Tools of Modern Probability
 Imre Péter Tóth
 Exercise sheet 3, fall 2019

3.1 The Fatou lemma is the following

Theorem 1 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f_{1}, f_{2}, \ldots a sequence of measureabale functions $f_{n}: \Omega \rightarrow \mathbb{R}$, which are nonneagtive, e.g. $f_{n}(x) \geq 0$ for every $n=1,2, \ldots$ and every $x \in \Omega$. Then

$$
\int_{\Omega} \liminf _{n \rightarrow \infty} f_{n}(x) \mathrm{d} \mu(x) \leq \liminf _{n \rightarrow \infty} \int_{\Omega} f_{n}(x) \mathrm{d} \mu(x)
$$

(and both sides make sense).
Show that the inequality in the opposite direction is in general false, by choosing $\Omega=[0,1], \mu$ as the Lebesgue measure on $[0,1]$, and constructing a sequence of nonnegative $f_{n}:[0,1] \rightarrow \mathbb{R}$ for which $f_{n}(x) \xrightarrow{n \rightarrow \infty} 0$ for every $x \in[0,1]$, but $\int_{[0,1]} f_{n}(x) \mathrm{d} x \geq 1$ for all n.
3.2 Weak convergence and densities. Prove the following

Theorem 2 Let μ_{1}, μ_{2}, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f_{1}, f_{2}, \ldots and f, respectively. Denote their distribution functions by F_{1}, F_{2}, \ldots and F, respectively. Suppose that $f_{n}(x) \xrightarrow{n \rightarrow \infty} f(x)$ for every $x \in \mathbb{R}$. Then $F_{n}(x) \xrightarrow{n \rightarrow \infty} F(x)$ for every $x \in \mathbb{R}$.
(Hint: Use the Fatou lemma to show that $F(x) \leq \lim _{\inf _{n \rightarrow \infty}} F_{n}(x)$. For the other direction, consider $G(x):=1-F(x)$.)
3.3 Which of the spaces V below are linear spaces and why?
a.) $V:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+2 x_{2}=0\right\}$, with the usual addition and the usual multiplication by a scalar.
b.) $V:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+2 x_{2}=3\right\}$, with the usual addition and the usual multiplication by a scalar.
c.) $V:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1} \geq 0\right\}$, with the usual addition and the usual multiplication by a scalar.
d.) $V:=\{f:(0,1) \rightarrow \mathbb{R} \mid f$ is continuous and $|f| \leq 100\}$, with the usual addition and the usual multiplication by a scalar.
e.) $V:=\{f:(0,1) \rightarrow \mathbb{R} \mid f$ is continuous and bounded $\}$, with the usual addition and the usual multiplication by a scalar.
3.4 On the linear spaces V and W below, which of the given transformations $T: V \rightarrow W$ are linear and why?
a.) $V=\mathbb{R}^{3}, W=\mathbb{R}^{2}, T\left(\left(x_{1}, x_{2}, x_{3}\right)\right):=\left(x_{1}, x_{2}+x_{3}\right)$.
b.) $V=\mathbb{R}^{3}, W=\mathbb{R}^{2}, T\left(\left(x_{1}, x_{2}, x_{3}\right)\right):=\left(x_{1}, 1+x_{3}\right)$.
c.) $V=\mathbb{R}^{3}$, $W=\mathbb{R}^{2}, T\left(\left(x_{1}, x_{2}, x_{3}\right)\right):=\left(x_{1}, x_{2} x_{3}\right)$.
d.) $V:=\{f:(-1,1) \rightarrow \mathbb{R} \mid f$ differentiable $\}$, with the usual addition and the usual multiplication by a scalar; $W:=\mathbb{R} ; T(f):=f^{\prime}(0)$.
3.5 On the linear spaces V below, which of the given two-variable functions $B: V \rightarrow \mathbb{R}$ are bilinear forms? Which ones are symmetric and positive definite? Why?
a.) $V=\mathbb{R}^{3}, B\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right):=x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}$
b.) $V=\mathbb{R}^{2}, B\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right):=x_{1} x_{2}+y_{1} y_{2}$
c.) $V=\mathbb{R}^{2}, B\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right):=x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}+x_{2} y_{2}$
d.) $V:=\{f:[-1,1] \rightarrow \mathbb{R} \mid f$ is differentiable $\}$, with the usual addition and the usual multiplication by a scalar; $B(f, g):=\int_{-1}^{1} x^{2} f(x) g(x) \mathrm{d} x$
e.) $V:=\{f:[-1,1] \rightarrow \mathbb{R} \mid f$ is differentiable $\}$, with the usual addition and the usual multiplication by a scalar; $B(f, g):=\int_{-1}^{1} x f(x) g(x) \mathrm{d} x$
f.) $V:=\{f:[-1,1] \rightarrow \mathbb{R} \mid f$ is differentiable $\}$, with the usual addition and the usual multiplication by a scalar; $B(f, g):=\int_{-1}^{1} f^{\prime}(x) g(x) \mathrm{d} x$
