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3.1 The Fatou lemma is the following

Theorem 1 Let (Ω,F , µ) be a measure space and f1, f2, . . . a sequence of measureabale
functions fn : Ω → R, which are nonneagtive, e.g. fn(x) ≥ 0 for every n = 1, 2, . . . and
every x ∈ Ω. Then

∫

Ω

lim inf
n→∞

fn(x) dµ(x) ≤ lim inf
n→∞

∫

Ω

fn(x) dµ(x)

(and both sides make sense).

Show that the inequality in the opposite direction is in general false, by choosing Ω = [0, 1], µ
as the Lebesgue measure on [0, 1], and constructing a sequence of nonnegative fn : [0, 1] → R

for which fn(x)
n→∞−−−→ 0 for every x ∈ [0, 1], but

∫

[0,1]
fn(x) dx ≥ 1 for all n.

3.2 Weak convergence and densities. Prove the following

Theorem 2 Let µ1, µ2, . . . and µ be a sequence of probability distributions on R which are
absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f1, f2, . . . and f ,
respectively. Denote their distribution functions by F1, F2, . . . and F , respectively. Suppose
that fn(x)

n→∞−→ f(x) for every x ∈ R. Then Fn(x)
n→∞−→ F (x) for every x ∈ R.

(Hint: Use the Fatou lemma to show that F (x) ≤ lim infn→∞ Fn(x). For the other direction,
consider G(x) := 1− F (x).)

3.3 Which of the spaces V below are linear spaces and why?

a.) V := {(x1, x2, x3) ∈ R
3 | x1 + 2x2 = 0}, with the usual addition and the usual multipli-

cation by a scalar.

b.) V := {(x1, x2, x3) ∈ R
3 | x1 + 2x2 = 3}, with the usual addition and the usual multipli-

cation by a scalar.

c.) V := {(x1, x2, x3) ∈ R
3 | x1 ≥ 0}, with the usual addition and the usual multiplication

by a scalar.

d.) V := {f : (0, 1) → R | f is continuous and |f | ≤ 100}, with the usual addition and the
usual multiplication by a scalar.

e.) V := {f : (0, 1) → R | f is continuous and bounded}, with the usual addition and the
usual multiplication by a scalar.

3.4 On the linear spaces V and W below, which of the given transformations T : V → W are
linear and why?

a.) V = R
3, W = R

2, T ((x1, x2, x3)) := (x1, x2 + x3).

b.) V = R
3, W = R

2, T ((x1, x2, x3)) := (x1, 1 + x3).

c.) V = R
3, W = R

2, T ((x1, x2, x3)) := (x1, x2x3).

d.) V := {f : (−1, 1) → R | f differentiable}, with the usual addition and the usual multi-
plication by a scalar; W := R; T (f) := f ′(0).

3.5 On the linear spaces V below, which of the given two-variable functions B : V → R are
bilinear forms? Which ones are symmetric and positive definite? Why?
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a.) V = R
3, B((x1, x2, x3), (y1, y2, y3)) := x1y2 + x2y3 + x3y1

b.) V = R
2, B((x1, x2), (y1, y2)) := x1x2 + y1y2

c.) V = R
2, B((x1, x2), (y1, y2)) := x1y1 + x1y2 + x2y1 + x2y2

d.) V := {f : [−1, 1] → R | f is differentiable}, with the usual addition and the usual

multiplication by a scalar; B(f, g) :=
∫ 1

−1
x2f(x)g(x) dx

e.) V := {f : [−1, 1] → R | f is differentiable}, with the usual addition and the usual

multiplication by a scalar; B(f, g) :=
∫ 1

−1
xf(x)g(x) dx

f.) V := {f : [−1, 1] → R | f is differentiable}, with the usual addition and the usual

multiplication by a scalar; B(f, g) :=
∫ 1

−1
f ′(x)g(x) dx

3.6 Let V be an inner product space. Show that the function N : V → R defined as N(x) :=
√

〈x, x〉 is indeed a norm (usually denoted as ||x|| = N(x)).

