Introduction to Algebra 1

- 1. What is the matrix of the following linear maps $\mathbb{R}^3 \to \mathbb{R}^3$: a) Reflection to the plane x = y,
 - b) Rotation around the axis y with angle 45° CCW and
 - c) Rotation around the axis x = y = z with angle 120°.
- 2. Describe geometrically the linear maps corresponding to the following matrices: a) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$ b) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 0 & 0 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \end{pmatrix}$
- 3. Consider a linear map $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ such that $0 \neq \operatorname{Im}(\varphi) \leq \operatorname{Ker}(\varphi)$. What is $\operatorname{rk}(\varphi)$?
- 4. What is the rank of the matrix A and B, where $a_{jk} = j + k$ and $b_{jk} = j^2 + k^2$?
- 5. Let $A = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 3 & 5 \end{pmatrix}, D = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 5 \\ 0 & 0 & 7 \end{pmatrix}$.
 - a) Compute those, which are defined:
 - b) What is the rank of the above matrices?
- 6. What is the row and column operations corresponding to the following matrices?

(3	0		-0/	(1)	2		- 0 \	$\left(0 \right)$	1		$0 \rangle$
0	1		0	0	1		0	1	0		0
:	:	•	:	:	:	•	:	:	:	•	:
$\left(\begin{array}{c} 0 \end{array} \right)$	0		$\frac{1}{1}$	$\left(\begin{array}{c} 0 \end{array} \right)$	0		$\frac{1}{1}$	$\left(\begin{array}{c} 0 \end{array} \right)$	0		1

- 7. Do there exists matrices C, D in $\mathbb{R}^{2 \times 2}$ and $\mathbb{R}^{3 \times 3}$ such that a) $C \neq 0$ and $C^2 = 0$; b) $D^2 \neq 0$ and $D^3 = 0$?
- 8. Do the following equalities hold for all matrices $A, B \in \mathbb{F}^{n \times n}$?
 - b) $(A+I)(A-I) = A^2 I^2$ d) $(AB)^T = A^T B^T$ a) $(A+B)(A-B) = A^2 - B^2$ c) $(A+B)^2 = A^2 + 2AB + B^2$

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/