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2.1 Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family F of subsets of ω (i.e. F ⊂ 2Ω, where
2Ω := {A : A ⊂ Ω} is the power set of Ω) is called a σ-algebra over Ω if

• ∅ ∈ F
• if A ∈ F , then AC := Ω \ A ∈ F (that is, F is closed under complement taking)

• if A1, A2, · · · ∈ F , then (∪∞

i=1Ai) ∈ F (that is, F is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under
finite union and intersection.

2.2 Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)

i. If (Ω,F , µ) is a measure space and A1, A2, . . . is an increasing sequence of mea-
surable sets (i.e. Ai ∈ F and Ai ⊂ Ai+1 for all i), then µ(∪∞

i=1Ai) = limi→∞ µ(Ai)
(and both sides of the equation make sense).

ii. If (Ω,F , µ) is a measure space, A1, A2, . . . is a decreasing sequence of measurable
sets (i.e. Ai ∈ F and Ai ⊃ Ai+1 for all i) and µ(A1) < ∞, then µ(∩∞

i=1Ai) =
limi→∞ µ(Ai) (and both sides of the equation make sense).

(b) Show that in the second statement the condition µ(A1) <∞ is needed, by constructing
a counterexample for the statement when this condition does not hold.

2.3 (a) We toss a biased coin, on which the probability of heads is some 0 ≤ p ≤ 1. Define the
random variable ξ as the indicator function of tossing heads, that is

ξ :=

{

0, if tails

1, if heads
.

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter p)
in the “classical” way, listing possible values and their probabilities,

ii. and also by describing the distribution as a measure on R, giving the weight P(ξ ∈
B) of every Borel subset B of R.

iii. Calculate the expectation of ξ.

(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.

i. Describe the distribution of X (called the Binomial distribution with parameters
(n, p)) by listing possible values and their probabilities.

ii. Calculate the expectation of X by integration (actually summation in this case)
using its distribution,

iii. and also by noticing that X = ξ1 + ξ2 + · · · + ξn, where ξi is the indicator of the
i-th toss being heads, and using linearity of the expectation.
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2.4 The ternary number 0.a1a2a3 . . . is the analogue of the usual decimal fraction, but writing
numbers in base 3. That is, for any sequence a1, a2, a3, . . . with an ∈ {0, 1, 2}, by definition

0.a1a2a3 · · · :=
∞
∑

n=1

an
3n
.

Now let us construct the ternary fraction form of a random real number X via a sequence
of fair coin tosses, such that we rule out the digit 1. That is,

an :=

{

0, if the n-th toss is tails,

2, if the n-th toss is heads
,

and setting X = 0.a1a2a3 . . . (ternary). In this way, X is a “uniformly” chosen random
point of the famous middle-third Cantor set C defined as

C :=

{

∞
∑

n=1

an
3n
, an ∈ {0, 2} (n = 1, 2, . . . )

}

.

Show that

(a) The distribution of X gives zero weight to every point – that is, P(X = x) = 0 for every
x ∈ R. (As a consequence, the cumulative distribution function of X is continuous.)

(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on R.

2.5 Let V be a random vector in Rn with an n-dimensional standard Gaussian distribution,
meaning that it has density

f(v1, . . . , vn) =
1√
2π

n e
−

v
2
1
+···+v

2
n

2 .

Think of V as the velocity vector of a particle with mass m, so the energy is E = m
2
V 2.

Calculate the distribution of the random variable E. (Meaning: calculate the distribution
function and the density.)

2.6 Usefulness of the linearity of the expectation. A building has 10 floors, not including the
ground floor. On the ground floor, 10 people get into the elevator, and every one of them
chooses a destination at random, uniformly out of the 10 floors, independently of the others.
Let X denote the number of floors on which the elevator stops – i.e. the number of floors
that were chosen by at least one person. Calculate the expectation and the variance of X .
(hint: First notice that the distribution of X is hard to calculate. Find a way to calculate
the expectation and the variance without that.)

2.7 Let X = [0, 1] and let µ be Lebesgue measure on X . Let f(x) = x2. Describe the measure
f∗µ.

2.8 Let X = {(a1, a2, . . . ) | ak ∈ {0, 1} for every k} be the set of {0, 1}-sequences. Let µ be the
measure on X for which

µ({(a1, a2, . . . ) ∈ X | a1 = b1, . . . , aN = bN}) =
1

2N

for every b1, . . . , bN ∈ {0, 1}. Let f : X → R be defined as

f(a1, a2, . . . ) :=

∞
∑

k=1

ak
2k
.

Describe the measure f∗µ.
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2.9 Consider the following measure spaces (X, µ):

I. X = [0, 1], µ is Lebesgue measure.

II. X = [0,∞), µ is Lebesgue measure.

III. X = {1, 2 . . . , N}, µ is counting measure.

IV. X = {1, 2 . . . }, µ is counting measure.

Show examples of functions f1, f2, . . . and f from X to R such that fn converges to f

a.) almost everywhere, but not in L1,

b.) in L1, but not almost everywhere,

c.) in L1, but not in L2,

d.) in L2, but not in L1.

