1. What is the matrix of the following linear maps $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$:
a) Reflection to the plane $x=y$,
b) Rotation around the axis y with angle $45^{\circ} \mathrm{CCW}$ and
c) Rotation around the axis $x=y=z$ with angle 120°.
2. Describe geometrically the linear maps corresponding to the following matrices:
a) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right)$
b) $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$
c) $\left(\begin{array}{ccc}1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\ 0 & 0 & 0 \\ 1 / \sqrt{2} & 0 & 1 / \sqrt{2}\end{array}\right)$
3. Consider a linear map $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $0 \neq \operatorname{Im}(\varphi) \leq \operatorname{Ker}(\varphi)$. What is $\operatorname{rk}(\varphi)$?
4. What is the rank of the matrix A and B, where $a_{j k}=j+k$ and $b_{j k}=j^{2}+k^{2}$?
5. Let $A=\left(\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right), C=\left(\begin{array}{lll}0 & 1 & 1 \\ 2 & 3 & 5\end{array}\right), D=\left(\begin{array}{ccc}1 & 1 & -1 \\ 0 & 2 & 5 \\ 0 & 0 & 7\end{array}\right)$.
a) Compute those, which are defined:
$A+B, A+C, A+D, B+A, B+D, A B, B A, A C, C A, C D, D C, A^{2}, B^{2}, C^{2}, D^{2}$.
b) What is the rank of the above matrices?
6. What is the row and column operations corresponding to the following matrices?

$$
\left(\begin{array}{cccc}
3 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & 2 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right) \quad\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
1 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

7. Do there exists matrices C, D in $\mathbb{R}^{2 \times 2}$ and $\mathbb{R}^{3 \times 3}$ such that
a) $C \neq 0$ and $C^{2}=0$;
b) $D^{2} \neq 0$ and $D^{3}=0$?
8. Do the following equalities hold for all matrices $A, B \in \mathbb{F}^{n \times n}$?
a) $(A+B)(A-B)=A^{2}-B^{2}$
b) $(A+I)(A-I)=A^{2}-I^{2}$
c) $(A+B)^{2}=A^{2}+2 A B+B^{2}$
d) $(A B)^{T}=A^{T} B^{T}$

The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/

