Introduction to Algebra 1

- 1. Find the roots of the following polynomials and decompose to product of irreducibles over \mathbb{R} , \mathbb{C} and \mathbb{Z}_5 !
 - a) $2x^3 7x^2 + 2$, b) $x^6 - 2x^5 - x^4 + 4x^3 - 5x^2 + 6x - 3$ and c) $x^5 + 1$.
- 2. Determine the monic polynomials of lowest degree a) in $\mathbb{C}[x]$ and b) in $\mathbb{R}[x]$, for which *i* is a double root and 1 is a triple root!
- 3. How many irreducible factors does the polynomial $-6x^3 + 6x^2 12$ have in $\mathbb{Q}[x]$, $\mathbb{Z}[x]$, $\mathbb{R}[x]$ and $\mathbb{C}[x]$?
- 4. What is $gcd(-6x^3 + 6x^2 12, 3x^2 3x 6)$ in $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$?
- 5. For which integers c does the polynomial $x^3 + 2x^2 + cx + 4$ have a rational root?
- 6. Consider the polynomial $x^4 6x^3 + 9x^2 + 3$. Is it irreducible over \mathbb{R} , \mathbb{Q} and \mathbb{Z}_2 ?
- 7. Decompose the polynomial $2x^6 x^5 9x^4 + 4x^3 6x^2 + 5x + 5$ as products of irreducibles in $\mathbb{Q}[x]$ and $\mathbb{Z}_5[x]$.
- 8. Show that if $p \in \mathbb{Q}[x]$ is irreducible, then it has no multiple roots in \mathbb{C} !

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/