Introduction to Algebra 1

1. Solve the following systems of linear equations simultaneously.

	2x-	y+	z =	1	(2x-	y+	z =	1
{	x+	y+	2z =	2	{	x+	y+	2z =	2
	x-	2y-	z =	-1		x-	2y-	z =	0

What does it mean from the point of view of rows/columns?

2. Which of the following subsets of \mathbb{R}^3 is a subspace? For those which are affine subspaces, find a vector \underline{u} and a subspace V such that they are equal to $\underline{u} + V$!

a) $\{\underline{v} \in \mathbb{R}^3 | |\underline{v}| = 1\}$, b) $\{(x, y, z) | x + 2y + z = 0\}$ and c) $\{(x, y, z) | x + 2y + z = 1\}$.

3. Verify that

- a) the intersection of two subspaces is a subspace, but
- b) the union of two subspaces is a subspace if and only if one contains the other.
- 4. What is the intersection of the planes x + 3y + z = 2 and x + 2y + 2z = 5? If the intersection is a line, compute its paramteric and vectorial form!
- 5. What is the explicit equation of the plane 2x y + z = 1 and its vectorial form?
- 6. Let $B = \{(1,0,1)^T, (0,2,-1)^T, (1,1,0)^T\}.$
 - a) Show that B is a basis in \mathbb{R}^3 !
 - b) What is the coordinate vector of $(1, 0, 0)^T$ with respect to B?
 - c) For which vector $\underline{w} \in \mathbb{R}^3$ is $[w]_B = (5, 1, -2)^T$?
- 7. Choose a maximal linearly independent system of the columns of the following matrix A! Write the other columns as linear combinations of the previous ones. Compute a basis of $\mathcal{N}(A)$ (where $\mathcal{N}(A)$ is the nullspace of A)!

- 8. What is the reduced row echelon form of $A = (\underline{a}_1, \underline{a}_2, \underline{a}_3) \in \mathbb{R}^{4 \times 3}$ if $\underline{a}_3 = \underline{a}_1 2\underline{a}_2$ and $a_1 \notin \text{Span}(\underline{a}_3)$?
- 9. Let $\underline{a} = (1, 0, -1, 2)^T$, $\underline{b} = (1, 1, 0, 1)^T$ and $\underline{c} = (0, 2, 1, 0)^T \in \mathbb{R}^4$. Show that $\underline{a}, \underline{b}, \underline{c}$ are linearly independent! Which of $\underline{v} = (1, 0, 0, 0)^T$ and $\underline{w} = (1, 1, 1, 1)^T$ is the linear combination of $\underline{a}, \underline{b}$ and \underline{c} ? For those which are, compute the coefficients!
- 10. Find a basis in those subsets of problem 4 which are subspaces!

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/