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1.1 Find all continuous functions f : R2 → R that are rotation invariant and also of product
form. That is, there are functions g : [0,∞) → R and u : R → R such that, for every
x, y ∈ R

f(x, y) = g(
√

x2 + y2) = u(x)u(y).

1.2 Use the integral substitution y2

2
:= a(x−m)2 to show that

∫ ∞

−∞

e−a(x−m)2 dx =

√

π

a
(1)

whenever m ∈ R and 0 < a ∈ R. We know form class that the value of the integral is
√
2π

when m = 0 and a = 1
2
.

1.3 Let f(x1, . . . , xd) = e−
x
2
1
+···+x

2
d

2 , and let V =
∫

Rd f(x) dx.

• Calculate V using that f is a product:

f(x1, . . . , xd) = e−
x
2
1
2 · e−

x
2
2
2 · · · · · e−

x
2
d

2 .

• Write V as a one-dimensional integral using polar coordinate substitution.

• Compare the two results to get that

cd =

√
2π

d

∫∞

0
rd−1e−

r2

2 dr
.

1.4 Calculate An :=
∫ π

2

0
cosn x dx for every n = 0, 1, 2, . . . .

1.5 Let Bd ⊂ R
d be the unit ball in Rd meaning

Bd :=
{

(x1, . . . , xd) ∈ R
d
∣

∣x2
1 + · · ·+ x2

d ≤ 1
}

.

(Compare the definition of the sphere – note the inequality here.) Let bd be the d-dimensional
volume of Bd. Calculate bd.

(Hint: the volume is the integral of the indicator function. Use the theorem about polar
coordinate substitution in d dimensions.)

1.6 Try to calculate bd of the previous exercise the hard way: slice the d+1-dimensional sphere
into d-dimensional ones to see that

bd+1 =

∫ 1

−1

bd
√
1− x2

d
dx.

1.7 For s > 0 let

Γ(s) =

∫ ∞

0

xs−1e−x dx

be the Euler gamma function. Check that Γ(s+1) = sΓ(s) for all s > 0. Check by induction
that Γ(n+ 1) = n! for all n ∈ N.

1.8 Calculate Γ
(

1
2

)

. Express Γ(s) for every half-integer s > 0 using factorials.
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1.9 Describe the asymptotic behaviour of the integral In :=
∫ 1

−1

√
1− x2

n
dx as n → ∞.

1.10 Let fn(x) =
√
1− x2

n
(for x ∈ [−1, 1]), and let gn(x) = fn(anx), where the scaling factor an

is chosen appropriately, so that
∫

R
gn is about 1. Find the limit g(x) := limn→∞gn(x).

1.11 Let the random vector V = (V1, . . . , Vn) ∈ R
n be uniformly distributed on the (surface of

the) (n−1)-dimensional sphere of radius
√
2nE in R

n. Let fn denote the density of the first
marginal V1 (which is itself a random variable in R, and, of course, its density depends on
n). Calculate fn(x) for every n. Find the limit f(x) := limn→∞ fn(x).

1.12 [DeMoivre-Laplace Central Limit Theorem] We toss a biased coin (where the probability of
“heads” is some p ∈ (0, 1)) n times independently. Let q = 1 − p. Let X be the number of
heads we see. So X is binomially distributed with parameters n and p, meaning

P(X = k) = Bin(k;n, p) :=

(

n

k

)

pkqn−k for k = 0, 1, . . . , n.

It is known that X has expectation EX = np and standard deviation DX =
√
V arX =√

npq, so let Y := X−np
√
npq

be the normalized version of X (which now has expectation 0 and

standard deviation 1). Of course, Y is still a discrete random variable, taking only values
from a grid of points which are 1√

npq
apart.

Let us fix x ∈ R, and choose k ∈ Z such that x ≈ k−np
√
npq

as closely as possible, so k is

np+ x
√
npq rounded to the nearest integer. Let

fn(x) :=
P(Y = k−np

√
npq

)

1√
npq

=
√
npqP(X = k)

be the logical guess for an “approximate density” of Y at x.

Calculate the limit f(x) := limn→∞ fn(x).

Hint:

Use Stirling’s approximation n! ∼ nn
√
2πn

en
, and the fact that k = np + x

√
npq + ∆, where

∆ = ∆(n, x) ∈ [−1
2
, 1
2
], so ∆ = O(1). Use this in the following forms:

k = np+ x
√
npq +∆ , n− k = nq − x

√
npq −∆ (2)

k

np
= 1 + x

√

q

np
+

∆

np
,

n− k

nq
= 1− x

√

p

nq
−

∆

nq
(3)

k

np
= 1 + o(1) ,

n− k

nq
= 1 + o(1) (4)

Notice that (2) is a bit stronger than if we only wrote k = np+ x
√
npq +O(1) and n− k =

nq − x
√
npq +O(1). This will be important, since ∆ will cancel out at some point.

At some point the calculation may become more tranparent if you calculte the logarithm of
fn(x).
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