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0 Summary

This Thesis is organized as follows:

• We present the two main results of the Thesis in Subsection 1.1.

• Then in Subsection 1.2 we give a general introduction into the dimen-

sional theory of self-similar sets.

• In Section 2 we give a brief account about the results concerning the

Hausdorff measure of the Sierpinski triangle. Then we present our

main Theorem, which significantly improves the previous bounds on

the Hausdorff measure of the Sierpinski triangle.

• In Section 3 after a general overview about Bernoulli convolutions we

extend the work of B. Solomyak, Y. Peres and H. Tóth about Bernoulli

convolutions with different probabilities.

The Thesis contains an electric supplement on a compact disk (CD) for

Section 2. The content of the CD is also available at:

http://www.math.bme.hu/˜morap/sierpinski.zip
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1 Introduction

1.1 Extended abstract

It is well-known that the Hausdorff dimension of the Sierpinski triangle Λ is

s = log 3/ log 2. However, it is a long standing open problem to compute the

s-dimensional Hausdorff measure of Λ denoted by Hs(Λ). In the literature

the best existing estimate is

0.670432 ≤ Hs(Λ) ≤ 0.81794.

In Section 2 we improve significantly the lower bound. We also give an upper

bound which is weaker than the one above but everybody can check it easily.

Namely, we prove that

0.77 ≤ Hs(Λ) ≤ 0.819161232881177

holds. We give a general overview about self-similar sets in Section 1.2.

In Section 3 we consider Bernoulli convolutions. Let p ∈ (0, 1) and

λ ∈ (0, 1), and take the following random sum

Y p
λ :=

∞∑
n=0

±λn,

where the signs ”+” and ”−” are chosen identically and independently with

probability p and 1− p. Let νpλ be the distribution of Y p
λ .

If λ = pp(1−p)1−p then the Hausdorff dimension of νpλ is less than or equal

to 1, thus for λ < pp(1 − p)1−p the measure νpλ is singular. It is conjectured

that for every p ∈ (0, 1) and for almost every λ ∈ (pp(1 − p)1−p, 1) the

measure νpλ is absolutely continuous with respect to the Lebesgue measure.

It was proved by B. Solomyak and Y. Peres (1998) [14, Corollary 1.4] that

this holds for p ∈ [1/3, 2/3]. They [14, Theorem 1.3] also showed that we

only have chance for L2-density if λ ≥ p2 + (1 − p)2 holds. However, Peres

and Solomyak left open the corresponding problem for p ∈ (0, 1/3). The first

steps in this case was made by H. Tóth in 2008:
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Theorem 1 (Tóth [13]). For p ∈ (0, 1/3) and for almost every

λ ∈ ((1− 2p)2−log 41/ log 9, 1)

the measure νpλ is absolutely continuous with L2-density.

In Section 3 we improve H. Tóth’s result. The motivation of our research

was as follows. Recently there have arisen some problems (related to the con-

centration of medicine in the blood), which require the better understanding

of νpλ for p close to zero. Our most important achievement is that our result

gives a better tangent for p ≈ 0.

Remark 1. I want to thank my supervisor, Károly Simon for his support.

1.2 Dimension theory of the self-similar sets

We call {f1, f2, . . . , fm} an iterated function system (IFS), where the func-

tions f1, f2, . . . , fm : Rd → Rd are contraction mappings. In this Thesis we

consider only those cases, where the functions f1, f2, . . . , fm are contracting

similarities. Namely, for i = 1, 2, . . . ,m we have

|fi(x)− fi(y)| = ci|x− y|.

By a Theorem of Hutchinson [1] there is a unique nonempty compact set

F , which satisfies
k⋃
i=1

fi(F ) = F. (1.1)

We say that F is the attractor of the IFS. The attractor is often called fractal

because of its self-similar property. For example let

f1(x) =
1

3
x, f2(x) =

1

3
x+

2

3
.

In this case the attractor is the triadic Cantor set C. See Figure 1.

We say that {Ak}∞k=1 is an F -cover, if

F ⊂
∞⋃
k=1

Ak.
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f1(C) f2(C)

Figure 1: Self-similar property of the Cantor set.

s

Hs(F )

Figure 2: An example for the function Hs(F ).

For every s ≥ 0 we define the s-dimensional Hausdorff measure of F .

Hs(F ) := lim
δ→0

inf
{ ∞∑
k=1

|Ak|s, where |Ak| < δ and {Ak}∞k=1 is an F -cover
}

where |Ak| denotes the diameter of the set Ak.

The Hausdorff dimension of the set F is defined as follows:

dimH(F ) = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) =∞}.

See Figure 2. We remark that the s = dimH(F ) dimensional Hausdorff mea-

sure of F can be zero, positive finite or infinite. Since Hausdorff dimension

and measure are basic definitions of fractal theory, there are many methods

to obtain a lower or upper bound on these values. Now we present some

Lemmas, which will be used in Section 2. It is well known (see [5]) that:
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Lemma 1 (Mass distribution principle). If there exists a µ measure on Rd,

and there exist c > 0 and s > 0, such that 0 < µ(Rd) < ∞ and for every

A ⊂ Rd

µ(A) ≤ c|A|s

holds then Hs(F ) ≥ µ(F )/c.

Proof. Let {Ak}∞k=1 be an arbitrary F -cover. Then we have∑
k

|Ak|s ≥
∑
k

µ(Ak)

c
≥ µ(F )

c

For i = 1, 2, . . .m let ci be the contraction ratio of fi. We call the solution

s of the equation
m∑
i=1

csi = 1

the similarity dimension of the IFS. The value s seems to be the most natural

guess to be the Hausdorff dimension. However overlaps in (1.1) can cause

that dimH(F ) is strictly smaller than s. In 1981 Hutchinson [1] defined a

property, which helps to calculate dimH(F ) in some basic cases.

Definition 1. fi : Rn → Rn (i = 1, 2, . . . ,m) satisfies the open set condition

(OSC) if there exists a nonempty open set U , such that for i 6= j we have

fi(U) ∩ fj(U) = ∅ and for all i, fi(U) ⊂ U holds.

Another Theorem of Hutchinson asserts that OSC implies that the Haus-

dorff dimension is equal to the similarity dimension s:

Theorem 2 (Hutchinson [1]). If fi (i = 1, 2, . . . ,m) satisfies the open set

condition, then the Hausdorff dimension of the attractor F is equal to the

similarity dimension (dimH(F ) = s). Moreover the Hs(F ) is positive and

finite.

In Section 2 we will need the following Lemma:
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Lemma 2 (Zhou [2]). Let F be a self similar set satisfying the open set

condition and s = dimH(F ), then for any measurable set U , we have

Hs(F ∩ U) ≤ |U |s.

Sketch of proof. We use the following fact without proving: if OSC holds,

then we have

Hs(Λ) = inf
{ ∞∑
k=1

|Ak|s, where {Ak}∞k=1 is a Λ-cover
}
.

Let ε > 0 be arbitrary. By definition of Hs(F \ U) there exist a set

{Bk}∞k=1 which is an F \ U -cover and

∞∑
i=1

|Bi|s ≤ Hs(F \ U) + ε.

The set U can be covered by U , so the set {U,B1, B2, . . . , } is an F -cover.

This implies that

Hs(F ) ≤
∞∑
i=1

|Bi|s + |U |s ≤ Hs(F \ U) + |U |s + ε.

Since Hs(F ) = Hs(F ∩ U) +Hs(F \ U), therefore

Hs(F ∩ U) ≤ |U |s + ε.

Because ε was chosen arbitrary, we have

Hs(F ∩ U) ≤ |U |s.

