1. Using Horner's method
a) write $a(x)=x^{3}+3 x^{2}+1$ as $(x-3) q(x)+r$ and
b) find $b(x)$ such that $a(x)=b(x-3)$!
2. What are the irreducible polynomials
a) of degree 4 over \mathbb{Z}_{2} and
b) of degree 2 and 3 over \mathbb{Z}_{3} ?
3. How to choose $a \in \mathbb{R}$ such that $(x+1)^{2} \mid x^{5}-a x^{2}-a x+1$?
4. Show that all polynomial in $\mathbb{R}[x]$ of odd degree has at least one real root!
5. What is $\operatorname{gcd}\left(-6 x^{3}+6 x^{2}-12,3 x^{2}-3 x-6\right)$ in $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$?
6. Determine the roots of the following polynomials and write them as products of irreducibles over $\mathbb{C}[x], \mathbb{R}[x]$ and $\mathbb{Z}_{5}[x]$.
a) $2 x^{3}-7 x^{2}+2$
b) $x^{5}+1$
7. What is the greatest common divisor of $a(x)=x^{3}-2 x^{2}+x-1$ and $b(x)=x^{2}+2$. With the help of the extended Euclidean algorithm find polynomials p and q such that $\operatorname{gcd}(a, b)=p a+q b$.
8. Divide $x^{4}-2 x+5$ with remainder by
a) $x^{2}-x+2$,
b) $x+1$,
c) $(x+1)^{2}$ and
d) $x^{2}-1$!
9. What is the gcd and lcm of $(x-2)^{2}(x+i)^{5}(x-3)(x-4)^{2}$ and $(x-2)(x+i)^{2}(x-3)^{3}$?
10. Determine the monic polynomials of lowest degree a) in $\mathbb{C}[x]$ and b) in $\mathbb{R}[x]$, for which i is a double root and 1 is a triple root!
11. How many irreducible factors does the polynomial $-6 x^{3}+6 x^{2}-12$ have in $\mathbb{Q}[x], \mathbb{Z}[x], \mathbb{R}[x]$ and $\mathbb{C}[x]$?

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/