3.7 Let V be an inner product space, and let d denote the natural metric on it (defined as
d(x, y) := ||x − y||). Let x ∈ V , let D ⊂ V be convex, and assume that d(x,D) = R > 0
(where d(x,D) := inf{d(x, y) | y ∈ D} is the distance of x and D). Find a number C ∈ R

(possibly depending on R) such that if u, v ∈ D, d(x, u) ≤ R + ε and d(x, v) ≤ R + ε with
some ε < R, then d(u, v) ≤ C

√
ε. (Hint: estimate the length of the longest line segment that

fits in the shell {y ∈ V | R ≤ d(x, y) ≤ R + ε}. A two-dimensional drawing will help.)

3.8 Let V be an inner product space, and let d denote the natural metric (defined as d(x, y) :=
||x− y||).

a.) Let a, c, x ∈ V with x 6= c. Calculate the distance of a from the line {c+ t(x− c) | t ∈ R}
using ||a− c||, ||x− c|| and 〈a− c, x− c〉.

b.) Let E ⊂ V be a linear subspace and let a ∈ V . Suppose that c ∈ E is such that
d(a, x) ≥ d(a, c) for every x ∈ E – which means that c is the point in E which is closest
to a. Prove that E is orthogonal to a− c, meaning that 〈x, a− c〉 = 0 for every x ∈ E.

3.9 Let V be an inner product space over R and let f : V → R be a linear form. Let E := {y ∈
V | f(y) = 0} be the null-space of f . Suppose that f(a) = 1, c ∈ E and a− c is orthogonal
to E, meaning (a− c)y = 0 for every y ∈ E. Now, for any x ∈ V , find the λ ∈ R for which
x1 := x− λ(a− c) ∈ E. Use this to get the relation between f(x) and (a− c)x.

3.10 Represent the following functions f : V → R as multiplication by a fixed vector, whenever
this is possible due to the Riesz representation theorem.

a.) V = R
10 with the usual inner product, f((x1, . . . , x10)) := x5 (evaluation at 5)

b.) V = R
10 with the usual inner product, f((x1, . . . , x10)) := x6 − x5 (discrete derivative at

5).

c.) V = R
10 with the usual inner product, f((x1, . . . , x10)) := x6− 2x5+ x4 (discrete second

derivative at 5).

d.) V = l2 := {x : N → R |
∑

∞

i=1 x
2(i) < ∞}, with the inner product x · y :=

∑

∞

i=1 x(i)y(i);
f(x) :=

∑100
i=1 x(i).

e.) V = l2 := {x : N → R |
∑

∞

i=1 x
2(i) < ∞}, with the inner product x · y :=

∑

∞

i=1 x(i)y(i);
f(x) :=

∑

∞

i=1 x(i).

f.) V = l2 := {x : N → R | ∑∞

i=1 x
2(i) < ∞}, with the inner product x · y :=

∑

∞

i=1 x(i)y(i);
f(x) :=

∑

∞

i=1 x
2(i).

g.) V = L2([0, 1]) := {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) := x(1

2
) (evaluation at 1

2
).
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h.) V = L2([0, 1]) := {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) := x′(1

2
) (derivative at 1

2
).

i.) V = L2([0, 1]) := {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) :=

∫ 0.7

0.2
x(t) dt.

j.) V = {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞, f is differentiable}, with the inner product

x · y :=
∫ 1

0
x(t)y(t) dt; f(x) := x′(1

2
).

k.) V = {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞, f is continuous}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) := x(1

2
).

l.) V = {x : [0, 1] → R |
∫ 1

0
x2(t) dt < ∞, f is continuous}, with the inner product x · y :=

∫ 1

0
x(t)y(t) dt; f(x) :=

∫ 0.7

0.2
x(t) dt.
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