Notation 1. To compute the Hausdorff dimension and measure we often

need some stationary measure, which is actually the push-down measure of a

Bernoulli measure defined on a symbolic space. More precisely, let us define

the n-cylinder of the set F (with respect to f1, . . . , fm):

Fi1,i2,...,in := fi1 ◦ fi2 ◦ · · · ◦ fin(F ),
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Let assume that OSC holds. We denote Σ = {1, 2, . . . ,m}N the symbolic

space and we introduce the infinite product measure ν := {cs1, cs2, . . . , csm}N.

The coding of F is given by the most natural projection Π : Σ→ F :

Π(i1, i2, . . . ) = lim
n→∞

fi1 ◦ fi2 ◦ · · · ◦ fin(0).

The most natural measure of F is the push-down measure µ = Π∗ν. For an

A ⊂ F we have

µ(A) = ν(Π−1(A)),

and for an n-cylinder of the set F :

µ(Fi1,i2,...,in) = csi1c
s
i2
. . . csin .

9



2 Estimate of the Hausdorff measure of the

Sierpinski Triangle

2.1 Introduction

In this Section we consider the Sierpinski triangle Λ. This is constructed

as follows: take an equilateral triangle of side length equal to one, remove the

inverted equilateral triangle of half length having the same center, then repeat

this process for the remaining triangles infinitely many times as showed on

Figures 3, 4.

Figure 3: The triangles at the 1st, 2nd and the 3rd level

Figure 4: The Sierpinski triangle

We assumed that the diameter of the Sierpinski triangle is equal to 1. If

the Sierpinski triangle is rescaled in such a way that its diameter is equal to

t then the lower and upper bounds should be multiplied by tlog 3/ log 2.
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The Sierpinski triangle is one of the most famous fractals, and the Haus-

dorff dimension and measure are the most important characteristics of a frac-

tal sets. The Sierpinski triangle is defined by an iterated function system,

which satisfies the open set condition (OSC). Thus it follows from Theo-

rem 2 that the Hausdorff dimension is equal to s = log 3/ log 2, and the

s-dimensional Hausdorff measure Hs(Λ) of Λ is positive and finite. Since the

Sierpinski triangle has an important role in many applications, it would be

desirable to get a better understanding of its size. Therefore in the last two

decades there have been a considerable attention paid to the computation of

the s-dimensional Hausdorff measure of the Sierpinski triangle:

In 1987 Marion [7] showed that 0.9508 is an upper bound. In 1997 this

was improved to 0.915, and later to 0.89 by Z. Zhou [8], [9]. In 2000 Z. Zhou

and Li Feng proved that Hs(Λ) ≤ 0.83078 in [10]. The best upper bound is

0.81794, which was given by Wang Heyu and Wang Xinghua [11] in 1999 (in

Chinese) with a computer algorithm.

In 2002 B. Jia, Z. Zhou and Z. Zhu [4] showed that 0.5 is a lower bound

on the s-dimensional Hausdorff measure of the Sierpinski triangle. In 2004

R. Houjun and W. Weiyi [12] improved it to 0.5631. Finally, in 2006 B. Jia,

Z. Zhou and Z. Zhu [6] proved that 0.670432 is a lower bound.

The main result of this Section is that Hs(Λ) ≥ 0.77.

The difficulty comes from geometry. Recall that the s-dimensional Haus-

dorff measure of Λ is defined by

Hs(Λ) = lim
δ→0

inf
{ ∞∑
k=1

|Ak|s, where |Ak| < δ and {Ak}∞k=1 is a Λ-cover
}
.

(2.1)

When we estimate the Hausdorff measure we need to understand what is the

most economical (in the sense of (2.1)) system of covers. Our most natural

guess for this system is the covers by the level n triangles (the equilateral

triangles on Figure 3). However, this system of covers would result that the

s-dimensional Hausdorff measure of Λ was equal to 1. On the other hand it

is known that Hs(Λ) < 0.81794. Therefore the best system of covers cannot
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possibly be the trivial one and this makes the problem difficult. To improve

the existing best estimate on Hs(Λ) we use a Theorem of B. Jia. [3]. To

state this Theorem we need to introduce some definitions.

It is well known (see [5]) that

Λ =
3⋃
i=1

Si(Λ), (2.2)

where

S1(x, y) =

(
1

2
x,

1

2
y

)
,

S2(x, y) =

(
1

2
+

1

2
x, 0 +

1

2
y

)
,

S3(x, y) =

(
1

4
+

1

2
x,

√
3

4
+

1

2
y

)
.

Let E be the equilateral triangle of side length one with vertices: (0, 0), (1, 0),(
1
2
,
√

3
2

)
. Now we define the level n triangles

Ei1...in := Si1...in(E) = Si1 ◦ · · · ◦ Sin(E)

for all (i1 . . . in) ∈ {1, 2, 3}n. For i1, . . . , in we also define the level n-cylinders

as we did in Notation 1:

Fi1...in := Si1...in(Λ) = Si1 ◦ · · · ◦ Sin(Λ).

Let µ be the uniform distribution measure on the Sierpinski triangle that is

for all n and for all i1 . . . in

µ(Ei1...in) = µ(Fi1...in) =
1

3n
.

After B. Jia we introduce the sequence

an = min
|
⋃kn

j=1 ∆
(n)
j |s

kn/3n
= min

|
⋃kn

j=1 ∆
(n)
j |s

µ(
⋃kn

j=1 ∆
(n)
j )

, (2.3)

where the minimum is taken for all non-empty sets of distinct level n triangles{
∆

(n)
1 , . . . ,∆

(n)
kn

}
. It is easy to see that an is non-increasing (see [3]). Further

B. Jia showed ([3]) that an is an upper bound on the Hausdorff measure of

the Sierpinski triangle, and he also gave a lower bound using an :
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Theorem 3 (B. Jia). The Hausdorff measure of the Sierpinski triangle sat-

isfies:

ane
− 16

√
3

3
·s·( 1

2)
n

≤ Hs(Λ) ≤ an (2.4)

Corollary 1. Theorem 3 implies that an tends to Hs(Λ).

Unfortunately there seems to be no way to compute an for n ≥ 6. B. Jia

[3] calculated a1 and a2. We can calculate a3, a4, a5, but by (2.4) it results

only that Hs(Λ) > 0.54, which is not an improvement on the already existing

lower bound. So instead of this direct approach we give a lower bound on an

for every n. By using Corollary 1 this lower bound is also a lower bound on

Hs(Λ). Using some complicated algorithm described in Subsections 2.5, 2.6

we point out that

an ≥ 0.77

for all n ∈ N. With Corollary 1 this implies that

Hs(Λ) ≥ 0.77.

We remind the reader that the best existing lower bond in the literature

[6] was given in 2006: Hs(Λ) ≥ 0.670432.

Using the second inequality of Theorem 3, in Subsection 2.3 an up-

per bound is given on Hs(Λ) as follows: we provide a carefully selected

collection of level 30 triangles
{

∆
(30)
1 , . . . ,∆

(30)
k30

}
. This collection results

an upper bound on a30 which in return gives the upper bound Hs(Λ) ≤
0.819161232881177. In 1999 two Chinese mathematicians [11] published an

upper bound which is better than this but their paper was published in Chi-

nese giving in this way limited opportunity to check if their algorithm was

correct.

2.2 Proof of Corollary 1

The proof of Theorem 3 contains many calculations. Since we only use that

Corollary 1 holds, we present a proof of two Propositions of B. Jia here. The

Corollary 1 is an immediately consequence of these Propositions.
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Proposition 1 (B. Jia). For n > 0 Hs(F ) ≤ an holds.

