1. Solve the following systems of linear equations simultaneously.

$$
\left\{\begin{array}{rrrr}
2 x- & y+ & z & =1 \\
x+ & y+ & 2 z & =2 \\
x- & 2 y- & z & = \\
\hline
\end{array} \quad-1 \quad\left\{\begin{array}{rrrr}
2 x- & y+ & z= & 1 \\
x+ & y+ & 2 z= & 2 \\
x- & 2 y- & z= & 0
\end{array}\right.\right.
$$

What does it mean from the point of view of rows/columns?
2. Which of the following subsets of \mathbb{R}^{3} is a subspace? For those which are affine subspaces, find a vector \underline{u} and a subspace V such that they are equal to $\underline{u}+V$!
a) $\left\{\underline{v} \in \mathbb{R}^{3}| | \underline{v} \mid=1\right\}$,
b) $\{(x, y, z) \mid x+2 y+z=0\}$ and
c) $\{(x, y, z) \mid x+2 y+z=1\}$.
3. Verify that
a) the intersection of two subspaces is a subspace, but
b) the union of two subspaces is a subspace if and only if one contains the other.
4. What is the intersection of the planes $x+3 y+z=2$ and $x+2 y+2 z=5$? If the intersection is a line, compute its paramteric and vectorial form!
5. What is the explicit equation of the plane $2 x-y+z=1$ and its vectorial form?
6. Let $B=\left\{(1,0,1)^{T},(0,2,-1)^{T},(1,1,0)^{T}\right\}$.
a) Show that B is a basis in \mathbb{R}^{3} !
b) What is the coordinate vector of $(1,0,0)^{T}$ with respect to B ?
c) For which vector $\underline{w} \in \mathbb{R}^{3}$ is $[w]_{B}=(5,1,-2)^{T}$?
7. Choose a maximal linearly independent system of the columns of the following matrix A ! Write the other columns as linear combinations of the previous ones. Compute a basis of $\mathcal{N}(A)$ (where $\mathcal{N}(A)$ is the nullspace of A)!

$$
\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & 2 \\
2 & -1 & 0 & 1 & 3 \\
0 & 1 & 2 & 1 & 3 \\
1 & -1 & -1 & 1 & 1
\end{array}\right)
$$

8. What is the reduced row echelon form of $A=\left(\underline{a}_{1}, \underline{a}_{2}, \underline{a}_{3}\right) \in \mathbb{R}^{4 \times 3}$ if $\underline{a}_{3}=\underline{a}_{1}-2 \underline{a}_{2}$ and $a_{1} \notin \operatorname{Span}\left(\underline{a}_{3}\right)$?
9. Let $\underline{a}=(1,0,-1,2)^{T}, \underline{b}=(1,1,0,1)^{T}$ and $\underline{c}=(0,2,1,0)^{T} \in \mathbb{R}^{4}$. Show that $\underline{a}, \underline{b}, \underline{c}$ are linearly independent! Which of $\underline{v}=(1,0,0,0)^{T}$ and $\underline{w}=(1,1,1,1)^{T}$ is the linear combination of $\underline{a}, \underline{b}$ and \underline{c} ? For those which are, compute the coefficients!
10. Find a basis in those subsets of problem 4 which are subspaces!

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/

