Tools of Modern Probability
 Imre Péter Tóth
 Exercise sheet 2, fall 2018

2.1 Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family \mathcal{F} of subsets of ω (i.e. $\mathcal{F} \subset 2^{\Omega}$, where $2^{\Omega}:=\{A: A \subset \Omega\}$ is the power set of Ω) is called $a \sigma$-algebra over Ω if

- $\emptyset \in \mathcal{F}$
- if $A \in \mathcal{F}$, then $A^{C}:=\Omega \backslash A \in \mathcal{F}$ (that is, \mathcal{F} is closed under complement taking)
- if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\left(\cup_{i=1}^{\infty} A_{i}\right) \in \mathcal{F}$ (that is, \mathcal{F} is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under finite union and intersection.

2.2 Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)
i. If $(\Omega, \mathcal{F}, \mu)$ is a measure space and A_{1}, A_{2}, \ldots is an increasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \subset A_{i+1}$ for all i), then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
ii. If $(\Omega, \mathcal{F}, \mu)$ is a measure space, A_{1}, A_{2}, \ldots is a decreasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \supset A_{i+1}$ for all i) and $\mu\left(A_{1}\right)<\infty$, then $\mu\left(\cap_{i=1}^{\infty} A_{i}\right)=$ $\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
(b) Show that in the second statement the condition $\mu\left(A_{1}\right)<\infty$ is needed, by constructing a counterexample for the statement when this condition does not hold.
2.3 (a) We toss a biased coin, on which the probability of heads is some $0 \leq p \leq 1$. Define the random variable ξ as the indicator function of tossing heads, that is

$$
\xi:=\left\{\begin{array}{l}
0, \text { if tails } \\
1, \text { if heads }
\end{array} .\right.
$$

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter p) in the "classical" way, listing possible values and their probabilities,
ii. and also by describing the distribution as a measure on \mathbb{R}, giving the weight $\mathbb{P}(\xi \in$ B) of every Borel subset B of \mathbb{R}.
iii. Calculate the expectation of ξ.
(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.
i. Describe the distribution of X (called the Binomial distribution with parameters $(n, p))$ by listing possible values and their probabilities.
ii. Calculate the expectation of X by integration (actually summation in this case) using its distribution,
iii. and also by noticing that $X=\xi_{1}+\xi_{2}+\cdots+\xi_{n}$, where ξ_{i} is the indicator of the i-th toss being heads, and using linearity of the expectation.
2.4 The ternary number $0 . a_{1} a_{2} a_{3} \ldots$ is the analogue of the usual decimal fraction, but writing numbers in base 3 . That is, for any sequence $a_{1}, a_{2}, a_{3}, \ldots$ with $a_{n} \in\{0,1,2\}$, by definition

$$
0 . a_{1} a_{2} a_{3} \cdots:=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}} .
$$

Now let us construct the ternary fraction form of a random real number X via a sequence of fair coin tosses, such that we rule out the digit 1 . That is,

$$
a_{n}:=\left\{\begin{array}{l}
0, \text { if the } n \text {-th toss is tails, } \\
2, \text { if the } n \text {-th toss is heads }
\end{array},\right.
$$

and setting $X=0 . a_{1} a_{2} a_{3} \ldots$ (ternary). In this way, X is a "uniformly" chosen random point of the famous middle-third Cantor set C defined as

$$
C:=\left\{\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}, a_{n} \in\{0,2\}(n=1,2, \ldots)\right\} .
$$

Show that
(a) The distribution of X gives zero weight to every point - that is, $\mathbb{P}(X=x)=0$ for every $x \in \mathbb{R}$. (As a consequence, the cumulative distribution function of X is continuous.)
(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on \mathbb{R}.
2.5 Let V be a random vector in \mathbb{R}^{n} with an n-dimensional standard Gaussian distribution, meaning that it has density

$$
f\left(v_{1}, \ldots, v_{n}\right)=\frac{1}{\sqrt{2 \pi}^{n}} e^{-\frac{v_{1}^{2}+\cdots+v_{n}^{2}}{2}}
$$