2.10 The characteristic function of a random variable X is the function Ψ : R → C defined as
Ψ(t) = E(eitX). Calculate the characteristic function of

(a) The Bernoulli distribution B(p)

(b) The “pessimistic geometric distribution with parameter p” – that is, the distribution µ
on {0, 1, 2 . . .} with weights µ({k}) = (1− p)pk (k = 0, 1, 2 . . . ).

(c) The “optimistic geometric distribution with parameter p” – that is, the distribution ν
on {1, 2, 3, . . .} with weights ν({k}) = (1− p)pk−1 (k = 1, 2 . . . ).

(d) The Poisson distribution with parameter λ – that is, the distribution η on {0, 1, 2 . . . }
with weights η({k}) = e−λ λk

k!
(k = 0, 1, 2 . . . ).

(e) The exponential distribution with parameter λ – that is, the distribution on R with
density (w.r.t. Lebesgue measure)

fλ(x) =

{

λe−λx, if x > 0

0, if not
.

2.11 For a real values random variable X , the characteristic function of X is ψX : R → C defined
as ψX(t) := E

(

eitX
)

, where i ∈ C is the imaginary unit. Show that ψX(t) exists for every
t ∈ R.

2.12 For a probability distribution ν on R, the characteristic function of ν is ψν : R → C defined
as ψν(t) :=

∫

R
eitx dν(x), where i ∈ C is the imaginary unit. Show that ψν(t) exists for every

t ∈ R.

2.13 Let (Ω,F ,P) be a probability space, let X : Ω → R be a random variable and let ν = X∗P

be its distribution. Show that ψX = ψν , where ψX and ψµ are the characteristic functions
defined in exercises 11 and 12.

2.14 Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 2 (dominated convergence) Let (Ω,F , µ) be a measure space and f1, f2, . . .
measurable real valued functions on Ω which converge to the limit function pointwise, µ-
almost everywhere. (That is, limn→∞ fn(x) = f(x) for every x ∈ Ω, except possibly for a set
of x-es with µ-measure zero.) Assume furthermore that the fn admit a common integrable
dominating function: there exists a g : Ω → R such that |fn(x)| ≤ g(x) for every x ∈ Ω and
n ∈ N, and

∫

Ω
g dµ <∞. Then (all the fn and also f are integrable and)

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.
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Use this theorem to prove the following:

Theorem 3 (Continuity of the characteristic function, 1) For any real valued ran-
dom variable X, its characteristic function ψX(t) = E(eitX) is continuous.

Theorem 4 (Continuity of the characteristic function, 2) For any probability distri-
bution ν on R, its characteristic function ψν(t) =

∫

R
eitx dν(x) is continuous.

2.15 Exchangeability of integral and limit. Consider the sequences of functions fn : [0, 1] → R

and gn : [0, 1] → R concerning their pointwise limits and the limits of their integrals. Do
there exist integrable functions f : [0, 1] → R and g : [0, 1] → R, such that fn(x) →
f(x) and gn(x) → g(x) for Lebesgue almost every x ∈ [0, 1]? What is lim

n→∞

(

1
∫

0

fn(x)dx

)

and lim
n→∞

(

1
∫

0

gn(x)dx

)

? Are the conditions of the dominated and monotone convergence

theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these
specific examples?

(a)

fn(x) =











n2x if 0 ≤ x < 1/n,

2n− n2x if 1/n ≤ x ≤ 2/n,

0 otherwise.

(b) Write n as n = 2k + l, where k = 0, 1, 2 . . . and l = 0, 1, . . . , 2k − 1 (this can be done in
a unique way for every n). Now let

gn(x) =

{

1 if l
2k

≤ x < l+1

2k
,

0 otherwise.

2.16 Exchangeability of integrals. Consider the following function f : R2 → R:

f(x) =











1 if 0 < x, 0 < y and 0 ≤ x− y ≤ 1,

−1 if 0 < x, 0 < y and 0 < y − x ≤ 1,

0 otherwise.

Calculate
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dx

)

dy and
+∞
∫

−∞

(

+∞
∫

−∞

f(x, y)dy

)

dx. What’s the situation with the

Fubini theorem?

2.17 Let λ be Lebesgue measure and χ be counting measure on R (with the Borel σ-algebra).
Show that λ does not have a density with respect to χ. (Hint: consider 1-element sets.)

2.18 Let (Ω,F ,P) be a probability space and A ∈ F . Define X : Ω → R as X(ω) = 1A(ω) and
let µ = X∗P be the distribution of X . Show that µ is absolutely continuous w.r.t counting
measure, show that it also has a density. What is the density?

2.19 Let X be a discrete random variable and let µ be its distribution. Give the density of µ
w.r.t. counting measure.
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