Proof. Fix n > 1 integer. Let {∆(n)
j }

kn
j=1 be a non-empty sets of distinct level

n triangles. The set U = ∪kn
j=1∆

(n)
j is measurable, so by Lemma 2 we have

µ(U)Hs(E) = Hs(E ∩ U) ≤ |U |s.

Therefore for all U = ∪kn
j=1∆

(n)
j we obtain

Hs(E) ≤ |U |
s

µ(U)
.

Taking the minimum of |U |s/µ(U) over the possible sets we get an by defi-

nition. Thus for all n > 0 we have

Hs(E) ≤ an.

Proposition 2 (B. Jia). If for ∀n > 1 an ≥ A holds, then Hs(F ) ≥ A.

Proof. For any open set V , let

Gn =
⋃

Fi1,i2,...,in⊂V

Fi1,i2,...,in .

Then we have Gn ⊂ Gn+1, and ∪∞n=1Gn = Λ∩V . The support of µ is Λ, thus

µ(V ) = µ(Λ ∩ V ) = lim
n→∞

µ

 ⋃
Fi1,i2,...,in⊂V

Fi1,i2,...,in

 ≤ lim
n→∞

|V |s

an
≤ 1

A
|V |s

holds. Measurable sets can be approximated with open sets, and using

the last inequality and the Mass distribution principle (Lemma 1) we have

Hs(F ) ≥ A.

2.3 Upper bound

In the definition of an (2.3) the minimum is taken for all non-empty sets of

distinct n-cylinder triangles. We provide a collection of n-cylinder triangles
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for all n, which gives an upper bound on an by definition, and an upper

bound on Hs(Λ) by Proposition 1.

Take the following 6 points:

{(1/4, 0), (3/4, 0), (1/8,
√

3/8), (3/8, 3
√

3/8), (5/8, 3
√

3/8), (7/8,
√

3/8)}.

Let D1, D2, . . . , D6 be the closed discs centered at these six points with radius

0.75. We write D := D1 ∩ D2 ∩ · · · ∩ D6. Take all those level n triangles,

which are contained in D (see Figure 5 for an example). It is easy to see that

the maximum distance between the chosen triangles will be exactly 0.75. Let

us denote

cn =
0.75log 3/ log 2

kn/3n
,

where kn is the number of the chosen level n triangles, which are in the region

of intersection of the six discs.

Figure 5: The black triangles are the chosen 174 level 5 triangles, so c5 =
0.75log 3/ log 2

174/35 . Six arrows show the six given points.

The values for the cn for small n are given by the following table:
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Number of chosen

n triangles (kn) kn/3
n 0.75log 3/ log 2

kn/3n

2 6 0.666666666666667 0.950753749115186

3 18 0.666666666666667 0.950753749115186

4 54 0.666666666666667 0.950753749115186

5 174 0.716049382716049 0.885184525038276

6 546 0.748971193415638 0.846275315146484

. . .

28 17701192624554 0.773761997421774 0.819161234146210

29 53103577928148 0.773761998215679 0.819161233305724

30 159310733867010 0.773761998616697 0.819161232881177

Therefore using Theorem 3 we obtain that

c30 ≥ a30 ≥ Hs(Λ)

holds. This implies:

Theorem 4. The Hausdorff measure of the Sierpinski triangle is less than

0.819161232881177.

One can show we cannot get a better upper bound on the s-dimension

Hausdorff measure of the Sierpinski triangle than 0.819161232089868.

2.4 Lower bound, basic idea

For the convenience of the reader after giving the necessary definitions we

are going to present a strongly simplified rough version of the idea of the

algorithm. In Subsection 2.6 we will present the algorithm itself.

Definition 2. Let g > h be positive integers, and let ∆
(g)
1 ,∆

(g)
2 , . . .∆

(g)
k be a

set of distinct level g triangles, ∆
(h)
1 ,∆

(h)
2 , . . .∆

(h)
l be a set of distinct level h

triangles. We say that the set {∆(g)
i }ki=1 is a descendant of the set {∆(h)

j }lj=i
and we write {∆(h)

j }lj=i
desc−→ {∆(g)

i }ki=1, if both of the following conditions

hold:
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• For all i ∈ {1, 2, . . . k} there is a j, such that ∆
(g)
i ⊂ ∆

(h)
j .

• For all j ∈ {1, 2, . . . l} there is at least one i, such that ∆
(g)
i ⊂ ∆

(h)
j .

Figure 6: The set in the middle is a descendant of the left one, but the set

on the right is NOT a descendant of the left one.

See Figure 6 for an example. This relation naturally defines a tree T
for which the equilateral triangle E is the root. The set of level n nodes is

equal to the set of all (non-empty) union of level n triangles. A level n node

{∆(n)
j }lj=1 is connected to a level (n+ 1) node {∆(n+1)

i }ki=1 if {∆(n+1)
i }ki=1 is a

descendant of {∆(n)
j }lj=1. Figure 7 shows the top of the tree.

Figure 7: The top of the tree T .
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Let v = {∆(n)
i }ki=1 be a level n node. Then we write v0 = n and we denote

Tv the sub tree of T having v as root. (Tv consists of v and all those nodes

w, which are descendant of v.) Let Ev := ∪ki=1∆
(n)
i .

We define

av :=
|Ev|s

k/3n
=
|Ev|
µ(Ev)

. (2.5)

Our purpose is to give a lower bound on an (defined in (2.3)) for suffi-

ciently large n, so we obtain a lower bound on its limit, Hs(Λ). It comes

directly from the definitions that

an = min
v◦=n

av. (2.6)

By using an ↓ Hs(Λ) and taking infimum on both sides on n we obtain

inf
v∈T

av = lim
n→∞

an = Hs(Λ). (2.7)

Let v = {∆(n)
i }ki=1. We write

bv := max
1≤i,j≤k

min
x∈∆

(n)
i ,y∈∆

(n)
j

|x− y|s

k/3n
. (2.8)

Observe that for these x, y we have

|x− y| = max
1≤i,j≤k

dist(∆i,∆j).

Lemma 3. The value bv is a lower bound for aw whenever v
desc−→ w holds.

Namely,

bv ≤ inf
w∈Tv

aw.

Proof. For v = {∆(n)
i }ki=1 let w = {∆(g)

t }lt=1 ∈ Tv be arbitrary. To give a lower

bound on aw first we give a lower bound on the diameter of Ew, then we give

an upper bound on µ(Ew). We consider ∆
(n)
i and ∆

(n)
j for some 1 ≤ i, j ≤ k.

w is a descendant of v, so Ew∩∆
(n)
i and Ew∩∆

(n)
j are non-empty (see Figure

8 for example). Thus the diameter of Ew is at least

|Ew| > min
x∈∆

(n)
i ,y∈∆

(n)
j

|x− y| = dist(∆
(n)
i ,∆

(n)
j ).
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Figure 8: The set on the right is a descendant of the left one.

This inequality holds for all 1 ≤ i, j ≤ k, so we can take the maximum over

these pairs:

|Ew| > max
1≤i,j≤k

min
x∈∆

(n)
i ,y∈∆

(n)
j

|x− y|.

Because v
desc−→ w, we have Ew ⊂ Ev. This yields

l/3g = µ(Ew) ≤ µ(Ev) = k/3n,

therefore

bv = max
1≤i,j≤k

min
x∈∆

(n)
i ,y∈∆

(n)
j

|x− y|s

k/3n
≤ |Ew|

s

l/3g
= aw.

First of all we give a lower bound only on a subtree defined by a finite

set of nodes A. We define the set TA as follows: v ∈ TA if v ∈ A, or v is a

descendant of a node w, which is in A. Namely,

TA =
⋃
w∈A

Tw.

We write

BA = min
v∈A

bv.
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We can apply the previous Lemma for every node in the set A, thus we have

BA ≤ inf
v∈TA

av. (2.9)

We are going to apply this inequality for the so called cross-sections.