Think of V as the velocity vector of a particle with mass m, so the energy is $E=\frac{m}{2} V^{2}$. Calculate the distribution of the random variable E. (Meaning: calculate the distribution function and the density.)
2.6 Usefulness of the linearity of the expectation. A building has 10 floors, not including the ground floor. On the ground floor, 10 people get into the elevator, and every one of them chooses a destination at random, uniformly out of the 10 floors, independently of the others. Let X denote the number of floors on which the elevator stops - i.e. the number of floors that were chosen by at least one person. Calculate the expectation and the variance of X. (hint: First notice that the distribution of X is hard to calculate. Find a way to calculate the expectation and the variance without that.)
2.7 Let $X=[0,1]$ and let μ be Lebesgue measure on X. Let $f(x)=x^{2}$. Describe the measure $f_{*} \mu$.
2.8 Let $X=\left\{\left(a_{1}, a_{2}, \ldots\right) \mid a_{k} \in\{0,1\}\right.$ for every $\left.k\right\}$ be the set of $\{0,1\}$-sequences. Let μ be the measure on X for which

$$
\mu\left(\left\{\left(a_{1}, a_{2}, \ldots\right) \in X \mid a_{1}=b_{1}, \ldots, a_{N}=b_{N}\right\}\right)=\frac{1}{2^{N}}
$$

for every $b_{1}, \ldots, b_{N} \in\{0,1\}$. Let $f: X \rightarrow \mathbb{R}$ be defined as

$$
f\left(a_{1}, a_{2}, \ldots\right):=\sum_{k=1}^{\infty} \frac{a_{k}}{2^{k}}
$$

Describe the measure $f_{*} \mu$.
2.9 Consider the following measure spaces (X, μ) :
I. $X=[0,1], \mu$ is Lebesgue measure.
II. $X=[0, \infty), \mu$ is Lebesgue measure.
III. $X=\{1,2 \ldots, N\}, \mu$ is counting measure.
IV. $X=\{1,2 \ldots\}, \mu$ is counting measure.

Show examples of functions f_{1}, f_{2}, \ldots and f from X to \mathbb{R} such that f_{n} converges to f
a.) almost everywhere, but not in L^{1},
b.) in L^{1}, but not almost everywhere,
c.) in L^{1}, but not in L^{2},
d.) in L^{2}, but not in L^{1}.
2.10 The characteristic function of a random variable X is the function $\Psi: \mathbb{R} \rightarrow \mathbb{C}$ defined as $\Psi(t)=\mathbb{E}\left(e^{i t X}\right)$. Calculate the characteristic function of
(a) The Bernoulli distribution $B(p)$
(b) The "pessimistic geometric distribution with parameter p " - that is, the distribution μ on $\{0,1,2 \ldots\}$ with weights $\mu(\{k\})=(1-p) p^{k}(k=0,1,2 \ldots)$.
(c) The "optimistic geometric distribution with parameter p " - that is, the distribution ν on $\{1,2,3, \ldots\}$ with weights $\nu(\{k\})=(1-p) p^{k-1}(k=1,2 \ldots)$.
(d) The Poisson distribution with parameter λ - that is, the distribution η on $\{0,1,2 \ldots\}$ with weights $\eta(\{k\})=e^{-\lambda} \frac{\lambda^{k}}{k!}(k=0,1,2 \ldots)$.
(e) The exponential distribution with parameter λ - that is, the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$
f_{\lambda}(x)=\left\{\begin{array}{l}
\lambda e^{-\lambda x}, \text { if } x>0 \\
0, \text { if not }
\end{array} .\right.
$$

2.11 For a real values random variable X, the characteristic function of X is $\psi_{X}: \mathbb{R} \rightarrow \mathbb{C}$ defined as $\psi_{X}(t):=\mathbb{E}\left(e^{i t X}\right)$, where $i \in \mathbb{C}$ is the imaginary unit. Show that $\psi_{X}(t)$ exists for every $t \in \mathbb{R}$.
2.12 For a probability distribution ν on \mathbb{R}, the characteristic function of ν is $\psi_{\nu}: \mathbb{R} \rightarrow \mathbb{C}$ defined as $\psi_{\nu}(t):=\int_{\mathbb{R}} e^{i t x} \mathrm{~d} \nu(x)$, where $i \in \mathbb{C}$ is the imaginary unit. Show that $\psi_{\nu}(t)$ exists for every $t \in \mathbb{R}$.
2.13 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $X: \Omega \rightarrow \mathbb{R}$ be a random variable and let $\nu=X_{*} \mathbb{P}$ be its distribution. Show that $\psi_{X}=\psi_{\nu}$, where ψ_{X} and ψ_{μ} are the characteristic functions defined in exercises 11 and 12.
2.14 Dominated convergence and continuous differentiability of the characteristic function.

