Tools of Modern Probability Imre Péter Tóth Exercise sheet 3, fall 2019

3.1 The Fatou lemma is the following

Theorem 1 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f_1, f_2, \ldots a sequence of measureabale functions $f_n : \Omega \to \mathbb{R}$, which are nonneagtive, e.g. $f_n(x) \ge 0$ for every $n = 1, 2, \ldots$ and every $x \in \Omega$. Then

$$\int_{\Omega} \liminf_{n \to \infty} f_n(x) \, \mathrm{d}\mu(x) \le \liminf_{n \to \infty} \int_{\Omega} f_n(x) \, \mathrm{d}\mu(x)$$

(and both sides make sense).

Show that the inequality in the opposite direction is in general false, by choosing $\Omega = [0, 1], \mu$ as the Lebesgue measure on [0, 1], and constructing a sequence of nonnegative $f_n : [0, 1] \to \mathbb{R}$ for which $f_n(x) \xrightarrow{n \to \infty} 0$ for every $x \in [0, 1]$, but $\int_{[0,1]} f_n(x) \, \mathrm{d}x \ge 1$ for all n.

3.2 Weak convergence and densities. Prove the following

Theorem 2 Let μ_1, μ_2, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continuous w.r.t. Lebesgue measure. Denote their densities by f_1, f_2, \ldots and f, respectively. Denote their distribution functions by F_1, F_2, \ldots and F, respectively. Suppose that $f_n(x) \xrightarrow{n \to \infty} f(x)$ for every $x \in \mathbb{R}$. Then $F_n(x) \xrightarrow{n \to \infty} F(x)$ for every $x \in \mathbb{R}$.

(Hint: Use the Fatou lemma to show that $F(x) \leq \liminf_{n \to \infty} F_n(x)$. For the other direction, consider G(x) := 1 - F(x).)

- 3.3 Which of the spaces V below are linear spaces and why?
 - a.) $V := \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + 2x_2 = 0\}$, with the usual addition and the usual multiplication by a scalar.
 - b.) $V := \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + 2x_2 = 3\}$, with the usual addition and the usual multiplication by a scalar.
 - c.) $V := \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 \ge 0\}$, with the usual addition and the usual multiplication by a scalar.
 - d.) $V := \{f : (0,1) \to \mathbb{R} \mid f \text{ is continuous and } |f| \le 100\}$, with the usual addition and the usual multiplication by a scalar.
 - e.) $V := \{f : (0,1) \to \mathbb{R} \mid f \text{ is continuous and bounded}\}$, with the usual addition and the usual multiplication by a scalar.
- 3.4 On the linear spaces V and W below, which of the given transformations $T: V \to W$ are linear and why?
 - a.) $V = \mathbb{R}^3, W = \mathbb{R}^2, T((x_1, x_2, x_3)) := (x_1, x_2 + x_3).$
 - b.) $V = \mathbb{R}^3, W = \mathbb{R}^2, T((x_1, x_2, x_3)) := (x_1, 1 + x_3).$
 - c.) $V = \mathbb{R}^3$, $W = \mathbb{R}^2$, $T((x_1, x_2, x_3)) := (x_1, x_2 x_3)$.
 - d.) $V := \{f : (-1,1) \to \mathbb{R} \mid f \text{ differentiable}\}$, with the usual addition and the usual multiplication by a scalar; $W := \mathbb{R}$; T(f) := f'(0).
- 3.5 On the linear spaces V below, which of the given two-variable functions $B: V \to \mathbb{R}$ are bilinear forms? Which ones are symmetric and positive definite? Why?