These are some subsets C ⊂ T of the nodes such that the lower bound on

av, v ∈ TC is a lower on the Hausdorff measure of the Sierpinski triangle. To

make this definition precise first we define the set of the parents of C called

PC as

PC = {v | v desc−→ w,w ∈ C},

namely PC is the set of nodes, which have a descendant in C.

Definition 3. We call a finite set C ⊂ T a cross-section, if there exists

a function ϕ, ϕ : T \ (TC ∪ PC) → TC ∪ PC such that for every node v ∈
T \ (TC ∪ PC) we have

aϕ(v) ≤ av,

and

µ(Eϕ(v)) ≥ 3µ(Ev).

Let v be a level n node. For a k > n we write Γk(v) for that level k

descendant of v which has maximal µ measure. That is

Γk(v) = {Ei1,...ik |Ei1,...ik ⊂ Ev}.

See Figure 9. We remark that

av = aΓk(v). (2.10)

Namely, |Ev| = |EΓk(v)| and µ(Ev) = µ(EΓk(v)) hold.

Fact 1. Let H be an arbitrary subset of T . Then for every k ≥ 0 we have

inf
v∈TH

av = inf
v∈TH

T
{w |w◦≥k}

av. (2.11)
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Figure 9: The node v on the left is a level 2 node, the node on the right is

the node Γ4(v).

Proof. It is enough to verify that

inf
v∈TH

av ≥ inf
v∈TH

T
{w |w◦≥k}

av

holds. To do so, let u ∈ TH \ {w |w◦ ≥ k} be arbitrary. By using Γk(u) ∈
TH
⋂
{w |w◦ ≥ k} and (2.10) we have

au = aΓk(u) ≥ inf
v∈TH

T
{w |w◦≥k}

av,

which completes the proof.

For a cross-section C we define

BC = min
v∈C

bv.

Lemma 4. For every cross-section C we have

inf
v∈T

av = inf
v∈TC

av, (2.12)

and

BC ≤ inf
n
an = Hs(Λ). (2.13)
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Proof. It is easy to see that (2.13) is an immediately consequence of (2.12).

Namely, using (2.7) and (2.9) we have

BC ≤ inf
v∈TC

av = inf
v∈T

av = inf
n
an = Hs(Λ)

Let MC be the maximum level of the nodes which are contained in the set

C. We define

KMC
=
{
v | v0 ≥MC

}
.

Using Fact 1 we have

inf
v∈T

av = inf
v∈T ∩KMC

av, and inf
v∈TC

av = inf
v∈TC∩KMC

av.

Thus to prove (2.12) it is enough to verify that

inf
v∈T ∩KMC

av = inf
v∈TC∩KMC

av (2.14)

holds.

We fix a v ∈ KMC
\ TC . To verify (2.14) we will show that there exists a

node t ∈ KMC
∩ TC such that

av ≥ at (2.15)

holds. Since KMC
∩ PC = ∅, thus v ∈ T \ (TC ∪ PC). C is a cross-section,

by definition there exists ϕ such that ϕ(v) ∈ TC ∪ PC . If ϕ(v) ∈ KMC
, then

ϕ(v) ∈ TC as well, so (2.15) follows from choosing t = ϕ(v) and by using

av ≥ aϕ(v).

If ϕ(v) ∈ PC , then let us consider ΓMC
(ϕ(v)). If ΓMC

(ϕ(v)) ∈ TC then

t := ΓMC
(ϕ(v)) yields (2.15). If ΓMC

(ϕ(v)) /∈ TC then by (2.10) and by the

definition of ϕ and ΓMC
we have

av ≥ aϕ(v) = aΓMC
(ϕ(v))

µ(EΓMC
(ϕ(v))) ≥ 3µ(Ev) (2.16)

ΓMC
(ϕ(v)) ∈ KMC

\ TC
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So, we can repeat the same for the node w1 := ΓMC
(ϕ(v)) instead of v.

If ΓMC
(ϕ(w1)) ∈ TC then we are ready as we saw above. If not then

(2.16) holds for w1 instead of v. Note that this follows that 0 < 9µ(Ev) ≤
µ(EΓMC

(ϕ(w1))) ≤ 1. This shows that there must exists a finite N such that

ΓMC
(ϕ(wN)) ∈ TC , where wk+1 := ΓMC

(ϕ(wk)). This completes the proof of

(2.15)

Take the following set:

C0 = {v | v0 = 2, v ∈ T{E1,E2} ∪ T{E1,E2} ∪ T{E1,E3} ∪ T{E2,E3},

v 6= {E1,2, E2,1}, v 6= {E1,3, E3,1}, v 6= {E2,3, E3,2}} ∪ {{E1, E2, E3}}. (2.17)

See Figure 3 for labelling. There are 7 · 7 = 49 descendants of the node

{E1, E2} at level 2. Counting the same for {E1, E3} and {E2, E3} we have 3 ·
49 = 147 nodes. Let us remove the nodes {E1,2, E2,1},{E1,3, E3,1},{E2,3, E2,3},
and take the node {E1, E2, E3}, so we get the set C0. Thus C0 consists of

147− 3 + 1 = 145 nodes.

Proposition 3. The set C0 is a cross-section.

Proof. Note that

T \ (TC0 ∪ PC0) = TE1 ∪ TE2 ∪ TE3 ∪ T{E1,2,E2,1} ∪ T{E1,3,E3,1} ∪ T{E2,3,E2,3}.

To define the function ϕ in the Definition 3, first we define an auxiliary

function ψ : T \ (TC0 ∪ PC0)→ T . (See Figure 10 and Figure 11.)

• For v ∈ TEj
, where j = 1, 2, 3 let

ψ(v) := {Ei2,i3,...,in |Ej,i2,i3,...,in ∈ v},

• for v ∈ TE1,2,E2,1 let

ψ(v) := {E1,i1,i2,...,in |E1,2,i1,i2,...,in ∈ v} ∪ {E2,i1,i2,...,in |E2,1,i1,i2,...,in ∈ v},
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Figure 10: The node v on the left is a descendant of the node {E1}, the node

on the right is ψ(v). The arrow shows the fix point of rescaling.

Figure 11: The node v on the left is a descendant of the node {E2,3, E3,2},
the node on the right is ψ(v). The arrow shows the fix point of rescaling.

• for v ∈ TE1,3,E3,1 let

ψ(v) := {E1,i1,i2,...,in |E1,3,i1,i2,...,in ∈ v} ∪ {E3,i1,i2,...,in |E3,1,i1,i2,...,in ∈ v},

• for v ∈ TE2,3,E3,2 let

ψ(v) := {E2,i1,i2,...,in |E2,3,i1,i2,...,in ∈ v} ∪ {E3,i1,i2,...,in |E3,1,i1,i2,...,in ∈ v}.

Clearly,

|Eψ(v)| = 2|Ev|

and

µ(Eψ(v)) = 3µ(Ev).
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Figure 12: The node v on the left is a descendant of the node {E1,3, E3,1}.
The node in the middle is Ψ(v). The node on the right is ϕ(v) = Ψ(Ψ(v)).

Thus we have

aψ(v) = av.

This follows that for every v ∈ T \ (TC0 ∪ PC0) there exists an N such

that C0 is a cross-section with the function

ϕ(v) := ψN(v) = ψ ◦ · · · ◦ ψ︸ ︷︷ ︸
N

(v) ∈ TC0 ∪ PC0 .

(See Figure 12.)

For the convenience of the reader we present a simplified algorithm for

choosing cross-sections Cn in the next Subsection. Finally, in Subsection 2.6

we improve this algorithm significantly by using symmetries and a convexity

argument.