The Lebesgue dominated convergence theorem is the following
Theorem 2 (dominated convergence) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f_{1}, f_{2}, \ldots measurable real valued functions on Ω which converge to the limit function pointwise, μ almost everywhere. (That is, $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for every $x \in \Omega$, except possibly for a set of x-es with μ-measure zero.) Assume furthermore that the f_{n} admit a common integrable dominating function: there exists a $g: \Omega \rightarrow \mathbb{R}$ such that $\left|f_{n}(x)\right| \leq g(x)$ for every $x \in \Omega$ and $n \in \mathbb{N}$, and $\int_{\Omega} g \mathrm{~d} \mu<\infty$. Then (all the f_{n} and also f are integrable and)

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} \mathrm{~d} \mu=\int_{\Omega} f \mathrm{~d} \mu
$$

Use this theorem to prove the following:

Theorem 3 (Continuity of the characteristic function, 1) For any real valued random variable X, its characteristic function $\psi_{X}(t)=\mathbb{E}\left(e^{i t X}\right)$ is continuous.

Theorem 4 (Continuity of the characteristic function, 2) For any probability distribution ν on \mathbb{R}, its characteristic function $\psi_{\nu}(t)=\int_{\mathbb{R}} e^{i t x} \mathrm{~d} \nu(x)$ is continuous.
2.15 Exchangeability of integral and limit. Consider the sequences of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ and $g_{n}:[0,1] \rightarrow \mathbb{R}$ concerning their pointwise limits and the limits of their integrals. Do there exist integrable functions $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$, such that $f_{n}(x) \rightarrow$ $f(x)$ and $g_{n}(x) \rightarrow g(x)$ for Lebesgue almost every $x \in[0,1]$? What is $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} f_{n}(x) d x\right)$ and $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} g_{n}(x) d x\right)$? Are the conditions of the dominated and monotone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific examples?
(a)

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } 0 \leq x<1 / n \\ 2 n-n^{2} x & \text { if } 1 / n \leq x \leq 2 / n \\ 0 & \text { otherwise }\end{cases}
$$

(b) Write n as $n=2^{k}+l$, where $k=0,1,2 \ldots$ and $l=0,1, \ldots, 2^{k}-1$ (this can be done in a unique way for every n). Now let

$$
g_{n}(x)= \begin{cases}1 & \text { if } \frac{l}{2^{k}} \leq x<\frac{l+1}{2^{k}} \\ 0 & \text { otherwise }\end{cases}
$$

2.16 Exchangeability of integrals. Consider the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$:

$$
f(x)= \begin{cases}1 & \text { if } \quad 0<x, 0<y \text { and } 0 \leq x-y \leq 1 \\ -1 & \text { if } \quad 0<x, 0<y \text { and } 0<y-x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d x\right) d y$ and $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d y\right) d x$. What's the situation with the Fubini theorem?
2.17 Let λ be Lebesgue measure and χ be counting measure on \mathbb{R} (with the Borel σ-algebra). Show that λ does not have a density with respect to χ. (Hint: consider 1-element sets.)
2.18 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $A \in \mathcal{F}$. Define $X: \Omega \rightarrow \mathbb{R}$ as $X(\omega)=\mathbf{1}_{A}(\omega)$ and let $\mu=X_{*} \mathbb{P}$ be the distribution of X. Show that μ is absolutely continuous w.r.t counting measure, show that it also has a density. What is the density?
2.19 Let X be a discrete random variable and let μ be its distribution. Give the density of μ w.r.t. counting measure.

