1. Solve the following systems of linear equations!
a) $x+y+\quad z=10$
b) $x-y-\quad z=1$
$x+y+2 z=2$
c) $x-\quad y-\quad z=1$
$x+y+2 z=2$
$x+2 y+3 z=23$
$5 x+y+4 z=3$
$5 x+y+4 z=8$
2. Solve the following systems of linear equations in \mathbb{Z}_{5} !
a) $x+2 y+\quad z=4$
$x+3 y+4 z=3$
$2 x-\quad y+5 z=1$
b) $\quad-y+2 z+3 w=1$
$2 x+3 y+4 z+5 w=2$
$y+7 z=3$
$2 x+2 y+z-2 w=2$
3. Which of the following are in (reduced) row echelon form? Compute the solutions of the corresponding equations (in parametric and in vectorial form)!
a) $\left(\begin{array}{llll|l}2 & 0 & 1 & 1 & 3 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2\end{array}\right)$
b) $\left(\begin{array}{ccc|c}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1\end{array}\right)$
c) $\left(\begin{array}{llll|l}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)$
d) $\left(\begin{array}{llll|l}1 & 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$
е) $\left(\begin{array}{lll|c}1 & 0 & 2 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right)$
4. Solve the following systems of linear equations!
a) $x+y+z=4$
b) $7 x+14 y-21 z=7$
$x+2 y-3 z=1$
$-x+\quad y-\quad z=2$
$2 x+\quad y+2 z=1$
$5 x+10 y+15 z=1$
$4 x+4 y+4 z=1$
$3 x+6 y-\quad 9 z=3$

Can we leave some of the equations such that the system remains equivalent? Which can be left?
5. Does there exist a system of linear equations such that
a) the number of equations is 5 , the number of variables is 6 and there is a unique solution;
b) the number of equations is 6 , the number of variables is 5 and there is a unique solution;
c) the number of equations is 5 , the number of variables is 6 and there is no solution;
d) the number of equations is 5 , the number of variables is 5 and there are exactly 5 solutions (over $\mathbb{F}=\mathbb{R}$ and over any field)?
6. How many solutions does the following system of linear equations have depending on the values of a and b ? Solve the problem over $\mathbb{R}, \mathbb{Z}_{2}$ and \mathbb{Z}_{3} !

$$
\begin{array}{rlrl}
x+ & y & =1 \\
x+ & 2 y- & a z & =b \\
x+ & 3 y+ & a z & =0
\end{array}
$$

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/