2.5 Algorithm

Our purpose is to choose cross-sections Cn in such a way that BCn gets as

large as possible, but a computer can check it in acceptable length of time.

It is a natural idea to choose a starting cross-section, and modify it in hope

to get a better lower bound. For n = 0 take the set C0 defined in (2.17). For

every n in the n-th step find a node v ∈ Cn where

bv = min
w∈Cn

bw.
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To obtain Cn+1 from Cn we throw away v from Cn and we add to Cn all

the next level descendants of v. It follows from the definition of bv that

BCn+1 ≥ BCn .

The following algorithm consists of three steps. It gives a lower bound on

the s-dimensional Hausdorff measure of the Sierpinski triangle every time it

reaches Step 2. It will run forever, but during its running it will give better

and better lower bounds.

Algorithm 1.

Step 1. Start with the set C0 from the previous Subsection. Let n := 0.

Step 2. Find minv∈Cn bv. Below we prove that Cn is a cross-section. So, it

follows from Lemma 4 that we have

min
v∈Cn

bv ≤ Hs(Λ). (2.18)

Step 3. Find a node v ∈ Cn for which bv = minw∈Cn bw (if such a v is not

unique, then choose any of them). Let us suppose v is level m node.

We define Sn as the set of all of those level m + 1 nodes, which are

descendants of the node v. That is

Sn := {w |w0 = m+ 1, v
desc−→ w},

Let

Cn+1 := Sn ∪ Cn \ {v}.

Increase n by 1. Go to Step 2.

Above we used the fact that Cn is a cross-section for every n. This is so

because we have already seen that C0 is a cross-section and

TCn+1 ∪ PCn+1 = TCn ∪ PCn

holds for all n.
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2.6 Making the algorithm faster

Our aim here is to improve the algorithm presented in the previous Sub-

section. To do so, for every n we define a cross section Qn. Namely, let

Q0 := C0. Assume that Qn is already defined. To define Qn+1 first we define

a certain set of nodes Dn ⊂ Qn as it is detailed later in the Subsection. It is

important that the set Dn is much smaller than Qn. We choose a v ∈ Dn for

which

bv = min
w∈Dn

bw. (2.19)

Then the special choice of Dn will guarantee that

bv ≤ Hs(Λ). (2.20)

To get Qn+1 we replace v (defined in (2.19)) with its next level descendants.

To define Dn we need to introduce the notion of the convexity of a node.

We remark that Dn will consist only of convex nodes.

Definition 4. Let v be a level n node. We write

conv(v) = {Ei1,i2,...,in |Ei1,i2,...,in is contained in the convex hull of Ev}.

See Figure 13 for an example. We call a node v convex, if v = conv(v),

otherwise we call it non-convex.

Lemma 5. Let v be a non-convex level n node. If v′ is a level m descendant

of the node v, and Θ ∈ conv(v)\v is a level n triangle, then the closed convex

hull of Ev′ intersects Θ.

Proof. We assume that v = {∆i}ki=1. By definition of convexity we have

Θ ⊂

{
k∑
i=1

αixi |xi ∈ ∆i, αi ≥ 0,
k∑
i=1

αi = 1

}
.

For i = 1, 2, . . . , k let ti ∈ ∆i be arbitrary points. To verify the assertion of

the Lemma it is enough to show that

Θ ∩

{
k∑
i=1

αiti |αi ≥ 0,
k∑
i=1

αi = 1

}
6= ∅ (2.21)
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Figure 13: The node v consists of the black triangles. The convex hull of Ev

is showed with dashed lines. The black and the gray triangles together form

the node conv(v).

holds for every choice of t1, . . . , tk. We prove it by contradiction. Let us

suppose there exist t1, . . . , tk such that (2.21) does not hold. Then there

exists a line e, such that e separates Θ and the convex hull of t1, . . . , tk. Let

a be one of the normal unit vectors of e. Put r := z ·a, where z ∈ e arbitrary,

and dot means the scalar product. Let us define

q := max
x,y∈Θ

(x− y) · a. (2.22)

Without loss of generality we may assume that

max

{(
k∑
i=1

αiti

)
· a |αi ≥ 0,

k∑
i=1

αi = 1

}
< r

and

min
x∈Θ

x · a > r

hold, otherwise take −a instead of a. The last inequality and (2.22) implies

that

max
x∈Θ

x · a > q + r,
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let us denote x0 where the maximum is attained. Since Θ ∈ conv(v)\v, thus

for i = 1, 2, . . . , k there exist ui ∈ ∆i and βi ≥ 0 such that
∑k

i=1 βi = 1 and

x0 =
k∑
i=1

βiui

hold. Using the fact all level n triangles are translations of each othes and

by using (2.22), for i = 1, 2, . . . , k we have

(ui − ti) · a ≤ q.

Observe that

q + r < x0 · a =

(
k∑
i=1

βiti

)
· a +

(
k∑
i=1

βi(ui − ti)

)
· a < r + q,

which is a contradiction, and completes the proof.

The next Lemma shows that for any descendant w of a non-convex node

v the value of aw can be at most slightly bigger than some of the same level

descendants of conv(v). We will need this to verify (2.20).

Lemma 6. Let v be a non-convex level n node and let m > n be arbitrary. If

v
desc−→ v′, v′◦ = m, then there exists a node w′, w′◦ = m, conv(v)

desc−→ w′,

such that

|Ew′| ≤ |Ev′|+
2

2m
(2.23)

and

Ev′ ⊂ Ew′

hold.

Proof. We write v = {∆i}ki=1, and conv(v) \ v = {Θj}lj=1. Let us define the

polygon H as the closed convex hull of Ev′ . We proved in Lemma 5 that

Θj intersects H for 1 ≤ j ≤ l. If the polygon H intersects a triangle Θj,

then for all j there exists at least one level m triangle Θ′j ⊂ Θj, such that Θ′j
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intersects H as well. We write tj for a point where H intersects the triangle

Θ′j. Let

w′ = v′ ∪ {Θ′j}lj=1.

Let q0,w0 ∈ Ew′ be some points where the maximum

|Ew′ | = max
q,w∈Ew′

|q−w|,

is attained. If q0,w0 ∈ Ev′ then we have |Ew′ | = |q0 −w0| ≤ |Ev′|, thus the

inequality (2.23) holds. If one of them is not in Ev′ , let say q0, then there

exists a j such that q0 ∈ Θ′j and w0 ∈ Ev′ . Using triangle inequality we have

|Ew′| = |q0 −w0| ≤ |q0 − tj|+ |tj −w0| ≤ |Θ′j|+ |Ev′| =
1

2m
+ |Ev′|

because q0, tj ∈ Θ′j. If both q0 and w0 are not in Ev′ , then using triangle

inequality twice we have |Ew′| ≤ 2
2m + |Ev′ |.

The following Lemma helps us to reduce the number of cases to be checked

in an analogous way to the previous Lemma.

Lemma 7. Let v = {∆i}ki=1 be a level n node, ∆ = Ei1,...,in be a level n

triangle such that ∆ 6∈ v. Further, let x be one of the vertices of the triangle

∆. We write D(x, r) for the closed disc centered at x with radius r. If

Ev ⊆ D(x, max
1≤i,j≤k

dist(∆i,∆j))

holds then for all level m descendant v′ of the node v there exists a level m

triangle ∆′ ⊂ ∆, such that

|Ev′ ∪∆′| ≤ |Ev′|+
1

2m

Proof. Let ∆′ be that level m triangle, which has x as one of its vertices, and

∆′ ⊂ ∆. As we saw in the proof of Lemma 3, max1≤i,j≤k dist(∆i,∆j)) is a

lower bound on |Ev′ |. Furthermore,

|Ev′ ∪∆′| = max
q,w∈Ev′∪∆′

|q−w|.
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Let q0,w0 be those points where this maximum is attained. Either q0,w0 ∈
Ev′ , or one of the points, let us say q0 ∈ ∆′, and w0 ∈ Ev′ . By using

|∆′| = 1/2m and triangle inequality both cases implies the statement.

