1. Determine the roots of $x^{3}+3 x^{2}+9 x+5$ with the help of Cardano's formula!
2. Show that if p is an odd prime, then $\Phi_{2 p}(x)=\Phi_{p}(-x)$. Show that this polynomial is irreducible!
3. a) Verify that $\Phi_{12}(x)=x^{4}-x^{2}+1$.
b) Show that $\Phi_{12}(a x+b)$ does not satisfy the conditions of the Schönemann-Eisenstein criterion for any $a, b \in \mathbb{Z}, a \neq 0$ and prime p !
c) Prove that $\Phi_{12}(x) \bmod p$ is reducible in $\mathbb{Z}_{p}[x]$ for all prime p.
d) "By hand" show that $\Phi_{12}(x)$ is irreducible in $\mathbb{Z}[x]$!
4. a) Show that if $p \in \mathbb{Z}[x]$ and $a, b \in \mathbb{Z}$, then $a-b \mid p(a)-p(b)$!
b) Find a polynomial in $\mathbb{Z}[x]$ such that $\{f(-2), f(1), f(3)\}=\{2,6,11\}$ (maybe not in this order)!
5. Let α, β and γ be the complex roots of the polynomial $x^{3}-2 x^{2}+4 x+6$. What is the monic polynomial which has roots $\alpha+\beta, \beta+\gamma$ and $\gamma+\alpha$?
(Hint: don't compute the roots, use Vieta's formulas!)
The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/
