1. Are the following matrices invertible? If yes, compute their inverses!

$$
A=\left(\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 2 & 1
\end{array}\right), \quad C=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 6
\end{array}\right), \quad D=\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & 1 \\
1 & 1 & -1
\end{array}\right)
$$

2. Solve the following matrix equations (A, B, C and D are as above)!
a) $C X=D$,
b) $B X=C$,
c) $X B=\left(\begin{array}{lll}1 & 2 & 3 \\ 5 & 3 & 1\end{array}\right), \quad X B=A\left(\begin{array}{lll}1 & 2 & 3 \\ 5 & 3 & 1\end{array}\right)$
3. Compute the rank factorization of the $A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 2 & -1 & 0 \\ 0 & 1 & 2\end{array}\right)$, and write A as the sum of $\operatorname{rk}(A)$ dyadic matrices!
4. Compute the LU decomposition of the matrix $A=\left(\begin{array}{ccc}1 & 2 & 4 \\ 3 & 8 & 14 \\ 2 & 5 & 13\end{array}\right)$!
5. Show that the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ has no LU decomposition!
6. Compute the following determinants with row operations:
a) $\left|\begin{array}{cc}3 & 1 \\ 4 & -3\end{array}\right|$
b) $\left|\begin{array}{ll}2 & 2 \\ 6 & 9\end{array}\right|$
c) $\left|\begin{array}{ccc}2 & 1 & 3 \\ 1 & -1 & 5 \\ 5 & 3 & 1\end{array}\right|$
d) $\left|\begin{array}{ccccc}0 & \ldots & \ldots & 0 & 1 \\ 0 & \ldots & 0 & 1 & 0 \\ \vdots & & & & \vdots \\ 0 & 1 & 0 & \ldots & 0 \\ 1 & 0 & \ldots & \ldots & 0\end{array}\right|_{(n \times n)}$
7. Compute the following determinants with inversion numbers:
a) $\left|\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right|$
b) $\left|\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 4 & 0 & 0\end{array}\right|$
c) $\left|\begin{array}{lll}0 & 3 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 5\end{array}\right|$
8. Let $A \in \mathbb{F}^{5 \times 5}$ such that $\operatorname{det}(A)=3$. What is the determinant of a) $2 A^{-1}$, b) $(2 A)^{-1}$ and c$)$ $A^{2} \cdot A^{T} \cdot A^{-1}$?
9. What is the value of the following determinant?

$$
\left|\begin{array}{ccccc}
1 & 2 & 2 & \ldots & 2 \\
2 & 2 & 2 & \ldots & 2 \\
2 & 2 & 3 & \ldots & 2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
2 & 2 & 2 & \ldots & n
\end{array}\right|
$$

10. Compute

$$
\left|\begin{array}{ccc}
b & a & a \\
a & b & a \\
a & a & b
\end{array}\right|!
$$

How can this be generalized to $n \times n$ matrices.
What is the rank of the matrix (depending on n, a and b)?
The problem sheets are available on the homepage of the lecturer: www.math.bme.hu/~merdelyi/bevalg1/

