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Tools of Modern Probability
Imre Péter Téth
Exercise sheet 3, fall 2019

The Fatou lemma is the following

Theorem 1 Let (2, F, ) be a measure space and fi, fo, ...a sequence of measureabale
functions f, : Q — R, which are nonneagtive, e.g. f,(x) > 0 for everyn = 1,2,... and
every x € Q). Then

/liminffn( ) dp(x <hm1nf/fn ) dp(x
Q
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(and both sides make sense).
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Show that the inequality in the opposite direction is in general false, by choosing (2 1
as the Lebesgue measure on [0, 1], and constructing a sequence of nonnegative f,, : [0,1] = R
for which f,(z) === 0 for every x € [0, 1], but Jioay fu(z) dz > 1 for all n.

Weak convergence and densities. Prove the following

Theorem 2 Let puy, io, ... and p be a sequence of probability distributions on R which are
absolutely continouos w.r.t. Lebesque measure. Denote their densities by fi, fa,... and f,
respectively. Denote their distribution functions by Fy, Fy, ... and F, respectively. Suppose
that fo(x) =3 f(x) for every x € R. Then F,(z) =3 F(x) for every z € R.

(Hint: Use the Fatou lemma to show that F'(z) < liminf, . F,(z). For the other direction,
consider G(x) :=1— F(x).)

Which of the spaces V' below are linear spaces and why?
a.) V= {(z1, 79, 23) € R®| 2y + 225 = 0}, with the usual addition and the usual multipli-

cation by a scalar.

b.) V = {(z1,72,73) € R®| 2y + 225 = 3}, with the usual addition and the usual multipli-
cation by a scalar.

c.) V= {(z1,29,73) € R*|z; > 0}, with the usual addition and the usual multiplication
by a scalar.

d.) V:={f:(0,1) = R| fis continuous and |f| < 100}, with the usual addition and the
usual multiplication by a scalar.

e.) V:={f:(0,1) - R| fis continuous and bounded}, with the usual addition and the
usual multiplication by a scalar.

On the linear spaces V and W below, which of the given transformations 7' : V — W are

linear and why?

) V = Rg, W = RQ, T((.Tl,.rg,l’g)) = (.Tl,.l’g —+ .§L’3>.

) V=RW =R? T((x1, 79, 23)) := (1,1 + 13).

) V=R W =R? T((x1, 72, 23)) := (1, T273).

) Vi=Af:(-1,1) = R| f differentiable}, with the usual addition and the usual multi-
plication by a scalar; W :=R; T'(f) := f/(0).

On the linear spaces V' below, which of the given two-variable functions B : V' — R are
bilinear forms? Which ones are symmetric and positive definite? Why?
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a.) V. =R B((x1,22,23), (y1,Y2,Y3)) := 132 + Tays + T3y

b.) V =R2 B((x1,12), (y1,92)) := 2122 + Y132

c) V= R2, B((z1,22), (Y1, ¥2)) = T1y1 + T1y2 + Toy1 + T2Yo

d) V ={f:[-1,1] - R| fis differentiable} With the usual addition and the usual
multiplication by a scalar; B(f,g) f L2 f(x)g(x) d

e) Vi={f:[-1,1] — R| fis differentiable}, With the usual addition and the usual
multiplication by a scalar; B(f,g) := f_ll xf(x)g(x)dz

£y VvV ={f:[-1L1] — R| fis differentiable} With the usual addition and the usual

multiplication by a scalar; B(f,g) f f'(z

Let V' be an inner product space. Show that the function N : V' — R defined as N(z) :=
\/(z,x) is indeed a norm (usually denoted as ||z|| = N(z)).

Let V' be an inner product space, and let d denote the natural metric on it (defined as
d(z,y) := ||z — y||). Let x € V, let D C V be convex, and assume that d(z,D) = R > 0
(where d(z, D) := inf{d(x,y) |y € D} is the distance of z and D). Find a number C' € R
(possibly depending on R) such that if u,v € D, d(z,u) < R+ ¢ and d(z,v) < R+ ¢ with
some € < R, then d(u,v) < Cy/e. (Hint: estimate the length of the longest line segment that
fits in the shell{y € V| R < d(z,y) < R+¢c}. A two-dimensional drawing will help.)

Let V' be an inner product space, and let d denote the natural metric (defined as d(z,y) :=
[z = yl]).

a.) Let a,c,x € V with x # ¢. Calculate the distance of a from the line {c+t(x —c) |t € R}
using ||a — ¢||, ||z — ¢|| and {(a — ¢,z — ¢).
b.) Let E C V be a linear subspace and let a € V. Suppose that ¢ € E is such that

d(a,z) > d(a,c) for every x € E — which means that ¢ is the point in £ which is closest
to a. Prove that F is orthogonal to a — ¢, meaning that (z,a — ¢) = 0 for every x € E.

Let V' be an inner product space over R and let f : V' — R be a linear form. Let £ := {y €
V'| f(y) = 0} be the null-space of f. Suppose that f(a) =1, ¢ € E and a — ¢ is orthogonal
to E, meaning (a — ¢)y = 0 for every y € E. Now, for any x € V, find the A € R for which
x1:=x — Ma —c¢) € E. Use this to get the relation between f(x) and (a — ¢)z.

Represent the following functions f : V' — R as multiplication by a fixed vector, whenever
this is possible due to the Riesz representation theorem.

a.) V = R!% with the usual inner product, f((z1,...,71)) := x5 (evaluation at 5)

b.) V =R with the usual inner product, f((z1,...,%10)) := 6 — 5 (discrete derivative at
5).

c.) V =R with the usual inner product, f((z1,...,21)) := zs — 225 + x4 (discrete second

derivative at 5).

d) V=>03F:={z:N=>R|> > 2%(i) < oo}, with the inner product x -y := Y oo, x(i)y(i);
flz) = T2 ().

e) V=0F={z:N=>R| > >? 2%i) < oo}, with the inner product = -y := > 2, x(i)y(i);
fla) =322 ().

£) V=07 ={z: N> R|Y 2 2%(i) < oo}, with the inner product -y := Y oo, x(2)y(4);
fla) =325 (i)

g) V =L*[0,1]) := {z : [0,1] — R| fo t)dt < oo}, with the inner product x -y :
fol z(t)y(t) dt; f(z) := x(3) (evaluation at 2).
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h) V = L*([0,1]) := {z : [0,1] — R f t)dt < oo}, with the inner product x -y :=
foll’(t)y(t) dt; f(z) :==2/(3) (derlvatlve at )

(

(

i) V= L*[0,1]) == {x [O 1] - R| fo t)dt < oo}, with the inner product x -y :=
Jo #@y(t) dts f(2) = [y alt >dt

j )V ={z : [0,1] - R| fo t)dt < oo, f is differentiable}, with the inner product
vy = [y 2(t)y(t) dt; f(x) = '(%)-

k) V={z:[0,1] - R| fo 22(t)dt < oo, f is continuous}, with the inner product z -y :=
Jo 2@y (t) dt; f(z) = x(}).

L) V={z:]0,1] - R| fo 22(t)dt < oo, f is continuous}, with the inner product z -y :=

Jo w(@)y(®) dt; f(z) = [ (t)dt.