The following Theorem will show (with D = Dn) how the sequence of sets

{Dn}∞n=0 mentioned in the introduction of this Subsection gives us a lower

bound on the Hausdorff measure Hs(Λ). Then after this Theorem we will

construct {Dn}∞n=0.

Theorem 5. Let Q ⊂ T be a cross-section. We choose an arbitrary D ⊂ Q

which satisfies the following assumption:

For all v ∈ Q \D there exists a node w ∈ TQ ∪ PQ, such that

• w◦ = v◦,

• Ev ( Ew,

• for v
desc−→ v′ there exists a w

desc−→ w′ with v′◦ = w′◦ =: m such that

Ev′ ⊂ Ew′ and |Ew′ | ≤ |Ev′|+
2

2m
.

Then

BD = min
t∈D

bt ≤ Hs(Λ).

Proof. Let us denote the finitely many elements of Q \D by:

Q \D = {v1, v2, . . . , vk} .

Let ε > 0 be arbitrary. Choose an M > maxv∈Q v
◦ which also satisfies(

1 +
2

δ2M

)k·s
< 1 + ε,

where

δ := inf
v∈τC0

|Ev|.
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We remind the reader that C0 was defined in (2.17). It is easy to see that

δ > 0. Recall that KM = {v | v0 ≥M} . Fix an arbitrary v′0 ∈ KM ∩ TQ. To

prove the assertion of the Theorem, it is enough to show that

av′0 ≥
BD

1 + ε
. (2.24)

Namely,

Hs(Λ) = inf
v∈T

av = inf
v∈TQ

av = inf
v∈KM∩TQ

av ≥
BD

1 + ε
,

here we used first (2.7) then (2.12) and at the third equality we used Fact 1.

Now we define by mathematical induction a finite (at least one and at

most k elements) sequence of nodes

v′0, v
′
1, . . . , v

′
l,

where v′l ∈ TD and v′0, v
′
1, . . . , v

′
l−1 ∈ TQ \ TD. Namely, assume that we have

already defined v′n for an n ≥ 0. If v′n ∈ TD, then let v′l = v′n be the last

element of the sequence. Otherwise v′n ∈ TQ \ TD, so there exists a node

vin ∈ {v1, v2, . . . , vk} such that vin
desc−→ v′n. By the assumptions of the

Theorem there exist nodes win and w′in , such that win
desc−→ w′in , v′◦n = w′◦in ,

Ev′n ⊂ Ew′in and |Ew′in | ≤ |Ev′n| +
2

2m . Now we let v′n+1 := w′in . From this it

immediately follows that

|Ev′n|
|Ev′n+1

|
≥

|Ev′n|
|Ev′n|+

2
2M

≥ δ

δ + 2
2M

=
1

1 + 2
δ2M

.

So, using that µ
(
Ev′n
)
≤ µ

(
Ev′n+1

)
we obtain that

av′n =
|Ev′n|s

µ(Ev′n)
≥

|Ev′n+1
|s

µ(Ev′n+1
)(1 + 2

δ2M )s
=

av′n+1

(1 + 2
δ2M )s

. (2.25)

Note that for n = 0, 1, 2, . . . , l − 1 we have Evin
( Ewin

, vin
desc−→ v′n,

win
desc−→ v′n+1 and Ev′1 ( Ev′2 ( · · · ( Ev′l . This yields that vi0 , vi1 , . . . , vil−1

are all different. This follows that l ≤ k holds and v′l ∈ TD. By applying

(2.25) l times we get

av′0 ≥ av′l

/(
1 +

2

δ2M

)l·s
≥ BD

/(
1 +

2

δ2M

)k·s
≥ BD

1 + ε
,

which gives (2.24) and completes the proof.
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In the following we present the Algorithm. We remark that the starting

set can be reduced by using symmetry. We will consider it at the end of this

Subsection.

Algorithm 2.

Step 1. Let Q0 := C0 (which was defined in (2.17)).

Step 2. Let

D0 = {v | v ∈ C0, v is convex}.

Let n := 0.

Step 3. Find minv∈Dn bv. Below we prove that

min
v∈Dn

bv ≤ Hs(Λ) (2.26)

holds.

Step 4. Find a node v ∈ Dn for which bv = minw∈Dn bw (if such a v is not

unique, then choose any of them). Let Un be the set of non-convex

descendants of v in one generation. That is

Un := {w |w◦ = v◦ + 1, v
desc−→ w,w is non-convex }.

Vn := {w |w◦ = v◦ + 1, ∃ a level v◦ + 1 triangle ∆ /∈ w,

such that the conditions of Lemma 7 holds

by replacing n with w◦ and v with w in Lemma 7.} (2.27)

Moreover, we define

Wn := {w |w◦ = v◦ + 1, v
desc−→ w} \ (Un ∪ Vn).

Note that the set Un ∪ Vn ∪Wn contains all of those nodes which are

descendants of the node v in one generation. Let

Dn+1 := Wn ∪ (Dn \ {v}) .

Increase n by 1. Go to Step 3.
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The only thing remained to be done is to verify (2.26). To do so, we will

use Theorem 5. Let us fix n, and consider the set

Qn = Dn ∪ (C0 \D0) ∪
n−1⋃
k=0

Uk ∪ Vk.

In the following we will check the assumptions of Theorem 5 by replacing

Q with Qn and D with Dn.

It is easy to see that Qn is a cross-section, because

TQn ∪ PQn = TC0 ∪ PC0 .

For v ∈ Qn\Dn there exists an i = 0, 1, 2, . . . , n−1 such that an v ∈ Ui∪Vi,
or v ∈ C0 \ D0. If v ∈ Ui or v ∈ C0 \ D0, then v is non-convex. Let

w = conv(v). We have v◦ = w◦, and Ev ( Ew. Let v
desc−→ v′ be arbitrary.

By using Lemma 6 for v and m = v′◦, there exist w′, w′◦ = v′◦ = m, such

that

Ev′ ⊂ Ew′ and |Ew′ | ≤ |Ev′ |+
2

2m
.

If v ∈ Vi, then the conditions of Lemma 7 holds for v, n = v◦ and for a

level n triangle ∆ /∈ v. Let w = v ∪ {∆}. We have v◦ = w◦, and Ev ( Ew.

Let v
desc−→ v′ be arbitrary. By using Lemma 7 there exists a level m := v′◦

triangle ∆′, such that

|Ev′ ∪∆′| ≤ |Ev′|+
1

2m
.

By choosing w′ = v′ ∪ {∆′}, we obtain that

Ev′ ⊂ Ew′ and |Ew′ | ≤ |Ev′ |+
2

2m
.

So, by using Theorem 5 we get

BDn ≤ Hs(Λ)

which completes the proof of (2.26).
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By symmetry we can assume that for every level 4 descendants v of the

node {E1, E2, E3} we have

#(v ∩ (TE11 ∪ TE12 ∪ TE13)) ≤ #(v ∩ (TE21 , TE22 , TE23)) ≤

≤ #(v ∩ (TE31 , TE32 , TE33)).

To reduce the usage of the computer memory we modify the Algorithm

2. First we fix a constant Z. We store only those nodes, which are necessary

to prove that a fixed constant Z is a lower bound on the Hausdorff measure

of the Sierpinski triangle. Let

Dn = {v | v ∈ Dn, bv ≤ Z}.

