Introduction to Algebra 1

- 1. Determine the roots of $x^3 + 3x^2 + 9x + 5$ with the help of Cardano's formula!
- 2. Show that if p is an odd prime, then $\Phi_{2p}(x) = \Phi_p(-x)$. Show that this polynomial is irreducible!
- 3. a) Verify that $\Phi_{12}(x) = x^4 x^2 + 1$.
 - b) Show that $\Phi_{12}(ax+b)$ does not satisfy the conditions of the Schönemann-Eisenstein criterion for any $a, b \in \mathbb{Z}, a \neq 0$ and prime p!
 - c) Prove that $\Phi_{12}(x) \mod p$ is reducible in $\mathbb{Z}_p[x]$ for all prime p.
 - d) "By hand" show that $\Phi_{12}(x)$ is irreducible in $\mathbb{Z}[x]$!
- 4. a) Show that if $p \in \mathbb{Z}[x]$ and $a, b \in \mathbb{Z}$, then a b|p(a) p(b)!b) Find a polynomial in $\mathbb{Z}[x]$ such that $\{f(-2), f(1), f(3)\} = \{2, 6, 11\}$ (maybe not in this order)!
- 5. Let α, β and γ be the complex roots of the polynomial $x^3 2x^2 + 4x + 6$. What is the monic polynomial which has roots $\alpha + \beta, \beta + \gamma$ and $\gamma + \alpha$? (Hint: don't compute the roots, use Vieta's formulas!)

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/