- a.) $V = \mathbb{R}^3$, $B((x_1, x_2, x_3), (y_1, y_2, y_3)) := x_1y_2 + x_2y_3 + x_3y_1$
- b.) $V = \mathbb{R}^2$, $B((x_1, x_2), (y_1, y_2)) := x_1 x_2 + y_1 y_2$
- c.) $V = \mathbb{R}^2$, $B((x_1, x_2), (y_1, y_2)) := x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$
- d.) $V := \{f : [-1,1] \to \mathbb{R} \mid f \text{ is differentiable}\}, \text{ with the usual addition and the usual multiplication by a scalar; } B(f,g) := \int_{-1}^{1} x^2 f(x) g(x) \, \mathrm{d}x$
- e.) $V := \{f : [-1,1] \to \mathbb{R} \mid f \text{ is differentiable}\}, \text{ with the usual addition and the usual multiplication by a scalar; } B(f,g) := \int_{-1}^{1} x f(x)g(x) \, dx$
- f.) $V := \{f : [-1,1] \to \mathbb{R} \mid f \text{ is differentiable}\}$, with the usual addition and the usual multiplication by a scalar; $B(f,g) := \int_{-1}^{1} f'(x)g(x) dx$
- 3.6 Let V be an inner product space. Show that the function $N: V \to \mathbb{R}$ defined as $N(x) := \sqrt{\langle x, x \rangle}$ is indeed a norm (usually denoted as ||x|| = N(x)).
- 3.7 Let V be an inner product space, and let d denote the natural metric on it (defined as d(x,y) := ||x y||). Let $x \in V$, let $D \subset V$ be convex, and assume that d(x,D) = R > 0 (where $d(x,D) := \inf\{d(x,y) \mid y \in D\}$ is the distance of x and D). Find a number $C \in \mathbb{R}$ (possibly depending on R) such that if $u, v \in D$, $d(x,u) \leq R + \varepsilon$ and $d(x,v) \leq R + \varepsilon$ with some $\varepsilon < R$, then $d(u,v) \leq C\sqrt{\varepsilon}$. (Hint: estimate the length of the longest line segment that fits in the shell $\{y \in V \mid R \leq d(x,y) \leq R + \varepsilon\}$. A two-dimensional drawing will help.)
- 3.8 Let V be an inner product space, and let d denote the natural metric (defined as d(x, y) := ||x y||).
 - a.) Let $a, c, x \in V$ with $x \neq c$. Calculate the distance of a from the line $\{c + t(x c) \mid t \in \mathbb{R}\}$ using ||a c||, ||x c|| and $\langle a c, x c \rangle$.
 - b.) Let $E \subset V$ be a linear subspace and let $a \in V$. Suppose that $c \in E$ is such that $d(a, x) \geq d(a, c)$ for every $x \in E$ which means that c is the point in E which is closest to a. Prove that E is orthogonal to a c, meaning that $\langle x, a c \rangle = 0$ for every $x \in E$.
- 3.9 Let V be an inner product space over \mathbb{R} and let $f: V \to \mathbb{R}$ be a linear form. Let $E := \{y \in V \mid f(y) = 0\}$ be the null-space of f. Suppose that $f(a) = 1, c \in E$ and a c is orthogonal to E, meaning (a c)y = 0 for every $y \in E$. Now, for any $x \in V$, find the $\lambda \in \mathbb{R}$ for which $x_1 := x \lambda(a c) \in E$. Use this to get the relation between f(x) and (a c)x.
- 3.10 Represent the following functions $f: V \to \mathbb{R}$ as multiplication by a fixed vector, whenever this is possible due to the Riesz representation theorem.
 - a.) $V = \mathbb{R}^{10}$ with the usual inner product, $f((x_1, \ldots, x_{10})) := x_5$ (evaluation at 5)
 - b.) $V = \mathbb{R}^{10}$ with the usual inner product, $f((x_1, \ldots, x_{10})) := x_6 x_5$ (discrete derivative at 5).
 - c.) $V = \mathbb{R}^{10}$ with the usual inner product, $f((x_1, \ldots, x_{10})) := x_6 2x_5 + x_4$ (discrete second derivative at 5).
 - d.) $V = l^2 := \{x : \mathbb{N} \to \mathbb{R} \mid \sum_{i=1}^{\infty} x^2(i) < \infty\}$, with the inner product $x \cdot y := \sum_{i=1}^{\infty} x(i)y(i)$; $f(x) := \sum_{i=1}^{100} x(i)$.
 - e.) $V = l^2 := \{x : \mathbb{N} \to \mathbb{R} \mid \sum_{i=1}^{\infty} x^2(i) < \infty\}$, with the inner product $x \cdot y := \sum_{i=1}^{\infty} x(i)y(i)$; $f(x) := \sum_{i=1}^{\infty} x(i)$.
 - f.) $V = l^2 := \{x : \mathbb{N} \to \mathbb{R} \mid \sum_{i=1}^{\infty} x^2(i) < \infty\}$, with the inner product $x \cdot y := \sum_{i=1}^{\infty} x(i)y(i)$; $f(x) := \sum_{i=1}^{\infty} x^2(i)$.
 - g.) $V = L^2([0,1]) := \{x : [0,1] \to \mathbb{R} \mid \int_0^1 x^2(t) \, dt < \infty\}$, with the inner product $x \cdot y := \int_0^1 x(t)y(t) \, dt; f(x) := x(\frac{1}{2})$ (evaluation at $\frac{1}{2}$).

- h.) $V = L^2([0,1]) := \{x : [0,1] \to \mathbb{R} \mid \int_0^1 x^2(t) dt < \infty\}$, with the inner product $x \cdot y := \int_0^1 x(t)y(t) dt; f(x) := x'(\frac{1}{2})$ (derivative at $\frac{1}{2}$).
- i.) $V = L^2([0,1]) := \{x : [0,1] \to \mathbb{R} \mid \int_0^1 x^2(t) \, dt < \infty\}$, with the inner product $x \cdot y := \int_0^1 x(t)y(t) \, dt; f(x) := \int_{0.2}^{0.7} x(t) \, dt.$
- j.) $V = \{x : [0,1] \to \mathbb{R} \mid \int_0^1 x^2(t) dt < \infty, f \text{ is differentiable}\}, \text{ with the inner product}$ $x \cdot y := \int_0^1 x(t)y(t) dt; f(x) := x'(\frac{1}{2}).$
- k.) $V = \{x : [0,1] \to \mathbb{R} \mid \int_0^1 x^2(t) \, dt < \infty, f \text{ is continuous}\}, \text{ with the inner product } x \cdot y := \int_0^1 x(t)y(t) \, dt; f(x) := x(\frac{1}{2}).$
- l.) $V = \{x : [0,1] \to \mathbb{R} \mid \int_0^1 x^2(t) \, \mathrm{d}t < \infty, f \text{ is continuous}\}, \text{ with the inner product } x \cdot y := \int_0^1 x(t)y(t) \, \mathrm{d}t; f(x) := \int_{0.2}^{0.7} x(t) \, \mathrm{d}t.$