint: $(a + bi + cj + dk)(a - bi - cj - dk) \in \mathbb{R}$ for any $a, b, c, d \in \mathbb{R}$.
- 9. Let z = 1 + 3i and w = 2 i. Compute a) $z\overline{z}$, b) w/\overline{w} , c) |z-w|, d) |2z-zw| and e) $|w/z\overline{w}^3|$.
- 10. What are the square roots of the complex number 1-2i? (i. e. the numbers w = x + yi such that $w^2 = 1 - 2i$
- 11. Let ε be a primitive *n*-th root of unity. What are the possible orders of a) $-\varepsilon$ and b) ε^k ?
- 12. What are the fifth roots of $-\sqrt{3} + i$?
- 13. 2 and i are two vertices of a square. What can be the other vertices?
- 14. Prove that in any ring R the identity $r \cdot 0 = 0 = 0 \cdot r$ holds for any $r \in R$.

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/