Introduction to Algebra 1

- 1. Using Horner's method a) write $a(x) = x^3 + 3x^2 + 1$ as (x - 3)q(x) + r and b) find b(x) such that a(x) = b(x - 3)!
- 2. What are the irreducible polynomials
 - a) of degree 4 over \mathbb{Z}_2 and
 - b) of degree 2 and 3 over \mathbb{Z}_3 ?
- 3. How to choose $a \in \mathbb{R}$ such that $(x+1)^2 | x^5 ax^2 ax + 1?$
- 4. Show that all polynomial in $\mathbb{R}[x]$ of odd degree has at least one real root!
- 5. What is $gcd(-6x^3 + 6x^2 12, 3x^2 3x 6)$ in $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$?
- 6. Determine the roots of the following polynomials and write them as products of irreducibles over C[x], R[x] and Z₅[x].
 a) 2x³ 7x² + 2
 b) x⁵ + 1
- 7. What is the greatest common divisor of $a(x) = x^3 2x^2 + x 1$ and $b(x) = x^2 + 2$. With the help of the extended Euclidean algorithm find polynomials p and q such that gcd(a, b) = pa + qb.
- 8. Divide $x^4 2x + 5$ with remainder by a) $x^2 - x + 2$, b) x + 1, c) $(x + 1)^2$ and d) $x^2 - 1!$
- 9. What is the gcd and lcm of $(x-2)^2(x+i)^5(x-3)(x-4)^2$ and $(x-2)(x+i)^2(x-3)^3$?
- 10. Determine the monic polynomials of lowest degree a) in $\mathbb{C}[x]$ and b) in $\mathbb{R}[x]$, for which *i* is a double root and 1 is a triple root!
- 11. How many irreducible factors does the polynomial $-6x^3 + 6x^2 12$ have in $\mathbb{Q}[x]$, $\mathbb{Z}[x]$, $\mathbb{R}[x]$ and $\mathbb{C}[x]$?

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/