During the modified Algorithm we store Dn instead of Dn. We use Dn to

find a node v ∈ Dn such that bv = minw∈Dn bw. If Dn is the empty set, then

Z < min
v∈Dn

bv ≤ Hs(Λ),

otherwise we have

min
v∈Dn

bv = min
v∈Dn

bv.

If this modified Algorithm reaches a state where Dn = ∅, then by using

inequality (2.26) we have

Z < Hs(Λ).

2.7 Running results

I wrote the program in C++ language. For Z = 0.73 the program runs for

half an hour, for Z = 0.77 it runs for a 4 days. The best result, what I

managed to reach, is 0.77.

The program is available as an electric supplement on a compact disk and

at my homepage:

http://www.math.bme.hu/˜morap/sierpinski.zip
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3 Infinite Bernoulli convolutions with proba-

bilities p ∈ (0, 1
3)

3.1 Introduction

Let p ∈ (0, 1) and λ ∈ (0, 1), and take the following random sum

Y p
λ :=

∞∑
n=0

±λn,

where the signs ” + ” and ” − ” are chosen identically and independently

with probability p and 1 − p. Let νpλ be the distribution of Y p
λ . That is for

every set E we have νpλ(E) := P(Y p
λ ∈ E). The measure νpλ has an important

self-similar property. Namely, for every set E we have

νpλ(E) = p · νpλ(S−1
1 (E)) + (1− p) · νpλ(S−1

2 (E)),

where S1(x) = λx+1 and S2(x) = λx−1. Since νpλ is an infinite convolutions

product of 1
2
(δ−λn + δλn), it is called infinite Bernoulli convolutions.

In this Subsection we give a brief summary of the results about infinite

Bernoulli convolutions in the unbiased (p = 1/2) case. A more detailed

overview can be found in [16]. It was asked by Pál Erdős in 1930’s whether

the measure ν
1/2
λ is absolutely continuous or singular with respect to the

Lebesgue measure. In 1935 Jessen an Wintner proved a so called “the law of

pure types” statement:

Theorem 6 (Jessen and Wintner 1935). The measure ν
1/2
λ is either abso-

lutely continuous or purely singular, depending on λ.

In 1935 Kershner and Wintner showed that ν
1/2
λ is singular if λ ∈ [0, 1/2),

because it is supported on a Cantor set, which has zero Lebesgue measure.

For λ ∈ (1/2, 1) the first result was made by Erdős. To claim his statement

we need the definition of the Pisot numbers.

Definition 5. We call a algebraic number θ > 1 Pisot if all the other roots

of the minimal polynomial of θ are less than 1 in modulus.
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Theorem 7 (Erdős 1939). If λ 6= 1
2

and λ is a reciprocal of a Pisot number

then ν
1/2
λ is singular.

The first result about the absolute continuity was also achieved by Erdős.

Theorem 8 (Erdős 1940). There exist a constant a0 < 1, where a0 is rather

close to 1, such that for almost every λ ∈ (a,1) the measure ν
1/2
λ is absolutely

continuous. Moreover, there exists a sequence ak → 1, such that for almost

every λ ∈ (ak, 1) the measure ν
1/2
λ has a density in Ck(R).

In 1995 K. Simon and M. Pollicott [17] made progress about the “{1, 2, 3}-
problem” (see [18]). The main idea was to define transversality for power

series. Transversality seems to be the key for solving many problems re-

lated to absolute continuity and dimensional theory. Using the definition

B. Solomyak proved the following Theorem:

Theorem 9 (B. Solomyak 1995 [19]). 1. For almost every λ ∈ (1
2
, 2−1/2)

the measure ν
1/2
λ is absolutely continuous with a density in L2(R).

2. For almost every λ ∈ (2−1/2, 1) the measure ν
1/2
λ is absolutely continu-

ous with a density in C(R).

A simpler proof of this Theorem was found by B. Solomyak and Y. Peres

[20][Section 4 and 5].

3.2 Biased case, p ∈ (0, 1)

One of the generalisations of the Bernoulli convolutions is to let p ∈ (0, 1)

be arbitrary. If λ = pp(1 − p)1−p then using some basic estimates (see

[14][Theorem 1.3, (a)] for example) the Hausdorff dimension of νpλ is less

than or equal to 1, thus for λ < pp(1− p)1−p the measure νpλ is singular. It is

conjectured that for every p ∈ (0, 1) and for almost every λ ∈ (pp(1−p)1−p, 1)

the measure νpλ is absolutely continuous with respect to the Lebesgue mea-

sure. In 1998 B. Solomyak and Y. Peres proved [14, Corollary 1.4] that this

holds for p ∈ [1/3, 2/3]:
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Theorem 10 (Peres, Solomyak [14]). For p ∈ [1/3, 2/3] the measure νpλ is

absolutely continuous for a.e. λ ∈ [pp(1 − p)1−p, 1), and has L2-density for

a.e. λ ∈ [p2 + (1− p)2, 1).

Solomyak and Peres [14, Theorem 1.3] also showed that we only have

chance for L2-density if λ ≥ p2+(1−p)2 holds. However, Peres and Solomyak

left open the corresponding problem for p ∈ (0, 1/3). The first steps in this

case was made by H. Tóth in 2008:

Theorem 11 (Tóth [13]). For p ∈ (0, 1/3) and for almost every

λ ∈ ((1− 2p)2−log 41/ log 9, 1)

the measure νpλ is absolutely continuous with L2-density.

In the rest of this Section we improve H. Tóth’s result. We remark that

both H. Tóth’s and our proof use Theorem 10. Following [13] we introduce

the function h(p):

h(p) := p2 + (1− p)2.

For every positive integer T and p ∈ (1/3, 1/2) let

gT (p) :=
1− (1− 2p)1/T

2
,

which function was defined by H. Tóth for T = 2. Since gT (p) is monotone

increasing, its inverse is well defined for gT (1/3) < p < 1/2:

g−1
T (p) =

1− (1− 2p)T

2
.

The following function has appeared in [13] in a different form:

f(p) = (h(g−1
T (p)))1/T where T = min(K = 2L, L ∈ N, gK(1/3) ≤ p)

H. Tóth showed that for all p ∈ (0, 1/3) and for almost every λ ∈ (f(p), 1)

the measure νpλ is absolutely continuous. She also introduced the function

F (p) = (1 − 2p)2−log 41/ log 9, which has a closed form, and for p ∈ (0, 1/3),

F (p) is larger than f(p).
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F (p) = (1− 2p)2−log 41/ log 9

f(p)

z(p)

Figure 14: The functions f(p), F (p) and z(p) for p ∈ (0, 1/3).

For p ∈ (0, 1/3) we define z(p) the following way:

z(p) = (h(g−1
T (p)))1/T where T = min(K ∈ N, gK(1/3) ≤ p).

See Figure 14 and Figure 15. In this Section we prove the following

Theorem:

Theorem 12. For p ∈ (0, 1/3) and almost every λ ∈ (z(p), 1) the measure νpλ

is absolutely continuous with respect to the Lebesgue measure with L2-density.

The motivation of our research was as follows. Recently there have arisen

some problems (related to the concentration of medicine in the blood), which

require the better understanding of νpλ for p close to zero. Our most important

achievement is that Theorem 12 gives a better tangent for p ≈ 0. On the

other hand we remark that z(p) = f(p) for some intervals. H. Tóth showed

that F ′(0) ≈ −0.619761 and F (p) ≤ 1− 0.6p for p ∈ (0, 1/3). We will prove

that
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pp(1− p)1−p

p2 + (1− p)2

for almost every λ

νpλ is absolutely continuous

for almost every λ νpλ is absolutely continuous with L2-density

difference of

z(p) and f(p)

Figure 15: Absolute continuity of νpλ.

