1. Find the roots of the following polynomials and decompose to product of irreducibles over \mathbb{R}, \mathbb{C} and \mathbb{Z}_{5} !
a) $2 x^{3}-7 x^{2}+2$,
b) $x^{6}-2 x^{5}-x^{4}+4 x^{3}-5 x^{2}+6 x-3$ and
c) $x^{5}+1$.
2. Determine the monic polynomials of lowest degree a) in $\mathbb{C}[x]$ and b$)$ in $\mathbb{R}[x]$, for which i is a double root and 1 is a triple root!
3. How many irreducible factors does the polynomial $-6 x^{3}+6 x^{2}-12$ have in $\mathbb{Q}[x], \mathbb{Z}[x], \mathbb{R}[x]$ and $\mathbb{C}[x]$?
4. What is $\operatorname{gcd}\left(-6 x^{3}+6 x^{2}-12,3 x^{2}-3 x-6\right)$ in $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$?
5. For which integers c does the polynomial $x^{3}+2 x^{2}+c x+4$ have a rational root?
6. Consider the polynomial $x^{4}-6 x^{3}+9 x^{2}+3$. Is it irreducible over \mathbb{R}, \mathbb{Q} and \mathbb{Z}_{2} ?
7. Decompose the polynomial $2 x^{6}-x^{5}-9 x^{4}+4 x^{3}-6 x^{2}+5 x+5$ as products of irreducibles in $\mathbb{Q}[x]$ and $\mathbb{Z}_{5}[x]$.
8. Show that if $p \in \mathbb{Q}[x]$ is irreducible, then it has no multiple roots in \mathbb{C} !

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/

