Tools of Modern Probability
 Imre Péter Tóth
 Exercise sheet 4, fall 2018

4.1 Let (X, \mathcal{F}) be a measurable space and let μ, ν be σ-finite measures on it. Show that there is a countable partition $X=\dot{\bigcup}_{i} A_{i}$ such that $\mu\left(A_{i}\right)<\infty$ and $\nu\left(A_{i}\right)<\infty$ for every i. Use this to show that the special case of the Radon-Nikodym theorem for finite measures implies the general theorem (for σ-finite measures).
4.2 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $X: \Omega \rightarrow \mathbb{R}^{+}$be integrable and let $\mathcal{G} \subset \mathcal{F}$ be a sub- σ-algebra. Define $\nu: \mathcal{G} \rightarrow \mathbb{R}^{+}$by $\nu(A):=\int_{A} X d \mathbb{P}$ (whenever $A \in \mathcal{G}$). Check that ν is a measure on (Ω, \mathcal{G}).
4.3 Let X be a nonempty set and let $\mathcal{F}_{i} \subset 2^{X}$ be a σ-algebra for every $i \in I$, where I is some index set. I may be arbitrary (possibly much bigger that countable), but we assume $I \neq \emptyset$. Show that $\mathcal{F}:=\bigcap_{i \in I} \mathcal{F}_{i}$ is also a σ-algebra. (Note that the assumption $I \neq \emptyset$ is important.)
4.4 Let (Ω, \mathcal{F}) be a probability space and let $X: \Omega \rightarrow \mathbb{R}$ be (Borel-)measurable. Let $\left(\mathcal{G}_{i}\right)_{i \in I}$ be the family of all σ-algebras over Ω such that X is \mathcal{G}_{i}-measurable, and let $\mathcal{G}:=\bigcap_{i \in I} \mathcal{G}_{i}$. Show that \mathcal{G} is the smallest σ-algebra for which X is measurable. (In what sense exactly is it the smallest?)
4.5 Let (Ω, \mathcal{F}) be a probability space, let $X: \Omega \rightarrow \mathbb{R}$ be $(\mathcal{F}, \mathcal{B})$-measurable, where \mathcal{B} is the Borel σ-algebra on \mathbb{R}. Let $\sigma(X)$ be the smallest σ-algebra on Ω for which X is measurable. (This exists by the previous exercise.) This is called the σ-algebra generated by X. Show that

$$
\sigma(X)=\left\{X^{-1}(B) \mid B \in \mathcal{B}\right\} .
$$

4.6 Let (Ω, \mathcal{F}) be a probability space, and let $\mathcal{G}_{1}, \mathcal{G}_{2} \subset \mathcal{F}$ be sub- σ-algebras. We say that \mathcal{F}_{1} and \mathcal{F}_{1} are independent if any $A \in \mathcal{G}_{1}$ and $B \in \mathcal{G}_{2}$ are independent. Show that if the random variables X and Y are independent, then $\sigma(X)$ and $\sigma(Y)$ are independent.
4.7 Let (Ω, \mathcal{F}) be a probability space, and let $\mathcal{G}_{1}, \mathcal{G}_{2} \subset \mathcal{F}$ be sub- σ-algebras. Let X and Y be random variables, $X \in \mathcal{G}_{1}, Y \in \mathcal{G}_{2}$. Show that if $\sigma(X)$ and $\sigma(Y)$ are independent, then X and Y are independent.
4.8 Show that if X is a random variable, $f: \mathbb{R} \rightarrow \mathbb{R}$ measurable and $Y=f(X)$, then $\sigma(Y) \subset$ $\sigma(X)$. Show an example when equality holds, and an example when not.
4.9 Show that if X, Y are independent random variables and $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are measurable, then $f(X)$ and $g(Y)$ are also independent.
4.10 Show that the random variables $X, Y: \Omega \rightarrow \mathbb{R}$ are independent if and only if the (joint) distribution of the pair (X, Y) (which is a probability measure on \mathbb{R}^{2}) is the product of the distributions of X and Y.
4.11 Show that if X and Y are independent and integrable, then $\mathbb{E}(X Y)=\mathbb{E} X \mathbb{E} Y$.
4.12 Show that if the random variable X is independent of the σ-algebra \mathcal{G}, then $\mathbb{E}(X \mid \mathcal{G})=\mathbb{E} X$.
4.13 Let $\Omega=\{a, b, c\}$ and \mathbb{P} the uniform measure on it. Let $X=\mathbf{1}_{\{c\}}$ and let $\mathcal{G}=\{\emptyset,\{a\},\{b, c\}, \Omega\}$. Calculate $\mathbb{E}(X \mid \mathcal{G})$.
4.14 We roll two fair dice and let X, Y be the numbers rolled. Calculate $\mathbb{E}(X \mid X+Y)$.
4.15 Let $\Omega=[0,1]^{2}$ and let \mathbb{P} be Lebesgue measure on Ω. Let $X, Y: \Omega \rightarrow \mathbb{R}$ be defined as $X(u, v)=u$ and $Y(u, v)=\sqrt{u+v}$. Calculate $\mathbb{E}(Y \mid X)$.
4.16 Let U and V be independent random variables, uniformly distributed on $[0,1]$. Calculate $\mathbb{E}(\sqrt{U+V} \mid U)$.
4.17 Let U and V be independent random variables, uniformly distributed on $[0,1]$. Calculate $\mathbb{E}(U+V \mid U-V)$.
4.18 Let U and V be independent random variables, uniformly distributed on $[0,1]$. Calculate $\mathbb{E}(\sqrt{U+V} \mid U-V)$.
4.19 Let X and Y be independent standard Gaussian random variables. Let $U=X+Y$ and $V=2 X-Y$. Calculate $\mathbb{E}(V \mid U)$. (Hint: if W is independent of U, then $\mathbb{E}(W \mid U)=\mathbb{E} W$. If you choose $\lambda \in \mathbb{R}$ cleverly, then $W:=V-\lambda U$ will be independent of U. (Since U and W are jointly Gaussian, to show independence it's enough to check that $\operatorname{Cov}(U, W)=0$.) Then write $V=\lambda U+W$.)

