Topics for the exam - List of definitions, theorems and proofs
 ($\mathbf{D}=$ definition, $\mathbf{T}=$ theorem, $\mathbf{P}=$ theorem + proof $)$

1. Integers

D Number systems $(\mathbb{N}, \mathbb{Z}, \mathbb{Q})$, algebraic and transcendental numbers, well ordered sets, integral and fractional part of real numbers and recursive sequences, rings and fields,
T Well-ordering principle
$\mathbf{P} \sqrt{2}$ is irrational, concept of mathematical induction (with proof with the well ordering principle), Dirichlet approximation

2. Euclidean algorithm

D divisibility, units, gcd, lcm, linear Diophantine equations
T Properties of divisibility, division with remainders, numeral systems, Horner's method
P Existence of gcd, Extended Euclidean algorithm, properties of gcd, solutions of linear Diophantine equations.

3. Primes

D irreducibles and primes
T Legendre's formula
\mathbf{P} primes $=$ irreducibles in \mathbb{Z}, there are infinitely many primes, Fundamental theorem of Number theory

4. Modular arithmetics

D $a \equiv b \quad(\bmod m)$, residue classes, complete and reduced residue systems, Euler's totient function φ, modular inverse
T Properties of operations with congruences, computing modular powers, linear combinations of complete and reduced residue systems, the canonical form of φ, solution of linear congruences and the number of solutions, \mathbb{Z}_{m} is a ring and \mathbb{Z}_{p} is a field
\mathbf{P} Dividing congruences, Euler-Fermat's theorem, Fermat's little theorem, Chinese remainder theorem

5. Complex numbers

D Complex numbers, algebraic and trigonometric form, conjugate, absolute value, roots of unity, multiplicative order and primitive roots
T The algebraic form is uniqe, \mathbb{C} is a field, operations in algebraic and trigonometric form, properties of conjugate and absolute value, fundamental theorem of Algebra
\mathbf{P} When two trigonometric forms are equivalent, the order of an n-th root of unity divides n, number of primitive n-th roots.

6. Number theory of polynomials

D polynomials over commutative rings, divisibility and gcd of polynomials, irreducible and primitive polynomials
T $R[x]$ is a commutative ring, in $\mathbb{F}[x]$ the following: division with remainders, existence of gcd, (extended) Euclidean algorithm, irreducibles = primes, conditions for irreducibility of low degree polynomials, fundamental theorem of number theory in $\mathbb{F}[x]$ and in particular in $\mathbb{R}[x]$ and $\mathbb{C}[x]$, decomposition to primitives and units in $\mathbb{Q}[x]$,
\mathbf{P} Proudct of primitive polynomials is primitive, Schönemann-Eisenstein criterion

7. Roots of polynomials

D Connection of roots and linear factors of a polynomial, formal derivatives, cyclotomic polynomials, polynomials in n variables, symmetric polynomials, elementary symmetric polynomials
T Vieta's formulae, polynomial interpolation
\mathbf{P} Multiple roots and formal derivatives, rational root test, $x^{n}-1=\prod_{d \mid n} \Phi_{d}$

8. Systems of linear equations

D systems of linear equations (SLE), matrix and augmented matrix of a SLE, elementary row operations, row echelon form and reduced row echelon form, pivots, free and bounded variables, $\mathcal{R}(A), \mathcal{C}(A)$ and $\mathcal{N}(A)$
\mathbf{T} the number of solutions of a SLE, description of the solutions of a SLE with the help of $\mathcal{R}(A)$, $\mathcal{C}(A)$ and $\mathcal{N}(A)$
P Gaussian and Gauss-Jordan elmination, connection with the rank of the matrix

9. Vectorspaces

D operations in \mathbb{F}^{n}, vectorspaces, subspaces, affine subspaces, linear combinations, spanned subspaces, linear independence and dependence, generating sets, bases, dimension, coordinate vectors.
\mathbf{T} properties of operations in \mathbb{F}^{n}, equivalent properties of bases
\mathbf{P} "basis = none of the vectors is a linear combination of the others", properties of independent and generating sets, the set of solutions of an SLE forms an affine subspace

10. Linear maps

D Linear maps, kernel, image, (standard) matrix of a linear map
T Matrix of the rotations of the plane, when a linear map is injective or surjective
$\mathbf{P} \operatorname{Ker}(\varphi)$ and $\operatorname{Im}(\varphi)$ are subspaces, dimension theorem

11. Matrices

D Operations of matrices, rank, inverse, special matrices (diagonal, triangular, permutation, elementary)
T Properties of operations, connection between the columns of A, B and $A B$, rank factorization, dyadic decomposition, operations on special matrices
\mathbf{P} Connection of rank and matrix operations, equivalent conditions for a matrix to be invertible

12. Determinants

D the determinant functions, permutations and inversions, the definition of the determinant with entries, cofactors
T Operations of determinants, multilinearity, determinant of special matrices
$\mathbf{P} \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, connection between det and rk, the determinant (defined with the entries) satisfies the identities with row operations.

