Tools of Modern Probability
 Imre Péter Tóth
 Exercise sheet 1, fall 2018

1.1 Find all continuous functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that are rotation invariant and also of product form. That is, there are functions $g:[0, \infty) \rightarrow \mathbb{R}$ and $u: \mathbb{R} \rightarrow \mathbb{R}$ such that, for every $x, y \in \mathbb{R}$

$$
f(x, y)=g\left(\sqrt{x^{2}+y^{2}}\right)=u(x) u(y)
$$

1.2 Use the integral substitution $\frac{y^{2}}{2}:=a(x-m)^{2}$ to show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-a(x-m)^{2}} \mathrm{~d} x=\sqrt{\frac{\pi}{a}} \tag{1}
\end{equation*}
$$

whenever $m \in \mathbb{R}$ and $0<a \in \mathbb{R}$. We know form class that the value of the integral is $\sqrt{2 \pi}$ when $m=0$ and $a=\frac{1}{2}$.
1.3 Let $f\left(x_{1}, \ldots, x_{d}\right)=e^{-\frac{x_{1}^{2}+\cdots+x_{d}^{2}}{2}}$, and let $V=\int_{\mathbb{R}^{d}} f(\underline{x}) \mathrm{d} \underline{x}$.

- Calculate V using that f is a product:

$$
f\left(x_{1}, \ldots, x_{d}\right)=e^{-\frac{x_{1}^{2}}{2}} \cdot e^{-\frac{x_{2}^{2}}{2}} \cdots \cdots e^{-\frac{x_{d}^{2}}{2}}
$$

- Write V as a one-dimensional integral using polar coordinate substitution.
- Compare the two results to get that

$$
c_{d}=\frac{\sqrt{2 \pi}^{d}}{\int_{0}^{\infty} r^{d-1} e^{-\frac{r^{2}}{2}} \mathrm{~d} r} .
$$

1.4 Calculate $A_{n}:=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x$ for every $n=0,1,2, \ldots$.
1.5 Let $B_{d} \subset \mathbb{R}^{d}$ be the unit ball in R^{d} meaning

$$
B_{d}:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d} \mid x_{1}^{2}+\cdots+x_{d}^{2} \leq 1\right\} .
$$

(Compare the definition of the sphere - note the inequality here.) Let b_{d} be the d-dimensional volume of B_{d}. Calculate b_{d}.
(Hint: the volume is the integral of the indicator function. Use the theorem about polar coordinate substitution in d dimensions.)
1.6 Try to calculate b_{d} of the previous exercise the hard way: slice the $d+1$-dimensional sphere into d-dimensional ones to see that

$$
b_{d+1}=\int_{-1}^{1} b_{d}{\sqrt{1-x^{2}}}^{d} \mathrm{~d} x .
$$

1.7 For $s>0$ let

$$
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} \mathrm{~d} x
$$

be the Euler gamma function. Check that $\Gamma(s+1)=s \Gamma(s)$ for all $s>0$. Check by induction that $\Gamma(n+1)=n$! for all $n \in \mathbb{N}$.
1.8 Calculate $\Gamma\left(\frac{1}{2}\right)$. Express $\Gamma(s)$ for every half-integer $s>0$ using factorials.
1.9 Describe the asymptotic behaviour of the integral $I_{n}:=\int_{-1}^{1}{\sqrt{1-x^{2}}}^{n} \mathrm{~d} x$ as $n \rightarrow \infty$.
1.10 Let $f_{n}(x)={\sqrt{1-x^{2}}}^{n}$ (for $x \in[-1,1]$), and let $g_{n}(x)=f_{n}\left(a_{n} x\right)$, where the scaling factor a_{n} is chosen appropriately, so that $\int_{\mathbb{R}} g_{n}$ is about 1 . Find the limit $g(x):=\lim _{n \rightarrow \infty} g_{n}(x)$.
1.11 Let the random vector $V=\left(V_{1}, \ldots, V_{n}\right) \in \mathbb{R}^{n}$ be uniformly distributed on the (surface of the) $(n-1)$-dimensional sphere of radius $\sqrt{2 n E}$ in \mathbb{R}^{n}. Let f_{n} denote the density of the first marginal V_{1} (which is itself a random variable in \mathbb{R}, and, of course, its density depends on $n)$. Calculate $f_{n}(x)$ for every n. Find the limit $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$.
1.12 [DeMoivre-Laplace Central Limit Theorem] We toss a biased coin (where the probability of "heads" is some $p \in(0,1)) n$ times independently. Let $q=1-p$. Let X be the number of heads we see. So X is binomially distributed with parameters n and p, meaning

$$
\mathbb{P}(X=k)=\operatorname{Bin}(k ; n, p):=\binom{n}{k} p^{k} q^{n-k} \quad \text { for } k=0,1, \ldots, n .
$$

It is known that X has expectation $\mathbb{E} X=n p$ and standard deviation $D X=\sqrt{\operatorname{Var} X}=$ $\sqrt{n p q}$, so let $Y:=\frac{X-n p}{\sqrt{n p q}}$ be the normalized version of X (which now has expectation 0 and standard deviation 1). Of course, Y is still a discrete random variable, taking only values from a grid of points which are $\frac{1}{\sqrt{n p q}}$ apart.
Let us fix $x \in \mathbb{R}$, and choose $k \in \mathbb{Z}$ such that $x \approx \frac{k-n p}{\sqrt{n p q}}$ as closely as possible, so k is $n p+x \sqrt{n p q}$ rounded to the nearest integer. Let

$$
f_{n}(x):=\frac{\mathbb{P}\left(Y=\frac{k-n p}{\sqrt{n p q}}\right)}{\frac{1}{\sqrt{n p q}}}=\sqrt{n p q \mathbb{P}}(X=k)
$$

be the logical guess for an "approximate density" of Y at x.
Calculate the limit $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$.
Hint:
Use Stirling's approximation $n!\sim \frac{n^{n} \sqrt{2 \pi n}}{e^{n}}$, and the fact that $k=n p+x \sqrt{n p q}+\Delta$, where $\Delta=\Delta(n, x) \in\left[-\frac{1}{2}, \frac{1}{2}\right]$, so $\Delta=O(1)$. Use this in the following forms:

$$
\begin{align*}
k=n p+x \sqrt{n p q}+\Delta & , & n-k & =n q-x \sqrt{n p q}-\Delta \tag{2}\\
\frac{k}{n p}=1+x \sqrt{\frac{q}{n p}}+\frac{\Delta}{n p} & , & \frac{n-k}{n q} & =1-x \sqrt{\frac{p}{n q}}-\frac{\Delta}{n q} \tag{3}\\
\frac{k}{n p}=1+o(1) & , & \frac{n-k}{n q} & =1+o(1) \tag{4}
\end{align*}
$$

Notice that (2) is a bit stronger than if we only wrote $k=n p+x \sqrt{n p q}+O(1)$ and $n-k=$ $n q-x \sqrt{n p q}+O(1)$. This will be important, since Δ will cancel out at some point.
At some point the calculation may become more tranparent if you calculte the logarithm of $f_{n}(x)$.