3.6 Let V be an inner product space. Show that the function $N: V \rightarrow \mathbb{R}$ defined as $N(x):=$ $\sqrt{\langle x, x\rangle}$ is indeed a norm (usually denoted as $\|x\|=N(x)$).
3.7 Let V be an inner product space, and let d denote the natural metric on it (defined as $d(x, y):=\|x-y\|)$. Let $x \in V$, let $D \subset V$ be convex, and assume that $d(x, D)=R>0$ (where $d(x, D):=\inf \{d(x, y) \mid y \in D\}$ is the distance of x and D). Find a number $C \in \mathbb{R}$ (possibly depending on R) such that if $u, v \in D, d(x, u) \leq R+\varepsilon$ and $d(x, v) \leq R+\varepsilon$ with some $\varepsilon<R$, then $d(u, v) \leq C \sqrt{\varepsilon}$. (Hint: estimate the length of the longest line segment that fits in the shell $\{y \in V \mid R \leq d(x, y) \leq R+\varepsilon\}$. A two-dimensional drawing will help.)
3.8 Let V be an inner product space, and let d denote the natural metric (defined as $d(x, y):=$ $\|x-y\|)$.
a.) Let $a, c, x \in V$ with $x \neq c$. Calculate the distance of a from the line $\{c+t(x-c) \mid t \in \mathbb{R}\}$ using $\|a-c\|,\|x-c\|$ and $\langle a-c, x-c\rangle$.
b.) Let $E \subset V$ be a linear subspace and let $a \in V$. Suppose that $c \in E$ is such that $d(a, x) \geq d(a, c)$ for every $x \in E$ - which means that c is the point in E which is closest to a. Prove that E is orthogonal to $a-c$, meaning that $\langle x, a-c\rangle=0$ for every $x \in E$.
3.9 Let V be an inner product space over \mathbb{R} and let $f: V \rightarrow \mathbb{R}$ be a linear form. Let $E:=\{y \in$ $V \mid f(y)=0\}$ be the null-space of f. Suppose that $f(a)=1, c \in E$ and $a-c$ is orthogonal to E, meaning $(a-c) y=0$ for every $y \in E$. Now, for any $x \in V$, find the $\lambda \in \mathbb{R}$ for which $x_{1}:=x-\lambda(a-c) \in E$. Use this to get the relation between $f(x)$ and $(a-c) x$.
3.10 Represent the following functions $f: V \rightarrow \mathbb{R}$ as multiplication by a fixed vector, whenever this is possible due to the Riesz representation theorem.
a.) $V=\mathbb{R}^{10}$ with the usual inner product, $f\left(\left(x_{1}, \ldots, x_{10}\right)\right):=x_{5}$ (evaluation at 5)
b.) $V=\mathbb{R}^{10}$ with the usual inner product, $f\left(\left(x_{1}, \ldots, x_{10}\right)\right):=x_{6}-x_{5}$ (discrete derivative at 5).
c.) $V=\mathbb{R}^{10}$ with the usual inner product, $f\left(\left(x_{1}, \ldots, x_{10}\right)\right):=x_{6}-2 x_{5}+x_{4}$ (discrete second derivative at 5).
d.) $V=l^{2}:=\left\{x: \mathbb{N} \rightarrow \mathbb{R} \mid \sum_{i=1}^{\infty} x^{2}(i)<\infty\right\}$, with the inner product $x \cdot y:=\sum_{i=1}^{\infty} x(i) y(i)$; $f(x):=\sum_{i=1}^{100} x(i)$.
e.) $V=l^{2}:=\left\{x: \mathbb{N} \rightarrow \mathbb{R} \mid \sum_{i=1}^{\infty} x^{2}(i)<\infty\right\}$, with the inner product $x \cdot y:=\sum_{i=1}^{\infty} x(i) y(i)$; $f(x):=\sum_{i=1}^{\infty} x(i)$.
f.) $V=l^{2}:=\left\{x: \mathbb{N} \rightarrow \mathbb{R} \mid \sum_{i=1}^{\infty} x^{2}(i)<\infty\right\}$, with the inner product $x \cdot y:=\sum_{i=1}^{\infty} x(i) y(i)$; $f(x):=\sum_{i=1}^{\infty} x^{2}(i)$.
g.) $V=L^{2}([0,1]):=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty\right\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=x\left(\frac{1}{2}\right)$ (evaluation at $\frac{1}{2}$).
h.) $V=L^{2}([0,1]):=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty\right\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=x^{\prime}\left(\frac{1}{2}\right)$ (derivative at $\frac{1}{2}$).
i.) $V=L^{2}([0,1]):=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty\right\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=\int_{0.2}^{0.7} x(t) \mathrm{d} t$.
j.) $V=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty, f\right.$ is differentiable $\}$, with the inner product $x \cdot y:=\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=x^{\prime}\left(\frac{1}{2}\right)$.
k.) $V=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty, f\right.$ is continuous $\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=x\left(\frac{1}{2}\right)$.
1.) $V=\left\{x:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} x^{2}(t) \mathrm{d} t<\infty, f\right.$ is continuous $\}$, with the inner product $x \cdot y:=$ $\int_{0}^{1} x(t) y(t) \mathrm{d} t ; f(x):=\int_{0.2}^{0.7} x(t) \mathrm{d} t$.