Lemma 8.

lim sup
p−>0+

z(p)− 1

p
≤ −2 log(9/5)

log(3)
≈ −1.07005

3.3 Basic idea

In this Subsection we prove Theorem 12 via some lemmas. In the next

Subsection we continue with the proofs of the lemmas used.

It follows from Theorem 10 that for p ∈ (1/3, 1/2) and for almost every

λ ∈ (p2 + (1− p)2, 1), νpλ is absolutely continuous with L2-density. Fix p and

λ such that νpλ is absolutely continuous with L2-density. Using Plancherel’s

Theorem for the Fourier transform we have ν̂pλ ∈ L2. First we prove that

Lemma 9. For p ∈ (0, 1), λ ∈ (0, 1) and for T > 1 if ν̂pλ(ξ) ∈ L2 then

ν̂
gT (p)
λ (ξ) ∈ L2T .

Further, we claim that
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Lemma 10. For p ∈ (0, 1), λ ∈ (0, 1) and for T > 1 integer if ν̂
gT (p)
λ (ξ) ∈ L2T

then ν̂
gT (p)

λ1/T (ξ) ∈ L2.

Using Plancherel’s Theorem again ν
gT (p)

λ1/T (ξ) ∈ L2 is a consequence of

ν̂
gT (p)

λ1/T (ξ) ∈ L2.

Proof of Theorem 12. Using Lemma 9, Lemma 10 and Plancherel’s Theorem

twice we obtain that for all T > 1 integer, for all p ∈ (1/3, 1/2) and for almost

every λ ∈ (h(p), 1) we have ν
gT (p)

λ
1/T ∈ L2.

Let p ∈ (0, 1/3) be arbitrary. It follows from the definition of gK that

gK(1/3) ↓ 0. Let

T := min(K ∈ N, gK(1/3) ≤ p).

For p ∈ [1/3, 1/2) the function gT (p) is monotone increasing and we have

gT (1/2) = 1/2. Since gT (1/3) ≤ p, thus there exists p ∈ [1/3, 1/2) such that

p = gT (p) holds. For almost every λ ∈ (h(p), 1) we have ν
gT (p)

λ
1/T ∈ L2. The

function x→ x1/T is monotone increasing, thus for almost every

λ := λ
1/T ∈ (h(g−1

T (p))1/T , 1)

we have ν
gT (p)
λ ∈ L2.

3.4 Proof of the Lemmas

Instead of Y p
λ we consider the following random sum:

Zp
λ =

∞∑
n=0

an · λn,

where an independently equals to 0 or 1 with probability p and 1 − p. Let

ψpλ be the distribution of Zp
λ. We have

Y p
λ

d
=

1

1− λ
− 2 · Zp

λ,

thus the measures νpλ and ψpλ are absolutely continuous with L2-density at

the same time. We repeat the steps of the proof of the main result of [13] to

obtain a convenient form for the Fourier transform of the measure ψpλ. The
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measure ψpλ is the infinite convolution product of p · δ0 + (1− p) · δλn . Thus

for ξ ∈ R we have

ψ̂pλ(ξ) =
∞∏
n=0

(
p+ (1− p) · e−i·λn·ξ) .

Using trigonometric identities we get the following equation for the absolute

value of ψ̂pλ(ξ):

|ψ̂pλ(ξ)| =
∞∏
n=0

√
1− 4p(1− p) sin2

(
λn · ξ

2

)
. (3.1)

Proof of Lemma 9. Let T > 1. To prove that ν̂
gT (p)
λ ∈ L2T is a consequence

of ν̂pλ ∈ L2, it is enough to show that

∞∏
n=0

√
1− 4p(1− p) sin2

(
λn · ξ

2

)
≥
∞∏
n=0

√
1− 4gT (p)(1− gT (p)) sin2

(
λn · ξ

2

)T
holds. To do so, we give a bound on each term. Namely, we prove that for

all 0 ≤ δ ≤ 1 and p ∈ (0, 1/2) we have√
1− 4p(1− p)δ ≥

√
1− 4gT (p)(1− gT (p))δ

T
.

Since both sides are positive, we show that the inequality holds for their

square. Let h(p, δ, T ) be the difference of these two squares. Using the

definition of gT (p) we have

h(p, δ, T ) := 1−4p(1−p)δ−
(

1− 4
1− (1− 2p)1/T

2

(
1− 1− (1− 2p)1/T

2

)
δ

)T
which leads to

h(p, δ, T ) = 1− 4p(1− p)δ −
(

1−
(

1− (1− 2p)
2
T

)
δ
)T

.

Our purpose is to show that h(p, δ, T ) ≥ 0 holds. For p = 0 it is trivial. In

the following we prove that for p ∈ (0, 1/2) the derivative with respect to p

is positive. Namely,

h′p(p, δ, T ) ≥ 0
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holds, which completes the proof of the Lemma.

h′p(p, δ, T ) = 4δ
(
−(1− 2p) + (1− 2p)

2
T
−1(1 + ((1− 2p)

2
T − 1)δ)T−1

)
If δ = 0 then h′p(p, δ, T ) = 0. Otherwise we can divide by 4δ, thus we have

to show that

−(1− 2p) + (1− 2p)
2
T
−1(1 + ((1− 2p)

2
T − 1)δ)T−1 ≥ 0 (3.2)

holds. By using that (1 − 2p) ≤ 1 it is easy to see that the left side of the

equation 3.2 is monotone decreasing in δ. For δ = 1 we have

−(1− 2p) + (1− 2p)
2
T
−1(1− 2p)

2
T

(T−1) = 0.

This yields that the equation 3.2 holds for 0 < δ < 1, and it completes the

proof.

Proof of Lemma 10. Let T > 1 integer and ν̂
gT (p)
λ (ξ) ∈ L2T . Using integra-

tion by substitutions it is easy to see that

ν̂
gT (p)
λ (ξλ1/T ), ν̂

gT (p)
λ (ξλ2/T ), . . . , ν̂

gT (p)
λ (ξλ(T−1)/T ) ∈ L2T (3.3)

as well. Since the terms of (3.1) are positive and less than 1, the infinite prod-

uct of |ψ̂gT (p)

λ1/T (ξ)| is absolute convergent. Thus the terms of can be rearranged

in the following way:

ψ̂
gT (p)

λ1/T (ξ) = ψ̂
gT (p)
λ (ξ) · ψ̂gT (p)

λ (ξλ1/T ) · · · · · ψ̂gT (p)
λ (ξλ(T−1)/T ).

Using (3.3) and Hölder inequality we have ψ̂
gT (p)

λ1/T (ξ) ∈ L2.

Note that this principal was used by Solomyak in [15] for p = 1/2, and

by Tóth in [13] for T = 2.

Proof of Lemma 8. Fix p ∈ (0, 1/3), and let

T = min(K ∈ N, gK(1/3) ≤ p). (3.4)

Since gT (1/3) ≤ p, we have 1/3 ≤ g−1
T (p). Thus

z(p) = (h(g−1
T (p)))1/T ≤ (h(1/3))1/T =

(
5

9

)1/T

,
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because the function h is monotone decreasing on (1/3, 1/2). Since T was

minimal, we get gT−1(1/3) > p. Since z(p)− 1 < 0, we obtain that

z(p)− 1

p
≤
(

5
9

)1/T − 1

gT−1(1/3)
=

(
5
9

)1/T − 1
1−(1/3)1/(T−1)

2

.

If p ↓ 0 and T is defined by (3.4), then T → ∞. Using L’Hospital’s rule we

have

lim
T→∞

(
5
9

)1/T − 1
1−(1/3)1/(T−1)

2

=
−2 log(9/5)

log 3
,

which completes the proof.
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